ARPACK Users’ Guide:

Solution of Large Scale Eigenvalue Problems
with Implicitly Restarted Arnoldi Methods.

R. B. Lehoucq, D. C. Sorensen, C. Yang

8 Oct 97

Contents

Introduction to ARPACK

1.1 Important Features
1.2 Getting Started
1.3 Reverse Communication Interface
1.4 Availability
1.5 Installation o o
1.6 Documentation
1.7 Dependence on LAPACK and BLAS
1.8 Expected Performance
1.9 PARPACK
1.10 Contributed Additions
1.11 Trouble Shooting and Problems
1.12 Research Funding of ARPACK

Getting Started with ARPACK

2.1 Directory Structure and Contents
2.2 Getting Startedo Lo
2.3 An Example for a Symmetric Eigenvalue Problem

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8

The Reverse Communication Interface
Post Processing for FEigenvalues and Eigenvectors
Setting up the problem
Storage Declarations
Stopping Criterion
Initial Parameter Settings
Setting the Starting Vector
Trace Debugging Capability

General Use of ARPACK

3.1 Naming Conventions, Precisions and Types
3.2 Shift and Invert Spectral Transformation Mode

3.2.1
3.2.2

M is Hermitian Positive Definite
M is NOT Hermitian Positive Semi—Definite

3.3 Reverse Communication Structure for Shift-Invert

3.3.1

Shift and invert on a Generalized Eigen-problem

iii

-] ~1 OO OO UL U W W W N

©o ©

A.2.3 The Reverse Communication Interface

CONTENTS iv
3.4 Using the Computational Modes 29
3.5 Computational Modes for Real Symmetric Problems 31
3.6 Post-Processing for Eigenvectors Using dseupd 33
3.7 Computational Modes for Real Non-Symmetric Problems . .. 34
3.8 Post-Processing for Eigenvectors Using dneupd 36
3.9 Computational Modes for Complex Problems 38
3.10 Post-Processing for Eigenvectors Using zneupd 40
The Implicitly Restarted Arnoldi Method 43
4.1 Structure of the Eigenvalue Problem 44
4.2 Krylov Subspaces and Projection Methods 48
4.3 The Arnoldi Factorization 49
4.4 Restarting the Arnoldi Method 52

4.4.1 Implicit Restarting 52
4.4.2 Block Methods 000 58
4.5 The Generalized Eigenvalue Problem 59
4.5.1 Structure of the Spectral Transformation 60
4.5.2 Eigenvector/Null-Space Purification 62
4.6 Stopping Criterion oo 64
Computational Routines 67
5.1 ARPACK subroutines 69
5.1.1 XYaupd 69
5.1.2 XYaup2 69
5. 1.3 XYaitr 71
514 XgetvO 72
515 Xnmeigh oo 72
5.1.6 [s,dlseigt 72
5.1.7 [s,dlYconv v v i e 73
5. 1.8 XYapps 73
5.1.9 XYeupd 73
5.2 LAPACK routines used by ARPACK 75
5.3 BLAS routines used by ARPACK 75
Templates and Driver Routines 79
A.1 Symmetric Drivers L o oo 80
A.1.1 Selecting a Symmetric Driver 80
A.1.2 Identify OP and B for the Driver 84
A.1.3 The Reverse Communication Interface 84
A.1.4 Modify the Problem Dependent Variables 88
A.1.5 Postprocessing and Accuracy Checking 90
A.2 Real Nonsymmetric Drivers 90
A.2.1 Selecting a Non-symmetric Driver 91
A.2.2 Identify OP and B for the Driver 93

CONTENTS v

A.2.4 Modify the Problem Dependent Variables 97

A.2.5 Postprocessing and Accuracy Checking 99

A3 Complex Drivers o 99
A.3.1 Selecting a Complex Arithmetic Driver. 100

A.3.2 Identify OP and B for the Driver to be Modified 102

A.3.3 The Reverse Communication Interface 102

A.3.4 Modify the Problem Dependent Variables 104

A.3.5 Post-processing and Accuracy Checking 106

A4 Band Drivers L 106
A.4.1 Selecting a Band Storage Driver 108

A.4.2 Store the matrix correctly 0L 108

A.4.3 Modify problem dependent variables 109

A.4.4 Modify other variables if necessary 109

A.4.5 Accuracy checking 110

A.5 The Singular Value Decomposition 110
Ab.1 TheSVD Drivers o o L 112

B Tracking the progress of ARPACK 113
B.1 Obtaining Trace Qutput 113
B.2 Check Pointing ARPACK 116

C The XYaupd ARPACK Routines 121
C.1 DSAUPD . .. o e 122
C.2 DNAUPD e 125
C.3 ZNAUPD . .. o e 128
Bibliography 132
Index 134

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

5.1

An example of the reverse communication interface used by

ARPACK. 4

The ARPACK directory structure. 11
The reverse communication interface in example program dssimp. 14
Post Processing for Eigenvalues and Eigenvectors using desupd. 16
Storage declarations needed for ARPACK subroutine dsaupd . 17

How to initiate the trace debugging capability in ARPACK. . . 19
Output from a Debug session for dsaupd. 20
Reverse communication interface for Shift-Invert. 27
Reverse communication interface for Shift-Invert contd. 28
Calling the ARPACK subroutine dnaupd. 30
Calling the ARPACK subroutine dsaupd. 31
Post-Processing for Eigenvectors Using dseupd. 33
Calling sequence of subroutine dnaupd. 34
Post-Processing for Eigenvectors Using dneupd. 37
Calling the ARPACK subroutine znaupd. 39
Post-Processing for Eigenvectors Using cneupd. 40
The Implicitly Restarted Arnoldi Method in ARPACK. 44

Algorithm 1: Shifted QR-iteration. 47

Algorithm 2: The k-Step Arnoldi Factorization 51

Algorithm 3: An Implicitly Restarted Arnoldi Method (IRAM). 54
The set of rectangles represents the matrix equation V,,H,, +
f,.el of an Arnoldi factorization. The unshaded region on the
right is a zero matrix of m — 1 columns. 55
After performing m — k implicitly shifted Qr steps on H,,, the
middle set of pictures illustrates V,, Q,,H; —I—fmez1 Q... The last

p columns of fmeanm are nonzero because of the QR iteration. 55
An implicitly restarted length k& Arnoldi factorization results

after discarding the last m — k columns. 55
Total Filter Polynomial From an IRA Iteration. 57
Total Filter Polynomial with Spectral Transformation 61
XYaupd — Implementation of the IRAM/IRLM in ARPACK .. 68

vii

LIST OF FIGURES viii

5.2

Al
A2

B.1
B.2
B.3
B.4
B.5

Outline of algorithm used by subroutine XYeupd to compute

Schur vectors and possibly eigenvectors. 74
Reverse communication structure 85

Compute w <~ ATAv by Blocks 111
Sample output produced by dsaupd. 114
The include file debug.h. 116
Reading in a previous state with the example program dssave. 117
Writing a state with the example program dssave. 118

Writing a state with the example program dssave contd. . . . 119

List of Tables

2.1 List of the simple drivers illustrating the use of ARPACK. . . . 11
2.2 Parameters for the top level ARPACK routines. 13
3.1 Available precisions and data types for ARPACK. 22
3.2 Double Precision Top level routines in ARPACK subdirectory

SRC. . . e e 23
3.3 The various settings for the argument which in _saupd 32
3.4 The various settings for the argument which in maupd 35
5.1 Description of the auxiliary subroutines of ARPACK. 70
5.2 Description of the LAPACK computational routines used by

