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The p-regularized subproblem (p-RS) is the key content of a regularization technique in computing a
Newton-like step for unconstrained optimization. The idea is to incorporate a local quadratic approxima-
tion of the objective function with a weighted regularization term (σ/p)‖x‖p and then globally minimize
it at each iteration. In this paper, we establish a complete theory of the p-RSs for general p > 2 that cov-
ers previous known results on p = 3 or p = 4. The theory features necessary and sufficient optimality
conditions for the global and also for the local non-global minimizers of (p-RS). It gives a closed-form
expression for the global minimum set of (p-RS) and shows that (p-RS), p > 2 can have at most one local
non-global minimizer. Our theory indicates that (p-RS) have all properties that the trust region subprob-
lems do. In application, (p-RS) can appear in natural formulation for optimization problems. We found
two examples. One is to utilize the Tikhonov regularization to stabilize the least square solution for an
over-determined linear system; and the other comes from numerical approximations to the generalized
Ginzburg–Landau functionals. Moreover, when (p-RS) is appended with m additional linear inequality
constraints, denoted by (p-RSm), the problem becomes NP-hard. We show that the partition problem, the
k-dispersion-sum problem and the quadratic assignment problem in combinatorial optimization can be
equivalently formulated as special types of (p-RSm) with p = 4. In the end, we develop an algorithm for
solving (p-RSm).

Keywords: nonlinear optimization; combinatorial optimization; weighted regularization; trust-region
subproblem; extended trust-region subproblem; local non-global minimizer

AMS Subject Classification: 49K30; 90C46; 90C26

1. Introduction

For an unconstrained optimization problem to minimize f over R
n, Newton’s method has an

attractive local convergence property near a second-order critical point. However, to ensure
the global convergence for Newton’s method with an analysable computational complexity, it
requires modifications to secure a sufficient descent in the value of f. This can be guaranteed by
trust region methods. The key idea is to compute a trial step by minimizing the second-order Tay-
lor’s expansion of f over a trust region ball centred at the current iterate. It leads to the following
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1060 Y. Hsia et al.

trust region subproblem:

(TRS) min 1
2 xTHx + cTx

s.t. ‖x‖2 ≤ �, x ∈ R
n,

where H is the Hessian of f at the current iterate. Because of the compactness of the trust region
ball {x | ‖x‖2 ≤ �}, trust region subproblem (TRS) always has a global minimizer, and it can
be solved via a semi-definite program followed by a rank-one decomposition procedure. In par-
ticular, we do not need to assume positive definiteness of H. A merit function is then used to
determine whether the global minimizer of (TRS) is to be accepted or rejected, followed by an
update to the next (TRS). For detailed discussions on trust region methods, see the monograph
[5] and the very recent review paper [22].

A relatively new approach is the p-regularized methods. In the subproblems considered by the
p-regularized methods, the trust region ball {x | ‖x‖2 ≤ �} in (TRS) is replaced with a weighted
(by σ > 0) higher-order regularization term. Specifically, the p-regularized subproblem (p-RS)
is the unconstrained minimization problem:

(p−RS) min
x∈Rn

{
g(x) = 1

2
xTHx + cTx + σ

p
‖x‖p

}
, p > 2

where σ > 0. Because of the regularization term (σ/p)‖x‖p, g(x) is coercive, that is,
lim‖x‖→+∞ g(x) = +∞ that (p-RS) can always attain the global minimum even for non-positive-
definite H. The idea is similar to the trust region algorithm. At any iteration, a local approximation
(p-RS) of f is constructed and solved. If the global minimizer of (p-RS) renders a satisfactory
decrease in the value of f, it is accepted; but rejected otherwise with an increase in σ to enhance
the regularization force. Notice that, due to the regularization term (σ/p)‖x‖p, p > 2, (p-RS) can-
not be formulated and solved by a semi-definite program or by polynomial optimization methods.
Normally, it is done by seeking the unique root from a secular equation [10]. Nevertheless, there
exist some ‘hard’ cases [10] in which the computation of a global solution to (p-RS) becomes
cumbersome.

In literature, the most common choice to regularize the quadratic approximation is (p-RS) with
p = 3, which is known as the cubic regularization. The cubic regularization was first introduced in
[11] and later was considered by many authors with global convergence and complexity analysis,
see [3,18,20]. Recently, a comprehensive comparison for the numerical effectiveness between
(p-RS) for general p > 2 and (TRS) was made in [10].

Our paper establishes a complete theory of (p-RS) for general p > 2 that covers previous
known results on p = 3 or p = 4. The theory includes necessary and sufficient optimality con-
ditions for the global minimum, as well as for the local non-global minimizers, of (p-RS) with
p > 2. It gives a closed-form expression for the global minimum set, which facilitates the com-
putation of (p-RS) at each step even for the ‘hard’ case mentioned in [10]. We prove that (p-RS),
p > 2 can have at most one local non-global minimizer, which enables us to develop an algorithm
for solving (p-RS) with additional linear constraints. Our theory shows that (p-RS) have all
properties that (TRS) do and thus implies that one can exchange with the other freely. This
provides flexibility in formulation and approximation for optimization models. We summarize
and comment the main results of the paper as follows.

Theorem 1.1 The point x∗ is a global minimizer of (p-RS) for p > 2 if and only if

(H + σ‖x∗‖p−2I)x∗ = −c; H + σ‖x∗‖p−2I � 0. (1)

Moreover, the �2 norms of all the global minimizers are equal.
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Optimization Methods & Software 1061

Theorem 1.1 generalizes a parallel result for p = 3 in Theorem 3.1 [3] and complete the
sufficient part for p > 2 in Theorem 2 [10].

Theorem 1.2 Let k be the multiplicity of the smallest eigenvalue α1 of H, that is ,

α1 = · · · = αk < αk+1 ≤ · · · ≤ αn.

Then, the set of the global minimizers of (p-RS) is either a singleton or a k-
dimensional sphere centred at (0, · · · , 0, −ck+1/(αk+1 − α1), · · · , −cn/(αn − σ1)) with the

radius
√

(α1/σ)2/(p−2) −∑n
i=k+1(c

2
i /(αi − α1)2).