ARPACK. 76
5.3 Description of the LAPACK auxiliary routines used by ARPACK. 76
5.4 Description of the Level three BLAS used by ARPACK. 77
5.5 Description of the Level two BLAS used by ARPACK. 77
5.6 Description of the Level one BLAS used by ARPACK. 77
A.1 The functionality of the symmetric drivers. 81
A.2 The operators OP and B for dsaupd. 84
A.3 The eigenvalues of interest for symmetric eigenvalue problems. 89
A.4 The functionality of the non-symmetric drivers. 91
A.5 The operators OP and B for dnaupd. 94
A.6 The eigenvalues of interest for non-symmetric eigenvalue problems. 98
A.7 The functionality of the complex arithmetic drivers. 100
A.8 The operators OP and B for znaupd. 102
A.9 The eigenvalues of interest for complex arithmetic eigenvalue

problems. Lo 105
A.10 Band storage drivers for symmetric eigenvalue problems 107
A.11 Band storage drivers for non-symmetric eigenvalue problems . . 107

A.12 Band storage drivers for Complex arithmetic eigenvalue problems.108

B.1

Description of the message level settings for ARPACK. 115

ix

Preface

The development of ARPACK began as a research code written in Matlab and
then in Fortran77 in 1990. Initially, the code was developed to study and
verify the properties of the Implicitly Restarted Arnoldi Method described
in [13]. Preliminary experience with that code showed considerable promise in
performance and also seemed to provide a solid foundation for the development
of serious mathematical software for large structured eigenvalue problems.

During the academic year 1991-92, Dr. Phuong Vu (at that time with
Cray Research) was granted permission to work in a half time appointment
to the NSF Center for Research on Parallel Computation at Rice University
on the development of ARPACK. At the outset, we attempted to design the
software to be efficient and portable on conventional high performance com-
puting architectures. Of course, our design was also intended to be easily
modified to effectively utilize a variety of parallel architectures (resulting in
P_ARPACK). Phuong’s experience with users at Cray Research suggested that
a reverse communication interface was essential. We are deeply indebted to
Phuong for the design and implementation of this interface. He set the coding
and documentation style and developed the initial implementation of all of the
basic computational routines for real (single and double precision) matrices.
His fundamental design has served us well as we have improved and expanded
upon the package over the past few years.

We wish to thank the numerous users with applications and also our fellow
numerical analysts who worked with initial “alpha” and then “beta” versions of
the code. Their feedback and patience throughout this development has been
invaluable. This interaction has often given us a wonderful sense of community
and the words “it solved my problem!” always managed to brighten up the
drudgery of developing and maintaining the software. In particular, we would
like to mention Jean-Philippe Brunet, Daniela Calvetti, Lawrence Cowsar,
Olivier Daube, David Day, Stewart Edwards, Ralph T Goodwin III, Ed Hayes,
Lennart Johnsson, Michiel Kooper, Kristi Maschhoff, Karl Meerbergen, Frank
Milde, Seymour Parter, Phil Pendergast, George Phillips, John Red-Horse,
Lothar Reichel, Tod Romo, Will Sawyer, Jennifer Scott, Rajesh Kumar Singh,
Allison Smith, Allister Spence, Zdenko Tomasic, Henk Van der Vorst.

ARPACK is freely available through the world wide web and by anonymous
ftp (See Chap. 1). It relies heavily upon the LAPACK software [1] and upon
the BLAS [5, 3, 2]. Portability with performance, accuracy, and robustness is a

xi

LIST OF TABLES xii

direct consequence. We are greatly indebted to the authors of that software and
more generally to the larger numerical analysis community that has contributed
in many ways to its development.

Finally, we would like to thank the National Science Foundation, DARPA,
and the Department of Energy for their generous support of this project (See
Chap. 1 for full citation).

How to use this Guide

This is a users guide. It is not a novel or a textbook and is not intended
to be read sequentially. There is a great deal of repetition amongst several
of the subsections in Chapter 3 and also in Appendix A. We decided that it
would be better to discuss each major problem class: Real Symmetric, Real
Nonsymmetric and Complex as complete individual units even though this
inevitably resulted in redundancy. We expect users to turn to the section that
discusses the problem class of interest and to find everything related to that
class in one complete section. We think this is preferable to searching back
and forth to a general description in order to understand the special case of
interest.

Chapter 1 gives an overview and contains general information. Chapter 2
provides installation instructions and describes how to get started. It is rec-
ommended for those who are just beginning with eigenvalue computations and
also for those who are unfamiliar with reverse communication. Chapter 3 gives
a detailed description of how to use all of the capabilities of ARPACK. Those
wishing to learn a little about the underlying numerical methods should turn to
Chapter 4. This discussion provides a broad overview of the methods. It gives
a reasonably detailed description of the Arnoldi process with implicit restart-
ing and what to expect. It also attempts to provide some understanding of
the spectral transformation. Numerous references are provided for those who
desire a more detailed level of understanding. Chapter 5 discusses implemen-
tation and usage details within the main computational routines. Experienced
users of large scale eigenvalue methods can probably turn directly to Appendix
A and find the discussion of the driver routine that is appropriate for their
problem. These drivers are intended to be used as templates that are easily
modified for a particular application. Trace debugging and check-pointing are
discussed in Appendix B. Finally, there are listings of the top level reverse com-
munication interface routines XYaupd for reference. The source code for all of
the computational routines is available with the distribution. Each of these is
fully documented in the header and many users have found that documentation
sufficient to get started with.

Chapter 1

Introduction to ARPACK

ARPACK is a collection of Fortran77 subroutines designed to solve large scale
eigenvalue problems. ARPACK stands for ARnoldi PACKage. ARPACK soft-
ware is capable of solving large scale Hermitian, non-Hermitian, standard
or generalized eigenvalue problems from significant application areas. The
software is designed to compute a few, say k, eigenvalues with user spec-
ified features such as those of largest real part or largest magnitude using
n - O(k) + O(k*) storage. No auxiliary storage is required. A set of Schur
basis vectors for the desired k& dimensional eigen-space is computed which is
numerically orthogonal to working precision. KEigenvectors are also available
upon request.

The Arnoldi process is a technique for approximating a few eigenvalues and
corresponding eigenvectors of a general n X n matrix. It is most appropriate
for large structured matrices A where structured means that a matrix-vector
product w ¢+ Av requires O(n) rather than the usual O(n?) floating point
operations (Flops). This software is based upon an algorithmic variant of
the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM).
When the matrix A is symmetric it reduces to a variant of the Lanczos process
called the Implicitly Restarted Lanczos Method (IRLM). These variants may
be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly
Shifted QR scheme that is suitable for large scale problems. For many standard
problems, a matrix factorization is not required. Only the action of the matrix
on a vector is needed.

In this chapter, we give an overview of the package. Chapter 2 explains
how the user can quickly start using ARPACK while Chapter 3 gives a com-
prehensive description of how to utilize the full capabilities of ARPACK. An
overview of the theory of Krylov subspace projection methods and the under-
lying algorithms implemented in ARPACK is the subject of Chapter 4. The
final chapter discusses the implementation details of the main computational
routines in ARPACK. Appendix A is a guide on how to use the example driver
routines as templates. Experienced users who are already familiar with large
scale eigenvalue computations may find it most productive to go directly to this
appendix, locate the suitable driver and modify that for the particular applica-

1.1. IMPORTANT FEATURES 2

tion. Appendix B describes the trace debugging capability that is easily turned
on in order to monitor progress and output important intermediate computed
quantities. Checkpointing to guard against loss of intermediate computational
results due to system or hardware failure is possible. A description of how to
recover and restart in the event of a fault is provided in Appendix B.

1.1

Important Features

The important features of ARPACK are:

A reverse communication interface.

Ability to return k eigenvalues which satisfy a user specified criterion
such as largest real part, largest absolute value, largest algebraic value
(symmetric case), etc. For many standard problems, the action of the
matrix on a vector w < Av is all that is needed.

A fixed pre-determined storage requirement suffices throughout the com-
putation. Usually this is n-O(k) + O(k?) where k is the number of eigen-
values to be computed and n is the order of the matrix. No auxiliary
storage or interaction with such devices is required during the course of
the computation.

Sample driver routines are included that may be used as templates to
implement various spectral transformations to enhance convergence and
to solve the generalized eigenvalue problem.

Special consideration is given to the generalized problem Ax = MxA for
singular or ill-conditioned symmetric positive semi-definite M.

Eigenvectors and /or Schur vectors may be computed on request. A Schur
basis of dimension k is always computed. The Schur basis consists of vec-
tors which are numerically orthogonal to working accuracy. Computed
eigenvectors of symmetric matrices are also numerically orthogonal.

The numerical accuracy of the computed eigenvalues and vectors is user
specified. Residual tolerances may be set to the level of working pre-
cision. At working precision, the accuracy of the computed eigenvalues
and vectors is consistent with the accuracy expected of a dense method
such as the implicitly shifted QR iteration.

Multiple eigenvalues offer no theoretical difficulty. This is possible through
deflation techniques similar to those used with the implicitly shifted QR
algorithm for dense problems. With the current deflation rules, a fairly
tight convergence tolerance and sufficiently large subspace will be re-
quired to capture all multiple instances. However, since a block method
is not used, there is no need to “guess” the correct block size that would
be needed to capture multiple eigenvalues.

CHAPTER 1. INTRODUCTION TO ARPACK 3

1.2 Getting Started

Easy to use sample driver routines are available. These simple drivers have
been constructed to illustrate the use of ARPACK in the simplest cases of
finding a few eigenvalues and corresponding eigenvectors of largest magnitude.
Simple drivers for all precisions and data types are provided and these may be
used as templates to easily begin using ARPACK. Chapter 2 describes how to
get started by using these example driver programs.

1.3 Reverse Communication Interface

The reverse communication interface is one of the most important aspects
of the design of ARPACK. This interface avoids having to express a matrix-
vector product through a subroutine with a fixed calling sequence. This means
that the user is free to choose any convenient data structure for the matrix
representation. Moreover, if the matrix is not available explicitly, the user
is free to express the action of the matrix on a vector through a subroutine
call or a code segment. It is not necessary to conform to a fixed format for a
subroutine interface and hence there is no need to communicate data through
the use of COMMON.

A typical usage of this interface is illustrated with the example in Figure 1.1.
This shows a code segment of the routine the user must write to set up the
reverse communication call to the top level ARPACK routine snaupd to solve
a nonsymmetric eigenvalue problem. As usual, with reverse communication,
control is returned to the calling program when interaction with the matrix A
is required. The action requested of the calling program is simply to perform
the task indicated by the reverse communication parameter ido (in this case
multiply the vector held in the array workd beginning at location ipntr(1)
and inserting the result into the array workd beginning at location ipntr(2)).
Note that the call to the subroutine matvec in this code segment is simply
meant to indicate that this matrix-vector operation is taking place. The user
is free to use any available mechanism or subroutine to accomplish this task.
In particular, no specific data structure is imposed and indeed, no explicit
representation of the matrix is even required. One only needs to supply the
action of the matrix on the specified vector.

1.4 Availability

The codes are available by anonymous ftp from
ftp.caam.rice.edu
or by connecting directly to the URL

http://www.caam.rice.edu/software/ARPACK

1.5. INSTALLATION 4

10 continue
call snaupd (ido, bmat, n, which,...,workd,..., info)
if (ido .eq. newprod) then
call matvec (’A’, n, workd(ipntr(1)), workd(ipntr(2)))
else
return
endif
go to 10

Figure 1.1: An example of the reverse communication interface used by

ARPACK.

To get the software by anonymous ftp, connect by ftp to ftp.caam.rice.edu
and login as anonymous. Then change directories to

software/ARPACK

or connect directly to the URL as described above and follow the instructions
in the README file in that directory. The ARPACK software is also available
from Netlib in the directory ScaLAPACK.

1.5 Installation

The instructions in the README file that will explain how to retrieve a com-
pressed tar file and how to this file. A few options are available. One of
these is to retrieve the file

dist96.tar.Z

Then issue the instruction
zcat dist96.tar.Z | tar -xvf -

This will automatically create a directory named ARPACK. This directory
should have the following contents

BLAS
DOCUMENTS
EXAMPLES
LAPACK
README

SRC

UTIL
Makefile
ARmake. inc
ARMAKES

CHAPTER 1. INTRODUCTION TO ARPACK 5

Instructions on how to proceed are given in the ARPACK/README file. After
minor modifications to the file makefile, issuing the command make 1ib will
compile all subroutines and create the archive libarpack <PLATFORM>.a in
the ARPACK directory. Here, <PLATFORM> denotes the environment where the
ARPACK library is built. For example, if the make were done on a SUN Sparc4,
the library would be archived in 1ibarpack SUN4.a.

Instructions in README explain how to proceed. Disk storage requirements
for the directory structure shown above is just under 5 Megabytes.

1.6 Documentation

In addition to this user’s guide, complete documentation of usage, data re-
quirements, error and warning conditions is provided in the header of the
source code for each subroutine. There is sufficient documentation included
in the README files, DOCUMENTS directory, and headers of the codes in SRC and
the EXAMPLES subdirectories to begin using ARPACK. This user’s guide is in-
tended to further explain and supplement that documentation. In addition to
a detailed description of the capabilities, structure, and usage of ARPACK, this
document is intended to provide a cursory overview of the Implicitly Restarted
Arnoldi/Lanczos Method that the software is based upon. The goal is to pro-
vide some understanding of the underlying algorithm, expected behavior, and

capabilities as well as limitations of the software.

Extensive references to the literature on large scale eigenvalue methods and
software are given here. Additional information and articles on the algorithmic
theory and on applications of ARPACK may be found at

http://www.caan.rice.edu/software/ARPACK

1.7 Dependence on LAPACK and BLAS

ARPACK is dependent upon a number of subroutines from LAPACK [1] and the
BLAS [3, 2, 5]. The necessary routines are distributed along with the ARPACK
software. Whenever possible, BLAS routines that have been optimized for the
given machine should be used in place of the ones provided with ARPACK. A list
of routines required from these two sources is available in Chapter 5. If local
installations of BLAS and/or LAPACK are available then the corresponding
ARPACK subdirectories may be deleted and the local installations may be
pointed to instead. Care should be taken to verify consistency of the version
dates of the local installations with the version dates of the BLAS and LAPACK
routines provided with ARPACK.

NOTE: The LAPACK library on your system MUST be the public release.
The current release is version 2.0. If you are not certain if the public release
has been installed, we strongly recommend that you compile and link to the
subset of LAPACK included with ARPACK.

1.8. EXPECTED PERFORMANCE 6

1.8 Expected Performance

ARPACK has been designed for straightforward adaptation to a variety of high
performance architectures including vector, super-scalar and parallel machines.
It is intended to be portable and efficient across a wide range of computing
platforms. Computationally intensive kernels are all expressed through BLAS
operations and if the number k£ remains fixed as n increases the performance
will scale asymptotically to the Level 2 BLAS operation _.GEMV. Computational
rates near maximum achievable peak are possible on multi-vector processors
such as CRAY-C90 and on workstation clusters such as SGI Power Challenge.

The package is written in the ANSI standard Fortran 77 language with
the one exception of include files. These are associated solely with the trace
debugging facility provided with ARPACK. Each of the ARPACK subroutines
reference two include files for debugging and timing purposes (see Appendix B).
These references may be easily deleted if they are incompatible with your
system.