Although (1) in Theorem 1.1 gives the necessary and sufficient condition of the global mini-
mizer for (p-RS), yet the conditions themselves cannot be directly solved to compute the global
minimizer of it. It is computed in [10] by finding the root of a secular equation; and in some hard
cases with an additional help from eigenvectors and constructed trajectories. Our careful analy-
sis in Theorem 1.2 gives the closed-form expression for the set of global minimizers of (p-RS),
p > 2. There is no need to distinguish the ‘hard case’ [10] anymore.

Theorem 1.3 The point x is a local-non-global minimizer of (p-RS) for p > 2 if and only if

x = −(H + σ t∗I)−1c,

where t∗ is a root of the secular function

h(t) = ‖(H + σ tI)−1c‖2 − t2/(p−2), t ∈
(

max
{
−α2

σ
, 0
}

, −α1

σ

)
(2)

such that h′(t∗) > 0.

The result is an extension to general p > 2 from a special case p = 4 in Theorem 1.2 [21].
Moreover, the result is stronger than a parallel version for (TRS) [17] which stated that, if x is a
local-non-global minimizer of (TRS), then x satisfies (H + λ∗I)x = −c with λ∗ ∈ (−α2, −α1),
λ∗ ≥ 0 and φ′(λ∗) ≥ 0 where φ(λ) = ‖(H + λI)−1c‖2. It is not known so far whether or not the
necessary condition φ′(λ∗) ≥ 0 is also sufficient for the local non-global minimizer of (TRS).

Theorem 1.4 The subproblem (p-RS) with p > 2 has at most one local non-global minimizer.
The same property is also shared by (TRS) (proved in [17]) and by the double well potential

function (p = 4, proved in [21]). The proof for a general theory p > 2 here requires special
technique to overcome the difficulty.

The practical applications of (p-RS), however, are not limited to just one of the numerical
schemes for nonlinear optimization. It can also appear naturally in formulation for optimization
problems. Beck and Ben-Tal [1] utilize the Tikhonov regularization to stabilize the least square
solution for an over-determined linear system Ax = b and their model is to solve the quadratic
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1062 Y. Hsia et al.

fractional problem

(TRTLS) min
x∈Rn

{
T(x) ≡ ‖Ax − b‖2

‖x‖2 + 1
+ ρ‖x‖2

}
,

where ρ > 0 is a penalty parameter. Then, with Dinkelbach’s approach [6], it leads to determine
the unique root t∗ of a strictly decreasing function:

φ(t) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t(‖x‖2 + 1)}

= min
x∈Rn

{xTATAx + (ρ − t)‖x‖2 − 2bTAx + ρ‖x‖4} + ‖b‖2 − t. (3)

In each step, Algorithm TRTLSI [1] evaluates φ(t) and updates t until the sequence converges to
t∗ eventually. Notice that, for each t, evaluating φ(t) in (3) amounts to solving (p-RS) with p = 4.
Here we point out that formula (54) given in [1] is not correct. The correct formula (please refer
to notations [1]) should be

φ(t) = min
z∈Rn

⎧⎨
⎩

n∑
j=1

⎧⎨
⎩λjz

2
j + (ρ − t)z2

j − 2fjzj + ρz4
j + 2ρ

∑
i<j

z2
i z2

j

⎫⎬
⎭
⎫⎬
⎭

+ ‖b‖2 − t. (4)

Therefore, all subsequent analysis and related computation after (54) [1], including Algorithm
TRTLSI itself, should be modified accordingly. Given that the correct formula (4) is more com-
plicate than the wrong one (54) used [1], we suggest that our result in this paper can be directly
incorporated with Algorithm TRTLSI to simplify the implementation.

Another practical application of (p-RS) comes from numerical approximations to the general-
ized Ginzburg–Landau functionals [16]:

Iα(μ) =
∫

	

[
1

n
‖∇μ(x)‖n + α

2

(
1

2
‖μ(x)‖2 − β

)2
]

dx, (5)

where 	 ⊂ Rn, α, β are positive material constants, and μ : 	 −→ Rq is a smooth vector-valued
(field) function describing the phase of the system. The second term of (5),

∫
	
(α/2)( 1

2‖μ(x)‖2 −
β)2] dx, is called the double-well potential in the integral form. Discretizing it leads naturally to
a form of (p-RS) with p = 4. Please refer to [8] for detail derivation.

The parallel structure between (TRS) and (p-RS) extends to some recent results in cases when
additional m linear inequality constraints are added:

(p-RSm) min
1

2
xTHx + cTx + σ

p
‖x‖p (6)

s.t. li ≤ ai
Tx ≤ ui, i = 1, . . . , m, (7)

where li ≤ ui ∈ R for i = 1, . . . , m. When (TRS) is appended with linear inequality constraints, it
is called the extended trust region subproblem (ETRS). Polynomial solvability for (ETRS) when
the number m is fixed has been recently proved in [2], and independently in [14]. Both methods
enumerate all the intersecting faces, while recursively reducing the problem dimension as well
as the number of constraints until it has just one linear constraint remained. The enumeration is
exponential in the number m, as it contributes to the combinatorial nature on the boundary of a
polytope. When m is fixed, the algorithm has a polynomial complexity with respect to all other
data size of the problem. We refer the reader to [2,14] for more references regarding (ETRS) and
the reduction algorithms.
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Optimization Methods & Software 1063

In the remaining part of the paper, we demonstrate that (p-RSm) can be also used to reformu-
late combinatorial optimization problems; and it happens that the reduction method for (ETRS)
[14] has a non-trivial resemblance for solving (p-RSm) with the same complexity, particularly
for p = 4. We want to emphasize that, due to the regularization term (σ/p)‖x‖p, Bienstock and
Michalka’s approach [2] does not inherently entitle a direct extension to solve (p-RSm) here.