1.9 P_ARPACK

A parallel version of the ARPACK library is also available. The message
passing layers currently supported are BLACS and MPI. Parallel ARPACK
(P_ARPACK) is provided as an extension to the current ARPACK library.
P_ARPACK has been installed on CRAY-T3D, Intel Delta and Paragon, In-
tel Paragon IBM-SP2, an SGI cluster and a network of Sun workstations. The
package runs efficiently in each of these environments. More detailed informa-
tion about Parallel ARPACK is available in the report [8] by Maschhoff and
Sorensen.

1.10 Contributed Additions

A collection of useful codes related to ARPACK is available in the directory.

pub/software/ARPACK/CONTRIBUTED

The codes that are available there have been contributed by ARPACK
users. These include specialized drivers for unusual applications, alternate
shift strategies, and in some cases minor modifications to the ARPACK source.
These codes offer extended capabilities but are not part of the official release
and are not supported as part of the ARPACK distribution. However, each
of the included entries has undergone some degree of testing and there is a
contact person listed with each code.

Users wishing to contribute software to this collection should send e-mail to
arpack@caam.rice.edu.

CHAPTER 1. INTRODUCTION TO ARPACK 7

1.11 Trouble Shooting and Problems

An up to date list of known problems is available in
pub/software/ARPACK/Known_Problems
Any difficulties with using the software should be reported to

arpack@caam.rice.edu

1.12 Research Funding of ARPACK

Financial support for this work was provided in part by the National Science
Foundation cooperative agreement CCR-912008, and by the ARPA contract
number DAAL03-91-C-0047 (administered by the U.S. Army Research Office).
R.B. Lehoucq was also supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office of Computa-
tional and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

1.12. RESEARCH FUNDING OF ARPACK

Chapter 2

Getting Started with
ARPACK

This chapter will describe the basic structure of ARPACK and how to begin
using it for computing a few eigenvalues and eigenvectors of a symmetric ma-
trix.

Difficult problems and generalized problems will require one to use a shift-
invert strategy that is based upon the use of a (sparse-direct) matrix factoriza-
tion. These more sophisticated modes of operation are described in the next
chapter. Example driver routines have been constructed for each problem type,
computational mode, data type and precision. These drivers may be used as
templates to construct a code for a specific application by substituting the
appropriate data structures, matrix factorizations, solvers and matrix-vector
products. An explanation of how to use these drivers as templates and how to
modify them for your own use is given in Appendix A (Templates and Driver
Routines). Each of the various drivers has been provided to address a typical
situation arising from significant applications of eigenvalue calculations.

We begin with a description of the ARPACK directory structure. We then
use one of the sample drivers to illustrate the use of ARPACK in the simplest
mode of operation.

2.1 Directory Structure and Contents

Once the ARPACK software has been unbundled as described in Chapter 1, a
directory structure will have been created. The top level directory is named
ARPACK. The directory structure is pictured in Figure 2.1.

The ARMAKES subdirectory contains sample files with machine specific in-
formation needed during the building of the ARPACK library. = The BLAS
and LAPACK subdirectories contain the necessary codes from the respective
software libraries. The DOCUMENTS subdirectory contains files that have ex-
ample templates of how to invoke the different computational modes offered
by ARPACK. Example driver programs that illustrate all of the computational

9

2.2. GETTING STARTED 10

modes, data types and precisions may be found in the EXAMPLES directory.
Programs for banded, complex, non-symmetric, symmetric eigenvalue prob-
lems and singular value decomposition may be found in the directories BAND,
COMPLEX, NONSYM, SYM, SVD respectively. Look at the README files in each
subdirectory for further information. The SRC subdirectory contains all the
ARPACK source codes. The UTIL subdirectory contains the various utility
routines needed for printing results and timing the execution of the ARPACK
subroutines.

The archived library 1ibarpack <PLATFORM>.a is created upon completion
of the installation instructions. Here, _<PLATFORM> denotes the environment
where the ARPACK library is built. All of the subroutines other than those in
the EXAMPLES directory are compiled and archived into libarpack <PLATFORM>.
The installer should be aware that the BLAS and LAPACK directories contain a
subset of routines from these packages that will require an additional megabyte
of memory once they are compiled and archived. If these packages are already
available on your system, you may delete the BLAS and LAPACK directories
provided here and point to the ones that are already installed on your sys-
tem. This is easily done by modifying the file ARmake.inc as described in the
READUME file in the top level directory ARPACK.

To get started, we recommend that the user enter the SIMPLE subdirectory
and issue the commands

make dssimp ; dssimp > output

This will compile, link, and execute the dssimp program. dssimp is a sample
driver for the reverse communication interface to the ARPACK routine dsaupd
which finds a few eigenvalues and eigenvectors of a symmetric matrix.

This chapter discusses the use of dssimp for computing eigenvalues and
eigenvectors of a symmetric matrix using the simplest computational mode.
There are additional drivers available for all of the computational modes, data
types, and precisions. These additional driver programs are in the EXAMPLES
subdirectories. Each of them is self-contained and may be compiled and exe-
cuted in a similar manner as described in the README files.

This dssimp driver should serve as template to enable a user to create a
program to use dsaupd on a specific problem in the simplest computational
mode. All of the driver programs in the various EXAMPLES subdirectories are
intended to be used in this way. The simple programs have more extensive
documentation to aid in the understanding and conversion but essentially the
same principle and structure apply to all of the driver programs.

2.2 Getting Started

The collection of driver programs mentioned above have been constructed to
illustrate how to use ARPACK in a straightforward way to solve some of the
most frequently occurring eigenvalue problems. The purpose of this section

CHAPTER 2. GETTING STARTED WITH ARPACK 11

Figure 2.1: The ARPACK directory structure.

ARPACK
A
ARMAKES BLAS DOCUMENTS | LAPACK SRC UTIL
EXA&PLES
R

SIMPLE BAND SVD SYM NONSYM COMPLEX

Table 2.1: List of the simple drivers illustrating the use of ARPACK.

NAME PURPOSE

[d,s]ssimp Real symmetric driver

[d,s]lnsimp Real non-symmetric driver

[z,cInsimp Complex (Hermitian or general)

and the corresponding simple codes is to provide a means to get started with
ARPACK as quickly as possible. These codes may be used as templates that
are easily altered to solve new problems after a few straightforward changes.
The available simple drivers are listed in Table 2.1. These codes may be found
in the EXAMPLES/SIMPLE directory.

2.3 An Example for a Symmetric Eigenvalue Prob-
lem

In this section, the simple code dssimp is discussed. All of the other example
drivers are similar in nature. This particular example program illustrates the
simplest computational mode of using ARPACK in considerable detail. dssimp
shows how to use ARPACK to find a few eigenvalues A and corresponding
eigenvectors x for the standard eigenvalue problem:

Ax =xA
where A is an n by n real symmetric matrix. The main points illustrated are:

e How to declare sufficient memory to find nev eigenvalues. dssimp is set
up to find nev eigenvalues of largest magnitude LM. This may be reset

2.3. AN EXAMPLE FOR A SYMMETRIC EIGENVALUE PROBLEM 12

to any one of the additional options (SM, LA, SA, BE) to find other
eigenvalues of interest.

e lllustration of the reverse communication interface needed to utilize the
top level ARPACK routine dsaupd. This routine computes the quanti-
ties needed to construct the desired eigenvalues and the corresponding
eigenvectors.

e How to extract the desired eigenvalues and eigenvectors from the quan-
tities computed with dsaupd by using the ARPACK routine dseupd.

This dssimp program is a driver for the subroutine dsaupd and it is set up
to solve the following problem:

e Solve Ax = xA\ in regular mode. Regular mode only uses matrix vector
products involving A.

e The matrix A for this example is derived from the central difference
discretization of the 2-dimensional Laplacian on the unit square with
zero Dirichlet boundary conditions.

e The goal is to compute nev eigenvalues of largest magnitude and corre-
sponding eigenvectors.

The only thing that must be supplied in order to use this routine on your
problem is to change the array dimensions and to supply a means to compute
the matrix-vector product

w ¢ Av

on request from dsaupd. The selection of which eigenvalues to compute may
be altered by changing the parameter which.

Once usage of dsaupd in the simplest mode is understood, you may wish
to explore the other available options such as solving generalized eigenvalue
problems using a shift-invert computational mode. Some of these additional
modes are described in the latter sections of this chapter and also in the file
ex-sym.doc in DOCUMENTS directory.

2.3.1 The Reverse Communication Interface

The easiest way to describe the reverse communication interface is through the
example code segment shown in Figure 2.2. Once storage has been declared
and the input parameters initialized, the reverse communication loop (Fig. 2.2)
is entered and repeated calls to dsaupd are made. On return the parameter
ido will indicate the action to be taken. In this simple example, the only
action taken is a matrix-vector product (see call av in the code segment of
Figure 2.2). The more sophisticated shift-invert computational modes require
more complicated actions but the basic idea remains the same.

CHAPTER 2. GETTING STARTED WITH ARPACK

13

Table 2.2: Parameters for the top level ARPACK routines.

PARAMETER DESCRIPTION

ido Reverse communication flag.

nev The number of requested eigenvalues to compute.

ncv The number of Lanczos basis vectors to use through
the course of the computation.

bmat Indicates whether the problem is standard bmat = ‘I’
or generalized (bmat = ‘G’).

which Specifies which eigenvalues of A are to be computed.

tol Specifies the relative accuracy to which eigenvalues are
to be computed.

iparam Specifies the computational mode, number of IRAM
iterations, the implicit shift strategy, and outputs
various informational parameters upon completion
of IRAM.

2.3. AN EXAMPLE FOR A SYMMETRIC EIGENVALUE PROBLEM 14

c
c === [/
c | MAIN L OOP (Reverse communication loop) |
c === [/
c
10 continue

c
c h=——mm [/
c | Repeatedly call the routine DSAUPD and take |
c | actions indicated by parameter IDO until |
c | either convergence is indicated or maxitr |
c | has been exceeded. |
c h———mmmm [/
c

call dsaupd (ido, bmat, n, which, nev, tol, resid,

& ncv, v, ldv, iparam, ipntr, workd,
& workl, lworkl, info)

c

if (ido .eq. -1 .or. ido .eq. 1) then
c
c ittt ittt [/
c | Perform matrix vector multiplication |
c [y <--- 0OP*x I
c | The user should supply his/her own |
c | matrix vector multiplication routine |
c | here that takes workd(ipntr(1)) as |
c | the input, and return the result to |
c | workd(ipntr(2)). I
c hmmmmm e [/
c

call av (nx, workd(ipntr(1)), workd(ipntr(2)))
c
c h=—mmmmm o [/
c | LOOP BACK to call DSAUPD again. |
c h=—mmmmm oo [/
c
go to 10

c

end if

Figure 2.2: The reverse communication interface in example program dssimp.

CHAPTER 2. GETTING STARTED WITH ARPACK 15

2.3.2 Post Processing for Eigenvalues and Eigenvectors

If dsaupd indicates that convergence has taken place, then various steps may
be taken to recover the results in a useful form. This is done through the sub-
routine dseupd and is illustrated in Figure 2.3. In the simple mode described
in this chapter, the computed eigenvectors returned by dseupd are normalized
to have unit length (in the 2-norm).

2.3.3 Setting up the problem

To set up the problem, the user needs to specify the number of eigenvalues to
compute, which eigenvalues are of interest, the number of basis vectors to use,
and whether or not the problem is standard or generalized. These items are
controlled with the parameters listed in Table 2.2.

The simple codes described in this chapter are set up to solve the standard
eigenvalue problem using only matrix-vector products w < Av. Generalized
eigenvalue problems require selection of another mode. These are addressed in
Chapter 3. The value of ncv must be at least nev + 1. The options available
for which include ‘LA’ and ‘SA°’ for the algebraically largest and smallest
eigenvalues, ‘LM’ and ‘SM’ for the eigenvalues of largest or smallest magnitude,
and ‘BE’ for the simultaneous computation of the eigenvalues at both ends of
the spectrum. For a given problem, some of these options may converge more
rapidly than others due to the approximation properties of the IRLM as well
as the distribution of the eigenvalues of A. Convergence behavior can be quite
different for various settings of the which parameter. For example, if the matrix
is indefinite then setting which = ‘SM’ will require interior eigenvalues to be
computed and the Lanczos process may require many steps before these are
resolved.

For a given ncv, the computational work required is proportional to n - ncv?
FLOPS. Setting nev and ncv for optimal performance is very much problem
dependent. If possible, it is best to avoid setting nev in a way that will split
clusters of eigenvalues. For example, if the the five smallest eigenvalues are
positive and on the order of 10~ and the sixth smallest eigenvalue is on the
order of 10! then it is probably better to ask for nev = 5 than for nev = 3
even if the three smallest are the only ones of interest.

Setting the optimal value of ncv relative to nev is not completely under-
stood. As with the choice of which, it depends upon the underlying approx-
imation properties of the IRLM as well as the distribution of the eigenvalues
of A. As a rule of thumb, ncv > 2 - nev is reasonable. There are tradeoffs due
to the cost of the user supplied matrix-vector products and the cost of the im-
plicit restart mechanism and the cost of maintaining the orthogonality of the
Lanczos vectors. If the user supplied matrix-vector product is relatively cheap,
then a smaller value of ncv may lead to more user matrix-vector products, but
an overall decrease in computation time. Chapter 4 will discuss these issues in
more detail.

2.3. AN EXAMPLE FOR A SYMMETRIC EIGENVALUE PROBLEM 16

No fatal errors occurred.
Post-Process using DSEUPD.

Computed eigenvalues may be extracted.

I
I
I
I
I
Eigenvectors may be also computed now if |
desired. (indicated by rvec = .true.) [
I
I
I
I
I
I

The routine DSEUPD is called to do this
post processing (Other modes may require
more complicated post processing than
model.)

fhmmm - %

O o0 0 0 0 0 0 0 0 00 0 0 0000

rvec = .true.

call dseupd (rvec, ’All’, select, 4, v, 1dv, sigma,
bmat, n, which, nev, tol, resid, ncv, v, 1ldv,
& iparam, ipntr, workd, workl, lworkl, ierr)

&

T %
Eigenvalues are returned in the first column
of the two dimensional array D and the
corresponding eigenvectors are returned in
the first NCONV (=IPARAM(5)) columns of the
two dimensional array V if requested.
Otherwise, an orthogonal basis for the
invariant subspace corresponding to the
eigenvalues in D is returned in V.

e %

O o o0 o0 0 0 0 0 0 0 00

Figure 2.3: Post Processing for Eigenvalues and Eigenvectors using desupd.

CHAPTER 2. GETTING STARTED WITH ARPACK 17

0O o0 o0 o0 o
=
[e]
%)
Y
'_I
o
H
H
©
<
)

Double precision
& v(1ldv,maxncv), workl(maxncv*(maxncv+8)),
& workd(3*maxn), d(maxncv,2), resid(maxn),
& ax(maxn)

logical select(1)

integer iparam(11), ipntr(11)

Figure 2.4: Storage declarations needed for ARPACK subroutine dsaupd

2.3.4 Storage Declarations

The program is set up so that the setting of the three parameters maxn,
maxnev, maxncv will automatically declare all of the work space needed to
run dsaupd on a given problem.