For (p-RSm) to formulate combinatorial optimization problems, we give two examples. By
the first one we show that the NP-hard partition problem, which checks, for any given positive
integer vector r, the solvability of

rTx = 0, x ∈ {−1, 1}n,

can be reduced to a special case of (p-RSn). Secondly, we show that the NP-hard binary quadratic
optimization problem

(BQP) min xTQx

s. t. eTx = k, Ax ≤ b, x ∈ {0, 1}n

is reduced to a special case of (p-RSm+n+1) with p = 4. The binary quadratic program (BQP)
includes the k-dispersion-sum problem and the quadratic assignment problem as special cases.
Both the partition problem and the binary quadratic optimization problem can therefore be solved
by the reduction algorithm that we develop for (p-RSm).

In the concluding remark of the paper, we mention that the free interchange between the trust
region constraint ‖x‖2 ≤ � in (TRS) and the weighted regularization term (σ/p)‖x‖p in (p-RS)
can have meaningful implications. Especially for the Celis-Dennis-Tapia (CDT) problem [4],
their formulation requires to solve a quadratic approximation on the intersection of one ball and
one ellipsoid, which truly introduces enormous difficulty. If (TRS) is replaced with (p-RS) in the
CDT formulation, an obvious advantage is that we only have to consider (p-RS) subject to just
one ellipsoid constraint. That will be an interesting future research topic.

Notation 1 Let v(·) denote the optimal value of problem (·). For any symmetric matrix
P ∈ R

n×n, P � (�)0 means that P is positive (semi)definite. The determinant of P is denoted
by det(P) whereas the identity matrix of order n by I. For a vector x ∈ R

n, Diag(x) is a diag-
onal matrix with diagonal components being x1, . . . , xn. e denotes a vector of dimension n
with all components equal to one. For a number β ∈ R, sign(β) = β/|β| if β �= 0, otherwise
sign(β) = 0. Finally, λi(P) is the i-th smallest eigenvalue of P.

2. Characterization of the global minimizers

The starting point of the analysis is the first-order and the second-order necessary conditions for
any local minimizer of g.

Lemma 2.1 Assume that x is a local minimizer of (p-RS), p > 2. It holds that

∇g(x) = (H + σ‖x‖p−2I)x + c = 0, (8)

∇2g(x) = (H + σ‖x‖p−2I) + σ(p − 2)‖x‖p−4xxT � 0, (9)

where ∇g, ∇2g denote the gradient and the Hessian of g(x), respectively.
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1064 Y. Hsia et al.

The next theorem shows that, a local minimizer x becomes global if and only if H +
σ‖x‖p−2I � 0. The necessity has been shown by Theorem 1.2 [10]. We only prove the sufficiency
here.

Theorem 2.2 The point x∗ is a global minimizer of (p-RS) for p > 2 if and only if it is a critical
point satisfying ∇g(x∗) = 0 and H + σ‖x∗‖p−2I � 0. Moreover, the �2 norms of all the global
minimizers are equal.

Proof If x∗ = 0n, then σ‖x∗‖p−2 = 0 so that c = −(H + σ‖x∗‖p−2I)x∗ = 0 and H = H +
σ‖x∗‖p−2I � 0. Consequently, xTHx ≥ 0, ∀x ∈ R

n. It follows that x∗ = 0n is a global minimizer
since

g(x) = 1

2
xTHx + cTx + σ

p
‖x‖p ≥ σ

p
‖x‖p > 0 = g(0), ∀x �= 0n = x∗.

Now we assume x∗ �= 0n, that is, ‖x∗‖ > 0. Define Q = H + σ‖x∗‖p−2I. According to the
assumption, Q � 0. Then, for any x ∈ R

n and x �= x∗, it holds that

g(x) = 1

2
xTHx + cTx + σ

p
‖x‖p

= 1

2
xTQx + cTx − 1

2
(σ‖x∗‖p−2)xTx + σ

p
‖x‖p

= 1

2
xTQx + cTx + σ

p
‖x∗‖p

(( ‖x‖2

‖x∗‖2

) p
2

− p

2

‖x‖2

‖x∗‖2

)
. (10)

Define f (t) = tp/2, p > 2. It is strictly convex for t > 0. Therefore,

f (t) = tp/2 ≥ f (1) + f ′(1)(t − 1) = 1 + p

2
(t − 1), ∀t > 0.

By substituting t with ‖x‖2

‖x∗‖2 , we have

( ‖x‖2

‖x∗‖2

) p
2

− p

2

‖x‖2

‖x∗‖2
≥ 1 − p

2
.

Then,

g(x) ≥ 1

2
xTQx + cTx + σ

p
‖x∗‖p

(
1 − p

2

)
. (11)

By Q � 0, the lower bounding function of g in the right-hand side of (11) is convex quadratic
in terms of x. Since x∗ satisfies (H + σ‖x∗‖p−2I)x∗ = Qx∗ = −c, x∗ is a global minimizer of the
convex function in the right-hand side of (11). As a consequence,

g(x) ≥ 1

2
(x∗)TQx∗ + cTx∗ + σ

p
‖x∗‖p

(
1 − p

2

)
= g(x∗)

and x∗ is a global minimizer of (p-RS).
Finally, from (10), if x̂ is also a global minimizer of (p-RS), x̂ must minimize both 1

2 xTQx + cTx
and (‖x‖2/‖x∗‖2)p/2 − (p/2)(‖x‖2/‖x∗‖2) simultaneously since x∗ does too. This can happen if
and only if Qx̂ = −c and ‖x̂‖ = ‖x∗‖. �
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Optimization Methods & Software 1065

Remark 1 When p = 3, two other proofs of the necessary and sufficient condition can be found
in Theorem 3.1 [3] and Theorem 10 [18], respectively. We notice that the proof in [3] is inherited
from that of the necessary and sufficient condition for the trust-region subproblem [5] and the
proof in [18] highly relies on the special structure of the case p = 3. Our proof is much easier
to understand, since it is based on a direct comparison between g(x) and a convex lower bound
function.

To characterize the set of global minimizers of (p-RS), we may assume that H is diagonal, that
is,

H = Diag(α1, . . . , αn), (12)

where

α1 = · · · = αk < αk+1 ≤ · · · ≤ αn

and k is the multiplicity of the smallest eigenvalue α1. Otherwise, let H = U�UT be the eigen-
value decomposition of H. Let y = UTx. Then ‖y‖ = ‖UTx‖ = ‖x‖ and we obtain a diagonal
version of (p-RS) in terms of y.