The declarations allow a problem size of N < maxn, computation of nev <
maxnev eigenvalues, and using at most ncv < maxncv Lanczos basis vectors
during the IRLM. The user may override the default settings used for the
example problem by modifying maxn, maxnev and maxncv in the following
parameter statement.

integer maxn, maxnev, maxncv, 1ldv
parameter (maxn=256, maxnev=10, maxncv=25, ldv=maxn)

These parameters are used in the code segment listed in Figure 2.3.4 for
declaring all of the output and work arrays needed by the ARPACK subroutines
dsaupd and dseupd.

2.3.5 Stopping Criterion

The stopping criterion is determined by the user through specification of the
parameter tol. The default value for tol is machine precision €¢p;. There are
several things to consider when setting this parameter. In absence of all other
considerations, one should expect a computed eigenvalue A, to satisfy

[N — A < tol-|A,

where); is the eigenvalue of A nearest to A.. Typically, decreasing the value of
tol will increase the work required to satisfy the stopping criterion. However,
setting tol too large may cause eigenvalues to be missed when they are multiple

2.3. AN EXAMPLE FOR A SYMMETRIC EIGENVALUE PROBLEM 18

or very tightly clustered. Typically, a fairly small setting of tol and a
reasonably large setting of ncv is required to avoid missing multiple eigenvalues.
However, some care must be taken. It is possible to set tol so small that
convergence never occurs. There may be additional complications when the
matrix A is non-normal or when the eigenvalues of interest are clustered near
the origin. A detailed discussion of the stopping rules and what they imply
about the computed results is given in Chapter 4 § 4.6.

2.3.6 Initial Parameter Settings

The reverse communication flag is denoted by ido. This parameter must be
initially set to 0 before the first call to dsaupd. During the course of the
IRLM, ido is used to indicate the action to be taken by the user when control
is returned to the program calling dsaupd.

Various algorithmic modes may be selected through the settings of the
entries in the integer array iparam. The most important of these is the value
of iparam(7) which specifies the computational mode to use. The selection
in this simple example is iparam(7) = 1 indicating mode = 1 is to be used
and this only requires matrix-vector products. Convergence can be greatly
enhanced through the the use of the shift-invert computational modes provided.
These additional modes are described in Chapter 3. In addition, iparam(1)
specifies the shift selection strategy to be used with the implicit restarting
mechanism described in Chapter 4. Setting iparam(1) = 1 as in the example
will specify the so called ezact shift strategy. Exact shifts are recommended
unless the user has a very good reason based upon a-priori information and
an expert knowledge of the underlying IRLM to specify an alternative. The
maximum number of IRLM iterations allowed must be specified in iparam(3).
In specifying this parameter, the user should keep in mind that an IRLM
iteration costs approximately ncv - nev user supplied matrix-vector products.
In addition, 4-n-ncv - (ncv — nev) FLOPS are needed for the work associated
with an IRLM iteration.

The integer argument 1lworkl sets the length of the work array workl. Its
value is set at ncv - (ncv + 8).

2.3.7 Setting the Starting Vector

The parameter info should be set to 0 on the initial call to dsaupd unless the
user wants to supply the starting vector that initializes the IRLM. Normally,
this default is a reasonable choice. However, if this eigenvalue calculation is one
of a sequence of closely related problems then convergence may be accelerated
if a suitable starting vector is specified. Typical choices in this situation might
be to use the final value of the starting vector from the previous eigenvalue
calculation (that vector will already be in the first column of V) or to construct
a starting vector by taking a linear combination of the computed eigenvectors
from the previously converged eigenvalue calculation. If the starting vector is

CHAPTER 2. GETTING STARTED WITH ARPACK 19

include ’debug.h’
ndigit = -3

logfil =
msgets =
msaitr =
msapps =
msaupd =
msaup2 =

mseigt =

SO O O B, O O O O

nseupd =

Figure 2.5: How to initiate the trace debugging capability in ARPACK.

to be supplied, then it should be placed in the array resid and info should be
set to 1 on entry to dsaupd. On completion, the parameter info may contain
the value 0 indicating the iteration was successful or it may contain a nonzero
value indicating an error or a warning condition. The meaning of a nonzero
value returned in info may be found in the header comments of the subroutine
dsaupd.

2.3.8 Trace Debugging Capability

ARPACK provides a means to trace the progress of the computation as it
proceeds. Various levels of output may be specified from no output (level =
0) to voluminous (level = 3) . The code segment listed in Figure 2.5 gives
an example of the statements that may be used within the calling program to
initiate and request this output.

The include statement sets up the storage declarations that are solely as-
sociated with this trace debugging feature. The parameter ndigit specifies
the number of decimal digits and the width of the output lines. A positive
or negative value of ndigit specifies that 132 or 80 columns, respectively, are
used during output. The parameter logfil specifies the logical unit number
of the output file. The values of the remaining parameters indicate the output
levels from the indicated routines. For example, msaitr indicates the level of
output requested from the subroutine dsaitr. The above configuration will
give a breakdown of the number of matrix vector products required, the total
number of iterations, the number of re-orthogonalization steps and an estimate
of the time spent in each routine and phase of the computation. Figure 2.6
displays the output produced by the above settings. The user is encouraged to
experiment with the other settings once some familiarity has been gained with
the routines. See Appendix B for a detailed discussion of the Trace Debugging
Capabilities.

2.3. AN EXAMPLE FOR A SYMMETRIC EIGENVALUE PROBLEM 20

= Symmetric implicit Arnoldi update code =
= Version Number: 2.1 =
= Version Date: 11/15/95 =

Total number update iterations = 8
Total number of OP*x operations = 125
Total number of B*x operations = 0
Total number of reorthogonalization steps = 125
Total number of iterative refinement steps = 0
Total number of restart steps = 0
Total time in user 0OP*x operation = 0.020002
Total time in user B*x operation = 0.000000
Total time in Arnoldi update routine = 0.210021
Total time in ssaup2 routine = 0.190019
Total time in basic Arnoldi iteration loop = 0.110011
Total time in reorthogonalization phase = 0.070007
Total time in (re)start vector generation = 0.000000
Total time in trid eigenvalue subproblem = 0.040004
Total time in getting the shifts = 0.000000
Total time in applying the shifts = 0.040004
Total time in convergence testing = 0.000000

Figure 2.6: Output from a Debug session for dsaupd.

Chapter 3

(General Use of ARPACK

This chapter will describe the complete structure of the reverse communi-
cation interface to the ARPACK codes. Numerous computational modes are
available, including several shift-invert strategies designed to accelerate con-
vergence. Two of the more sophisticated modes will be described in detail.
The remaining ones are quite similar in principle, but require slightly different
tasks to be performed with the reverse communication interface.

This chapter is structured as follows. The naming conventions used in
ARPACK, and the data types and precisions available are described in § 3.1.
Spectral transformations are discussed in § 3.2. Spectral transformations are
usually extremely effective but there are a number of problem dependent is-
sues that determine which one to use. In § 3.3 we describe the reverse com-
munication interface needed to exercise the various shift-invert options. Each
shift-invert option is specified as a computational mode and all of these are
summarized in the remaining sections. There is a subsection for each problem
type and hence these sections are quite similar and repetitive. Once the basic
idea is understood, it is probably best to turn directly to the subsection that
describes the problem setting that is most interesting to you.

Perhaps the easiest way to rapidly become acquainted with the modes of
ARPACK is to run the example driver routines (see Appendix A) that have
been supplied for each of the modes. These may be used as templates and
adapted to solve specific problems.