Theorem 2.3 The set of global minimizers of (p-RS) is either a singleton or a k-
dimensional sphere centred at (0, . . . , 0, −ck+1/(αk+1 − α1), . . . , −cn/(αn − α1)) with the radius√

(α1/σ)2/(p−2) −∑n
i=k+1(c

2
i /(αi − α1)2).

Proof Let x∗ be any global minimizer of (p-RS) and define t∗ = ‖x∗‖p−2 ≥ 0. Notice that
t∗ is independent of the choice of x∗ since the �2 norms of all the global minimizers
are equal. By Theorem 2.2, αi + σ t∗ ≥ 0, ∀i = 1, 2, . . . , n. If H + σ t∗I is invertible, t∗ ∈
(max{−α1/σ , 0}, +∞) and the global minimizer x∗ is uniquely defined by (the still unknown
t∗ that)

x∗
i = −ci

αi + σ t∗
, i = 1, . . . , n.

By summing all (x∗
i )

2, t∗ is necessarily a non-negative root of the following secular function on
a specific open interval:

h(t) =
n∑

i=1

c2
i

(αi + σ t)2
− t

2
p−2 , t ∈ Ig =

(
max

{
−α1

σ
, 0
}

, +∞
)

. (13)

Since limt→max{−α1/σ ,0} h(t) > 0, limt→+∞ h(t) = −∞ and h(t) is strictly decreasing on Ig (see
Remark 2), the secular function h(t) has a unique root on Ig, which must be t∗.

On the other hand, H + σ t∗I is singular in which case t∗ = −α1/σ . (Obviously, this case
cannot happen for α1 > 0.) Then, c2

1 + · · · + c2
k = 0, and αi + σ t∗ > 0, i = k + 1, k + 2, . . . , n

such that

x̂∗ =
(

0, 0, . . . , 0,
−ck+1

αk+1 − α1
, . . . ,

−cn

αn − α1

)T

(14)

is one trivial solution to (H − α1I)x∗ = −c. By summing all (x̂∗
i )

2 in (14), we again obtain a
secular function

ĥ(t) =
n∑

i=k+1

c2
i

(αi + σ t)2
− t2/(p−2), t ∈ Iĝ =

[
−α1

σ
, +∞

)
. (15)

Notice that ĥ(t) is also strictly decreasing on Iĝ and lim
t→+∞ ĥ(t) = −∞. If ĥ(−α1/σ) = 0, then

t∗ = −α1/σ is the unique root of ĥ(t) on Iĝ. Thus, x̂∗ defined by (14) is the unique global
minimizer of (p-RS).
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1066 Y. Hsia et al.

If ĥ(−α1/σ) < 0, then (15) has no solution and the trivial solution x̂∗ to (H − α1I)x∗ = −c
does not satisfy t∗ = −α1/σ = ‖x̂∗‖p−2. Then, any x∗ satisfying

(x∗
1)

2 + · · · + (x∗
k)

2 +
n∑

i=k+1

c2
i

(αi − α1)2
=
(−α1

σ

) 2
p−2

(16)

is a global minimizer of (p-RS). Namely, the global minimum solution set forms a k-
dimensional sphere centred at (0, . . . , 0, −ck+1/(αk+1 − α1), . . . , −cn/(αn − α1)) with the radius√

(α1/σ)2/(p−2) −∑n
i=k+1(c

2
i /(αi − α1)2).

Otherwise, ĥ(−α1/σ) > 0, then (15) has no solution and (16) cannot hold for any x∗. We
obtain a contradiction that (p-RS) has no global minimizer. �

Finally in this section, we show that (p-RS) possesses some hidden convexity that its global
minimizer can be obtained by solving an equivalently reformulated convex programming. We
first have

Proposition 2.4 Suppose H is diagonal. Let x∗ be any global minimizer of (p-RS), then

cix
∗
i ≤ 0, i = 1, . . . , n.

Proof Comparing x∗ with x̃ = (−x∗
1, x∗

2, x∗
3, . . . , x∗

n), we immediately have

0 ≥ g(x∗) − g(x̃) = c1(x
∗
1 − x̃1) = 2c1x∗

1.

A similar argument applying to all other components yields the result. �

By Proposition 2.4, (p-RS) and (17) below share the same optimal solution set.

min
n∑

i=1

{αi

2
x2

i + cixi

}
+ σ

p

(
n∑

i=1

x2
i

) p
2

s.t. cixi ≤ 0, i = 1, . . . , n.

(17)

Introducing the nonlinear one-to-one map:

xi =
{√

zi, if ci ≤ 0,

−√
zi, if ci > 0,

i = 1, . . . , n (18)

the problem (17) becomes the following convex program:

min −
n∑

i=1

|ci|√zi + 1

2

n∑
i=1

αizi + σ

p

(
n∑

i=1

zi

) p
2

s.t. zi ≥ 0, i = 1, . . . , n.

(19)

The global optimal solution of (19) can be converted to generate x∗ through the transforma-
tion (18).
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Optimization Methods & Software 1067

Remark 2 The first two derivatives of the secular function h(t) are

h′(t) =
n∑

i=1

−2σc2
i

(αi + σ t)3
− 2

p − 2
t

4−p
p−2

and

h′′(t) =
n∑

i=1

6σ 2c2
i

(αi + σ t)4
− 2(4 − p)

(p − 2)2
t

6−2p
p−2 .

Note that h(t) is strictly decreasing on Ig and convex only for p ≥ 4. For p = 3, h(t) can be
made convex by properly choosing the regularization parameter σ when H �� 0 (which ensures
that c �= 0) and h is restricted to a finite subinterval of Ig covering t∗. Nevertheless, the secular
function for (TRS) is always convex.

3. Characterization of the local-non-global minimizer

Throughout this section, we assume that H is diagonal as in (12) and α1 < 0. If α1 ≥ 0, (p-RS)
is a convex minimization problem and hence has no local-non-global minimum. Moreover, 0n

cannot be a local non-global minimizer since the necessary optimality conditions (8)– (9) at 0n

imply that c = 0, H � 0. In characterizing the local non-global minimum we need to use the
second smallest eigenvalue α2 of H, so we implicitly assume n ≥ 2. For n = 1, it can be treated
as if α2 = ∞ in each of the related theorems.

Lemma 3.1 Suppose x is a local non-global minimizer of (p-RS). It holds that x1 �= 0, α1 < α2

and

α2 + σ‖x‖p−2 > 0. (20)

Proof Since x is a local but non-global minimizer, by Theorem 2.2, H + σ‖x‖p−2I �� 0. It fol-
lows immediately that α1 + σ‖x‖p−2 < 0. By the second-order condition for x in (9), the first
two leading principal submatrices of ∇2g(x) are positive semidefinite. Namely,

α1 + σ‖x‖p−2 + σ(p − 2)‖x‖p−4x2
1 ≥ 0 (21)

and [
α1 + σ‖x‖p−2 0

0 α2 + σ‖x‖p−2

]
+ σ(p − 2)‖x‖p−4

[
x2

1 x1x2

x1x2 x2
2

]
� 0. (22)

Since α1 + σ‖x‖p−2 < 0, it follows from (21) that x1 �= 0. Moreover, since

(−x2, x1)

[
x2

1 x1x2

x1x2 x2
2

](−x2
x1

)
= 0,

we have from (22) that

(−x2, x1)

[
α1 + σ‖x‖p−2 0

0 α2 + σ‖x‖p−2

](−x2
x1

)

= (α1 + σ‖x‖p−2)(x2)
2 + (α2 + σ‖x‖p−2)(x1)

2 ≥ 0.

As (α1 + σ‖x‖p−2)(x2)
2 ≤ 0 and x1 �= 0, it holds that α2 + σ‖x‖p−2 ≥ 0. Due to α1 +

σ‖x‖p−2 < 0, we know α1 �= α2.
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1068 Y. Hsia et al.

To argue that α2 + σ‖x‖p−2 �= 0, we assume the contrary that α2 + σ‖x‖p−2 = 0 and show a
contradiction. In this case, the second-order necessary condition (9) reduces to

H − α2I + σ(p − 2)‖x‖p−4xxT � 0.

By α1 − α2 < 0 and

det

{[
α1 − α2 0

0 0

]
+ σ(p − 2)‖x‖p−4

[
x2

1 x1x2
x1x2 x2

2

]}

= σ(p − 2)‖x‖p−4(α1 − α2)x
2
2 ≥ 0,

it implies that x2 = 0 and, from the first-order necessary condition (8),

x1 = −c1

α1 + σ‖x‖p−2
= c1

α2 − α1
.

Since x1 �= 0, therefore c1 �= 0. Without loss of generality, we may assume both c1 > 0 and
x1 > 0. Define

k(t) =
√

x2
1 − t2, t ∈ [−x1, x1]

and consider the following parametric curve in R
n:

γ (t) = {(k(t), t, x3, . . . , xn)|t ∈ [−x1, x1]}. (23)

Notice that γ (0) = γ (x2) = x, that is, γ (t) passes through x at t = 0. Evaluating g(x) on γ (t), we
have

g(γ (t))

= σ

p

(
k(t)2 + t2 +

n∑
i=3

x2
i

) p
2

+ α1

2
k(t)2 + α2

2
t2 +

n∑
i=3

αi

2
x2

i + c1k(t) +
n∑

i=3

cixi

= σ

p

(
x2

1 +
n∑

i=3

x2
i

) p
2

+ α1

2
x2

1 +
n∑

i=3

αi

2
x2

i + α2 − α1

2
t2 + c1

√
x2

1 − t2 +
n∑

i=3

cixi.

Since x is a local minimizer of g(x), t = 0 must be a local minimum point of g(γ (t)). However,
this implication contradicts to the fact that

d

dt
g(γ (0)) = d2

dt2
g(γ (0)) = d3

dt3
g(γ (0)) = 0,

d4

dt4
g(γ (0)) = −3(α2 − α1)

x2
1

< 0.

�

The following theorem on necessary and sufficient conditions for any local-non-global
minimizer of (p-RS) is the main result in this section.

Theorem 3.2 x is a local-non-global minimizer of (p-RS) if and only if

x = −(H + σ t∗I)−1c, (24)

where t∗ is a root of the secular function

h(t) = ‖(H + σ tI)−1c‖2 − t2/(p−2), t ∈
(

max
{
−α2

σ
, 0
}

, −α1

σ

)
(25)

such that h′(t∗) > 0.
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Optimization Methods & Software 1069

Proof According to Lemma 3.1 and Theorem 2.2, the local-non-global minimizer x of (p-RS)
exits only if α1 < α2 and

− α2 < σ‖x‖p−2 < −α1.

Then, the diagonal matrix H + σ‖x‖p−2I is non-singular and the first-order necessary condi-
tion (8) can be solved by

xi = −ci

αi + σ‖x‖p−2
, i = 1, . . . , n (26)

and therefore

‖x‖2 =
n∑

i=1

c2
i

(αi + σ‖x‖p−2)2
.

Define t∗ = ‖x‖p−2. It is obvious that t∗ is a root of the following secular function on a specific
open interval:

h(t) =
n∑

i=1

c2
i

(αi + σ t)2
− t

2
p−2 , t ∈

(
max

{
−α2

σ
, 0
}

, −α1

σ

)
. (27)

Due to the non-singularity of H + σ t∗I, we see from (26) that each local non-global minimizer
x can be represented by −(H + σ t∗I)−1c, which is (24).

Taking a simple calculation on h(t), we have

h′(t) = −
n∑

i=1

2σc2
i

(αi + σ t)3
− 2

p − 2
t

4−p
p−2 .

We notice that the necessary optimality condition (9) is equivalent to

Diag(−1, 1, . . . , 1) + σ(p − 2)‖x‖p−4(x)(x)T � 0,

where

 = Diag

(
1√−α1 − σ‖x‖p−2

,
1√

α2 + σ‖x‖p−2
, . . . ,

1√
αn + σ‖x‖p−2

)
.