3.1 Naming Conventions, Precisions and Types

ARPACK has two interface routines that must be invoked by the user. They
are __aupd that implements the IRAM and __eupd to post process the results
of __aupd. The user may request an orthogonal basis for a selected invariant
subspace or eigenvectors corresponding to selected eigenvalues with __eupd. If
a spectral transformation is used, __eupd transforms the computed eigenvalues
for the problem Ax = MxA.

Both __aupd and __eupd are available for several combinations of problem

21

3.2. SHIFT AND INVERT SPECTRAL TRANSFORMATION MODE 22

Table 3.1: Available precisions and data types for ARPACK.

FIRST LETTER PRECISION DATA TYPE

s Single Real
d Double Real
c Single Complex
z Double Complex

type (symmetric and non-symmetric), data type (real, complex), and preci-
sion (single, double). The first letter (s,d,c,z) denotes precision and data
type. The second letter denotes whether the problem is symmetric (s) or
non-symmetric (n). Table 3.1 lists the possibilities.

Thus, dnaupd is the routine to use if the problem is a double precision non-
symmetric (standard or generalized) problem and dneupd is the post-processing
routine to use in conjunction with dnaupd to recover eigenvalues and eigen-
vectors of the original problem upon convergence. For complex matrices, one
should use _naupd and _neupd with the first letter either ¢ or z regardless of
whether the problem is Hermitian or non-Hermitian. Table 3.2 lists the double
precision routines available.

3.2 Shift and Invert Spectral Transformation Mode

The most general problem that may be solved with ARPACK is to compute a
few selected eigenvalues and corresponding eigenvectors for

(3.2.1) Ax = Mx\

where A and M are real or complex n X n matrices.

The shift and invert spectral transformation is used to enhance convergence
to a desired portion of the spectrum. If (x,) is an eigen-pair for (A, M) and
o # A then

1

— g

(3.2.2) (A — oM)'Mx = xv where v = 3

This transformation is effective for finding eigenvalues near o since the nev
eigenvalues v; of C = (A —oM)~'M that are largest in magnitude correspond
to the nev eigenvalues A; of the original problem that are nearest to the shift
o in absolute value. These transformed eigenvalues of largest magnitude are
precisely the eigenvalues that are easy to compute with a Krylov method. Once
they are found, they may be transformed back to eigenvalues of the original
problem. The direct relation is

Aj=0+1/vj,

CHAPTER 3. GENERAL USE OF ARPACK

23

Table 3.2: Double Precision Top level routines in ARPACK subdirectory SRC.

ROUTINE

DESCRIPTION

dsaupd

Top level reverse communication interface to solve real
double precision symmetric problems.

dseupd

Post processing routine used to compute eigenvectors
associated with the computed eigenvalues. This requires
output from a converged application of dsaupd.

dnaupd

Top level reverse communication interface to solve
real double precision non-symmetric problems.

dneupd

Post processing routine used to compute eigenvectors
and/or Schur vectors corresponding to the invariant
subspace associated with the computed eigenvalues. This
requires output from a converged application of dnaupd.

zZnaupd

Top level reverse communication interface to solve
double precision complex arithmetic problems.
This routine should be used for both Hermitian

and Non-Hermitian problems.

Zneupd

Post processing routine used to compute eigenvectors
and/or Schur vectors corresponding to the invariant
subspace associated with the computed eigenvalues in
complex arithmetic. This requires output from a
converged application of znaupd.

3.2. SHIFT AND INVERT SPECTRAL TRANSFORMATION MODE 24

and the eigenvector x; associated with v; in the transformed problem is also an
(generalized) eigenvector of the original problem corresponding to A;. Usually,
the IRAM will rapidly obtain good approximations to the eigenvalues of C
of largest magnitude. However, to implement this transformation, one must
provide a means to solve linear systems involving A — oM either with a matrix
factorization or with an iterative method.

In general, C will be non-Hermitian even if A and M are both Hermitian.
However, this is easily remedied. The assumption that M is Hermitian positive
definite implies that the bi-linear form

<X,y > = XHMy

is an inner product. If M is positive semi-definite and singular, then a semi-
inner product results. We call this a weighted M-inner product and vectors
x,y are called M-orthogonal if < x,y >= 0. It is easy to show that if A
is Hermitian (self-adjoint) then C is Hermitian (self-adjoint) with respect to
this M-inner product (meaning < Cx,y >=< x,Cy > for all vectors x,y).
Therefore, symmetry will be preserved if we force the computed basis vectors
to be orthogonal in this M-inner product. Implementing this M-orthogonality
requires the user to provide a matrix-vector product w < Mrv on request
along with each application of C. In the following sections we shall discuss
some of the more familiar transformations to the standard eigenproblem. How-
ever, when M is positive (semi) definite, we recommend using the shift-invert
spectral transformation with M-inner products if at all possible. This is a
far more robust transformation when M is ill-conditioned or singular. With a
little extra manipulation (provided automatically in __eupd) the (semi-) inner
product induced by M prevents corruption of the computed basis vectors by
roundoff-error associated with the presence of infinite eigenvalues. These very
ill-conditioned eigenvalues are generally associated with a singular or highly
ill-conditioned M. A detailed discussion of this theory may be found in Chap-
ter 4.

Shift-invert spectral transformations are very effective and should even be
used on standard problems (M = I) whenever possible. This is particularly
true when interior eigenvalues are sought or when the desired eigenvalues are
clustered. Roughly speaking, a set of eigenvalues is clustered if the maximum
distance between any two eigenvalues in that set is much smaller than the
maximum distance between any two eigenvalues of (A, M).

If one has a generalized problem (M # I), then one must provide a way
to solve linear systems with either A, M or a linear combination of the two
matrices in order to use ARPACK. In this case, a sparse direct method should
be used to factor the appropriate matrix whenever possible. The resulting
factorization may be used repeatedly to solve the required linear systems once
it has been obtained. If an iterative method is used for the linear system solves,
the accuracy of the solutions must be commensurate with the convergence tol-
erance used for ARPACK. A slightly more stringent tolerance is needed for the

CHAPTER 3. GENERAL USE OF ARPACK 25

iterative linear system solves (relative to the desired accuracy of the eigenvalue
calculation). See [4, 10, 9, 12] for further information and references.

The main drawback with using the shift-invert spectral transformation is
that the coefficient matrix A — oM is typically indefinite in the Hermitian
case and has 0 in the interior of the convex hull of the spectrum in the non-
Hermitian case. These are typically the most difficult situations for iterative
methods and also for sparse direct methods.

The decision to use a spectral transformation on a standard eigenvalue
problem (M = I) or to use one of the simple modes described in Chapter 2
is problem dependent. The simple modes have the advantage that one only
need supply a matrix vector product w < Av. However, this approach is
usually only successful for problems where extremal non-clustered eigenvalues
are sought. In non-Hermitian problems, extremal means eigenvalues near the
boundary of the convex hull of the spectrum of A. For Hermitian problems,
extremal means eigenvalues at the left or right end points of the spectrum
of A. The notion of non-clustered (or well separated) is difficult to define
without going into considerable detail. A simplistic notion of a well-separated
eigenvalue A; for a Hermitian problem would be |A; — ;| > 7|, — A\q| for all
j # 1t with 7 >> €p7. Unless a matrix vector product is quite difficult to code
or extremely expensive computationally, it is probably worth trying to use the
simple mode first if you are seeking extremal eigenvalues.

The remainder of this section discusses additional transformations that
may be applied to convert a generalized eigenproblem to a standard eigen-
problem. These are appropriate when M is well conditioned (Hermitian or
non-Hermitian).