Then,

0 ≤ det(Diag(−1, 1, . . . , 1) + σ(p − 2)‖x‖p−4(x)(x)T)

= det(Diag(−1, 1, . . . , 1))

× det(σ (p − 2)‖x‖p−4Diag(−1, 1, . . . , 1)(x)(x)T + I)

= −1 × (σ (p − 2)‖x‖p−4(x)TDiag(−1, 1, . . . , 1)(x) + 1)

= −
n∑

i=1

σ(p − 2)‖x‖p−4c2
i

(σ‖x‖p−2 + αi)3
− 1

=
(p

2
− 1
)

‖x‖p−4h′(‖x‖p−2)

=
(p

2
− 1
)

‖x‖p−4h′(t∗).
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1070 Y. Hsia et al.

It follows from p > 2 and the fact that 0n cannot be a local non-global minimizer, that h′(t∗) ≥ 0.
To show that h′(t∗) > 0, we assume the contrary that h′(t∗) = 0. Then,

det(H + σ‖x‖p−2I + σ(p − 2)‖x‖p−4xxT) = (
p
2 − 1)‖x‖p−4h′(t∗)

det2()
= 0 (28)

and thus there is a u = (u1, . . . , un)
T �= 0 such that

(H + σ‖x‖p−2I)u + σ(p − 2)‖x‖p−4xxTu = 0,

or equivalently,

ui = −σ(p − 2)‖x‖p−4xi(u
Tx)

αi + σ‖x‖p−2
, i = 1, 2, . . . , n.

Since u �= 0, it holds that

uTx �= 0. (29)

Define

q(β) := g(x + βu).

We can verify that

q′(β) = uT∇g(x + βu),

q′′(β) = uT∇2g(x + βu)u,

q′′′(β) = 3σ(p − 2)‖x + βu‖p−4(uTx + βuTu)uTu

+ σ(p − 2)(p − 4)‖x + βu‖p−6(uTx + βuTu)3.

The necessary optimality condition (8) implies that q′(0) = 0. According to the definition of u,
we have q′′(0) = 0. However, (29) implies that

(q′′′(0))2 = σ 2(p − 2)2‖x‖2(p−6)(uTx)6

(
3
‖x‖2‖u‖2

(uTx)2
+ (p − 4)

)2

≥ σ 2(p − 2)2‖x‖2(p−6)(uTx)6(p − 1)2

> 0,

which contradicts to the fact that x is a local minimizer of (p-RS). Therefore, h′(t∗) > 0 and the
necessary proof is complete.

For the sufficient part, let t∗ ∈ (max{−α2/σ , 0}, −α1/σ) be a root of the secular function (27)
such that h′(t∗) > 0. Define x as in (24). Then we have

‖x‖2 =
n∑

i=1

c2
i

(σ t∗ + αi)2
= (t∗)

2
p−2 .

That is, t∗ = ‖x‖p−2. Consequently, x satisfies the first-order necessary optimality condition (8).
Moreover, the diagonal matrix H + σ‖x‖p−2I is non-singular with positive diagonal elements
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Optimization Methods & Software 1071

except for the first one. By Weyl’s inequality (see [13], Theorem 4.3.1), we have

λi(∇2g(x)) = λi(H + σ‖x‖p−2I + σ(p − 2)‖x‖p−4xxT)

≥ λi(H + σ‖x‖p−2I) + λ1(σ (p − 2)‖x‖p−4xxT)

≥ λi(H + σ‖x‖p−2I)

> 0, for i = 2, 3, . . . , n.

From (28), since h′(t∗) > 0, we have

n∏
i=1

λi(∇2g(x)) = det(∇2g(x))

= (
p
2 − 1)‖x‖p−4h′(t∗)

det2()
> 0,

which implies that λ1(∇2g(x)) > 0 and thus ∇2g(x) � 0. This guarantees that x is a local non-
global minimizer of (p-RS). The proof is complete. �

Remark 1 Our secular function (25) is not new here. Actually, it belongs to the family of secular
functions defined in [10]. However, the analysis here is novel.

Theorem 3.3 (p-RS) with p > 2 has at most one local-non-global minimizer.

Proof We first observe that the secular function (25) has the same roots as

p(t) = log(‖(H + σ tI)−1c‖2) − 2

p − 2
log(t), t ∈

(
max

{
−α2

σ
, 0
}

, −α1

σ

)
.

By Lemma 3.1 and (26), x1 �= 0 and c1 �= 0. Then, we have

p′′(t) =
∑n

i=1
6σ 2c2

i
(αi+σ t)4∑n

i=1
c2

i
(αi+σ t)2

−
(∑n

i=1
2σc2

i
(αi+σ t)3

)2

(∑n
i=1

c2
i

(αi+σ t)2

)2 + 2

p − 2

1

t2
.

Define two vectors in R
n by

a =
( √

6σc1

(α1 + σ t)2
, . . . ,

√
6σcn

(αn + σ t)2

)T

, b =
(

c1

α1 + σ t
, . . . ,

cn

αn + σ t

)T

.

Applying Cauchy–Schwartz inequality, we obtain(
n∑

i=1

2σc2
i

(αi + σ t)3

)2

< (aTb)2

≤ (aTa)(bTb)

=
(

n∑
i=1

6σ 2c2
i

(αi + σ t)4

)(
n∑

i=1

c2
i

(αi + σ t)2

)
.

Therefore, p′′(t) > 0 for all t such that p(t) is well-defined. It follows that p(t) is strictly convex
for t ∈ (max{−α2/σ , 0}, −α1/σ). Thus, p(t), as well as h(t), has at most two real roots in this
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1072 Y. Hsia et al.

interval. Let t1 < t2 be the only two roots of h(t). Suppose h′(t1) > 0 and h′(t2) > 0. Then, for
sufficiently small ε ∈ (0, (t2 − t1)/2), we have

h(t1 + ε) > h(t1) = 0, h(t2 − ε) < h(t2) = 0.

Therefore, there is a t̃ ∈ [t1 + ε, t2 − ε] such that h(t̃) = 0, which is a contradiction. Conse-
quently, the secular function h(t) has at most one real root satisfying h′(t) > 0. Following
Theorem 3.2, the proof is complete. �

Remark 2 It is indeed surprising that we can obtain the necessary and sufficient conditions for
the local non-global minimizers for general p > 2, and the number of which is at most one. It was
previously known to be true for p = 4 in the double well potential function [21] but the technique
to generalize the result is non-trivial as we do not have a convex secular function for 2 < p < 4.

4. Application to (p-RS) subject to linear inequality constraints for p = 4

As an application of Theorems 3.2 and 3.3, the model (p-RSm) specified in (6)-(7) for the special
case p = 4 is studied in this section. We first show that two combinatorial optimization problems,
one of which is the partition problem and the other is the binary quadratic problem, can be
reduced to special cases of (p-RSm) with p = 4. Secondly, we shall show that (p-RSm) is in general
NP-hard, but for p = 4 and m a fixed constant, it can be solved in polynomial time.

The partition problem (PP) is to ask whether the following equation

rTx = 0, x ∈ {−1, 1}n (30)

has a solution, where r = (r1, . . . , rn)
T is a given vector of positive integer entries. We show that

the partition problem (PP) can be equivalently formulated as the following (p-RSm) with m = n:

(p-RSn) min φ(x) = xT

(
1

nrTr
rrT − 4

n
I

)
x + 4

p(p − 1)np/2
‖x‖p

s.t. x ∈ [−1, 1]n.

(31)

To see this, notice that
1

rTr
rrT � I

and

‖x‖ ≤ √
n, xxT � nI, ∀x ∈ [−1, 1]n,

It follows that φ(x) is concave since

∇2φ(x) = 2

nrTr
rrT − 8

n
I + 4

p(p − 1)np/2
(p‖x‖p−2I + p(p − 2)‖x‖p−4xxT)

� 2

n
I − 8

n
I + 4

p(p − 1)np/2
(pnp/2−1I + p(p − 2)np/2−2nI)

= −2

n
I ≺ 0.

Then, v(p-RSn) must be attained at one of the vertices of [−1, 1]n. More precisely, we have

v(p-RSn) = 1

nrTr
min

x∈{−1,1}n
(rTx)2 − 4 + 4

p(p − 1)
.
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Optimization Methods & Software 1073

Consequently, v(p-RSn) = −4 + 4/p(p − 1) if and only if (PP) as in (30) has a solution. Since
(PP) is NP-hard [9], it implies that (p-RSm) with m = n is NP-hard.

In general, we have

Theorem 4.1 For any p > 2, (p-RSn),
⋃

m≥n (p−RSm),
⋃

m∈N
(p−RSm) are all NP-hard.

As a second example to reformulate a general combinatorial optimization problem to (p-RSm),
we consider the following binary quadratic optimization:

(BQP) d∗ = min xTQx (32)

s.t. eTx = k, Ax ≤ b, x ∈ {0, 1}n, (33)

where Q is a symmetric n × n matrix, k is an integer, A ∈ R
m×n and b ∈ R

m have integer entries.
Let aT

j be the jth row of A for j = 1, . . . , m. Without loss of generality, we assume that the relaxed
region S = {x ∈ [0, 1]n : eTx = k, Ax ≤ b} is non-empty and ‖aj‖1 ≥ 2 for j = 1, . . . , m, see also
[15]. To avoid triviality, we also assume that n ≥ 2. Define Amax = max1≤j≤m‖aj‖∞ and

GA =

⎧⎪⎨
⎪⎩

A2
max

Amax − 1
, if Amax ≥ 2,

2, if Amax = 1.

As a direct corollary of Lemma 2 in [15], we have

Lemma 4.2 [15] Let x be a vertex of S and x �∈ {0, 1}n. Then

xT(e − x) ≥ 1

GA
.

To see (BQP) can be reformulated as (p−RSm), we first define, for any given θ1 ≥ 0, θ2 ≥ 0,

d(x) = xTQx + θ1(e
Tx − xTx) + θ2(e

Tx − xTx)2,

and observe that

d∗ = min
eTx=k, Ax≤b, x∈{0,1}n

xTQx = min
eTx=k, Ax≤b, x∈{0,1}n

d(x).

Secondly, define the continuous relaxation of (BQP) as

dc = min
eTx=k, Ax≤b, x∈[0,1]n

xTQx ≤ d∗.

Notice that, if θ1 > max{0, nθ2 + λmax(Q)}, θ2 ≥ 0, then it holds that, for any x ∈ [0, 1]n,

∇2d(x) = 2Q − 2θ1I + 2θ2(e − 2x)(e − 2x)T − 4θ2(e
Tx − xTx)I

� 2Q − 2θ1I + 2nθ2I ≺ 0,

which implies that d(x) with θ1 > max{0, nθ2 + λmax(Q)}, θ2 ≥ 0 is a strictly concave function
over x ∈ [0, 1]n.
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Let V be the set of all vertices of S = {x ∈ [0, 1]n : eTx = k, Ax ≤ b} . By choosing

θ2 ≥ G2
A(d∗ − dc) ≥ 0 and θ1 > max{0, nθ2 + λmax(Q)},

the function d(x) is concave and θ1(eTx − xTx) ≥ 0 on [0, 1]n. Then,

min
eTx=k, Ax≤b, x∈[0,1]n

d(x)

= min
x∈V

d(x)

= min

{
min

V\{0,1}n
d(x), min

V∩{0,1}n
d(x)

}

≥ min

{
min

V\{0,1}n
{xTQx + θ1

(
eTx − xTx

)} + min
V\{0,1}n

θ2
(
eTx − xTx

)2
, d∗

}

≥ min

{
min

eTx=k, Ax≤b, x∈[0,1]n
xTQx + min

V\{0,1}n
θ2(e

Tx − xTx)2, d∗
}

≥ min

{
dc + θ2

G2
A

, d∗
}

= d∗

≥ min
eTx=k, Ax≤b, x∈[0,1]n

d(x), (34)

where (34) follows from Lemma 4.2. Therefore, we have reduced (BQP) to the following special
case of (RSm+n+1) with p = 4:

min d(x) = xT(Q − θ1I − 2θ2kI)x + θ2‖x‖4 + θ1k + θ2k2

s.t. eTx = k, Ax ≤ b, x ∈ [0, 1]n.

Finally, we remark that (BQP) covers some applications as its special case. The first one is
k-dispersion-sum problem:

(KDSP) max xTDx

s.t. eTx = k, x ∈ {0, 1}n.

The problem allocates k facilities at part of n predefined locations (k ≤ n) in a way that the
distance sum among the k established facilities is maximized, where the distance sum is specified
by a given distance matrix D and xTDx. It is known that the k-dispersion-sum problem (KDSP) is
NP-hard, even if the distance matrix satisfies the triangle inequality. See, for example, [7,12]. The
second application of (BQP) is the quadratic assignment problem, one of the great challenges in
combinatorial optimization:

(QAP) min trace(FXDX T)

s.t. Xe = X Te = e, X ∈ {0, 1}n×n,

where trace(·) is the trace of the matrix (·), F and D correspond to the flow and distance matrices,
respectively. Notice that (QAP) can be reformulated as a special case of (BQP):

(QAP) min trace(FXDX T)

s.t. eTXe = n, Xe ≤ e, X Te ≤ e, X ∈ {0, 1}n×n.

Since (QAP) is NP-hard [19], so is (BQP).
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4.1 Polynomially solvable cases

We show that, for any fixed positive integer m, (p−RSm) with p = 4 is in Class P. The reduction
argument used to prove the result is inherited from [14].

Let L = {x | li ≤ aT
i x ≤ ui, i = 1, . . . , m} and X ∗

0 be the set of the global minimizers of (p-
RS). Since X ∗

0 is either a singleton or a sphere, we can first check whether X ∗
0

⋂
L is empty in

polynomial time by the following lemma:

Lemma 4.3 [14] Let A ∈ Rm×q and b ∈ Rm, where m is fixed and q is arbitrary. For any given
r > 0, it is polynomially checkable whether {u ∈ Rq | Au ≤ b, ‖u‖2 = r} is empty. Moreover, if
the set is non-empty , a feasible point can be found in polynomial time.

If X ∗
0

⋂
L �= ∅, any point in the intersection is a global minimizer of (p−RSm).

If this is not the case, the global minimizer of (p−RSm), denoted by x∗
m, would reside either in

the interior of L satisfying li < aT
i x∗

m < ui , or on the boundaries satisfying one of the equalities:
aT

i x∗
m = li, aT

i x∗
m = ui for i = 1, 2, . . . , n. In the former case, x∗

m must be the unique local non-
global minimizer x0 of (p-RS).

Define, for the interior case, that

δ0 =
{

g(x0), if li < ai
Tx0 < ui, ∀i,

∞, otherwise,

while for the boundary cases

δj1
m := min g(x) = 1

2
xTHx + cTx + σ

4
‖x‖4

s.t. aj
Tx = lj,

li ≤ ai
Tx ≤ ui, i = 1, . . . , j − 1, j + 1, . . . , m,

(35)

δj2
m := min g(x) = 1

2
xTHx + cTx + σ

4
‖x‖4

s.t. aj
Tx = uj,

li ≤ ai
Tx ≤ ui, i = 1, . . . , j − 1, j + 1, . . . , m.

(36)

It follows immediately that

g(x∗
m) = min{δ0, δ11

m , δ12
m , . . . , δm1

m , δm2
m }.

Now we observe that, for each δ
j1
m (similarly for δ

j2
m), the equality constraint aT

j x = lj (or aT
j x =

uj) can be used to eliminate one variable and, most importantly due to the speciality of p = 4,
the p-regularized structure with p = 4 is retained. As a result, we come to a n − 1 dimensional
(p-RSm−1).

Let Pj ∈ R
n×(n−1) be a column-orthogonal matrix such that aT

j Pj = 0 and z0 a feasible solution
to (35). Then z0 − PjPT

j z0 is also feasible to (35). Using the null-space representation, we have

{x ∈ R
n | aj

Tx = bj} = {z0 − PjPj
Tz0 + Pjz | z ∈ R

n−1}.
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1076 Y. Hsia et al.

Then,

‖x‖4 = ((z0 − PjPj
Tz0 + Pjz)

T(z0 − PjPj
Tz0 + Pjz))

2

= (z0
T(I − PjPj

T)(I − PjPj
T)z0 + 2z0

T(I − PjPj
T)Pjz + zTPT

j Pjz)
2

= (z0
T(I − PjPj

T)z0 + zTz)2

= (z0
T(I − PjPj

T)z0)
2 + 2(z0

T(I − PjPj
T)z0)z

Tz + ‖z‖4,

and (35) is reduced to a form of (p−RSm−1):

min g(z0 − PjPj
Tz0 + Pjz)

s.t. li ≤ ai
T(z0 − PjPj

Tz0 + Pjz) ≤ ui, i = 1, . . . , m, i �= j.

We can repeat the reduction scheme until there is no more linear inequality constraint or n = 1
(when n < 2m). In the former case, it is an unconstrained p-RS, while in the latter case the poly-
hedron reduces to an interval and there can be at most four critical points (two boundary points
plus two local minimizers at best). The total number of reductions depends on m exponentially,
but for a fixed m, it is a constant factor. We thus arrive the following conclusion:

Theorem 4.4 For each fixed m, (p−RSm) with p = 4 is polynomially solvable.

5. Conclusions

Our comprehensive analysis on the p-RSs for general p > 2 gives the most detailed comparison
between (TRS) and (p-RS); and between (ETRS) and (p−RSm). We virtually confirm that the
weighted regularization term (σ/p)‖x‖p can be freely exchanged with the trust region constraint
‖x‖2 ≤ � in almost all applications. The interchange can have meaningful implications. Many
approximate models such as (SQP) which previously go with the trust region method can now be
considered to incorporate with the p-RS. In some cases when the trust region constraint ‖x‖2 ≤ �

introduces enormous difficulty, for example, the CDT problem [4], our study suggests that one
may consider (p-RS) subject to just one ellipsoid constraint, instead of the intersection of one
ball and one ellipsoid. More future researches are of course needed.
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