3.2.1 M is Hermitian Positive Definite

If M is Hermitian positive definite and well conditioned (|[M]| - ||[M™!]| is
of modest size), then computing the Cholesky factorization M = LL and
converting equation (3.2.1) to

(L_IAL_H)y =y\ where Lx =1y

provides a transformation to a standard eigenvalue problem. In this case, a
request for a matrix vector product would be satisfied with the following three
steps:

1. Solve Lz = v for z,
2. Matrix-vector multiply z <+ Az,
3. Solve Lw = z for w.

Upon convergence, a computed eigenvector y for (L_lAL_H) is converted to
an eigenvector x of the original problem by solving the the triangular system
L"x = y. This transformation is most appropriate when A is Hermitian, M

3.3. REVERSE COMMUNICATION STRUCTURE FOR SHIFT-INVERD6

is Hermitian positive definite and extremal eigenvalues are sought. This is
because L=' AL~ will be Hermitian when A is.

If A is Hermitian positive definite and the smallest eigenvalues are sought,
then it would be best to reverse the roles of A and M in the above description
and ask for the largest algebraic eigenvalues or those of largest magnitude.
Upon convergence, a computed eigenvalue X would then be converted to an
eigenvalue of the original problem by the relation A « 1/;\

3.2.2 M is NOT Hermitian Positive Semi—Definite

If neither A nor M is Hermitian positive semi-definite, then a direct trans-
formation to standard form is required. One simple way to obtain a direct
transformation of equation (3.2.1) to a standard eigenvalue problem Cx = x\
is to multiply on the left by M~! which results in C = M~!A. Of course, one
should not perform this transformation explicitly since it will most likely con-
vert a sparse problem into a dense one. If possible, one should obtain a direct
factorization of M and when a matrix-vector product involving C is called for,
it may be accomplished with the following two steps:

1. Matrix-vector multiply z + Av,
2. Solve: Mw = z.

Several problem dependent issues may modify this strategy. If M is singular
or if one is interested in eigenvalues near a point o then a user may choose
to work with C = (A — ¢M)~'M but without using the M-inner products
discussed previously. In this case the user will have to transform the converged
eigenvalues v; of C to eigenvalues A; of the original problem.

3.3 Reverse Communication Structure for Shift-Invert

The reverse communication interface routine for all problem types is __aupd.
If the eigenvalue problem (3.2.1) is a double precision non-symmetric one,
then the subroutine to use is dnaupd. First the reverse communication loop
structure will be described and then the details and nuances of the problem
set up will be discussed. We shall use the symbol OP for the operator that
is applied to vectors in the Arnoldi/Lanczos process and B will stand for the
matrix to use in the weighted inner product described previously. For the
shift-invert spectral transformation mode, OP denotes (A — oM)™'M and B
denotes M. They will stand for different matrices in each of the various modes.

The basic idea is to set up a loop that repeatedly calls __aupd. On each
return, one must either apply OP or B to a specified vector or exit the loop
depending upon the value returned in the reverse communication parameter
ido.

CHAPTER 3. GENERAL USE OF ARPACK 27

O o o0 0 0 0 0 0 0 0 00

O o o0 o0

10

o o o o o0 o0

O o0 0 0 0 0 0 00

h=mmmmmm [/
Call a routine FAC to factor the matrix (A-sigmaxM)
into Lx*U.

I

I

I

| A routine MV is called repeatedly below to
| form z = Mv.
I

I

I

I

A routine SOLVE is used repeatedly below to solve
(A-sigma*M) w = z using the single LU

factorization provided by FAC.

=== o %

| MAIN L 00 P (Reverse communication) |

=== o %

continue
=== /A

call dnaupd (ido, bmat, n, which, nev, tol, resid,
ncv, v, ldv, iparam, ipntr, workd,
workl, lworkl, info)

if (ido .eq. -1) then

h=——mmmm [/
| Perform y <--- 0OP*x = inv[A-sigma*xM]*Mxx |
| to force the starting vector into the I
| range of OP. |
| x = workd(ipntr(1)) I
| y = workd(ipntr(2)) |
=== [/

call mv (workd(ipntr(1)), workd(ipntr(2)))

Figure 3.1: Reverse communication interface for Shift-Invert.

REVERSE COMMUNICATION STRUCTURE FOR SHIFT-INVERDS

O o0 0 0 0 0 00

O o0 0 o0 0 00

[elNNe!

call solve(L,U, workd(ipntr(2)))
h-—— LOOP BACEK to call DSAUPD again. ---}
go to 10
else if (ido .eq. 1) then
| Perform y <-- OP#x = inv[A-sigma*M]#*M*x |
| M*x has been saved in workd(ipntr(3)). |

| M*x = workd(ipntr(3) I
| y = workd(ipntr(2)). |

call dcopy (n, workd(ipntr(3)), 1,
& workd(ipntr(2)), 1)
call solve(L,U, workd(ipntr(2)))
#-—— LOOP BACEK to call DSAUPD again. ---}
go to 10
else if (ido .eq. 2) then
| Perform 7y <--—- M#x |

| x = workd(ipntr(1)) |
| y = workd(ipntr(2)) |

call mv (workd(ipntr(1)), workd(ipntr(2)))

h-—— LOOP BACEK to call DSAUPD again. ---}
go to 10
end if

Figure 3.2: Reverse communication interface for Shift-Invert contd.

CHAPTER 3. GENERAL USE OF ARPACK 29

3.3.1 Shift and invert on a Generalized Eigen-problem

The above code segments shown in Figures 3.1-3.2 illustrate the reverse
communication loop for dnaupd in shift-invert mode for a generalized non-
symmetric eigenvalue problem. This loop structure will be identical for the
symmetric problem. The only change needed is to replace dnaupd with dsaupd.
The loop structure is also identical for the complex arithmetic subroutine
Znaupd.

In the example shown in Figures 3.1-3.2, the matrix M is assumed to be
symmetric and positive semi-definite. In the structure above, the user will have
to supply some routine such as fac to obtain a matrix factorization of A — oM
that may repeatedly be used to solve linear systems. Moreover, a routine needs
to be provided in place of mv to perform the matrix-vector product z = Mv
and a routine in place of solve is required to solve linear systems of the form
(A — ocM)w = z as needed using the previously computed factorization.

When convergence has taken place (indicated by ido = 99), the reverse
communication loop will be exited. Then, post-processing using the ARPACK
subroutine dneupd must be done to recover the eigenvalues and corresponding
eigenvectors of the original problem. When operating in Shift-invert mode,
the eigenvalue selection parameter which is normally set to which = ’LM’.
The routine dneupd is then used to convert the converged eigenvalues of OP
to eigenvalues of the original problem (3.2.1). Also, when M is singular or ill-
conditioned, the routine dneupd takes steps to purify the eigenvectors and rid
them of numerical corruption from eigenvectors corresponding to near-infinite
eigenvalues. These procedures are done automatically by the routine dneupd
when operating in any one of the computational modes described above and
later in this chapter.

The user may wish to construct alternative computational modes using
spectral transformations that are not addressed by any of the modes specified
in this chapter. The reverse communication interface will easily accommodate
these modifications. However, it will most likely be necessary to construct
explicit transformations of the eigenvalues of OP to eigenvalues of the original
problem in these situations.

3.4 Using the Computational Modes

The problem set up is similar for all of the available computational modes.
In the previous section, a detailed description of the reverse communication
loop for a specific mode (Shift-Invert for a Real Non-symmetric Generalized
Problem) was given. To use this or any of the other modes listed below, the
user is strongly urged to modify one of the driver routine templates as described
in Appendix A.

The first thing to decide is whether the problem will require a spectral
transformation. If the problem is generalized (M # I) then a spectral trans-
formation will be required (see § 3.2). Such a transformation will most likely

3.4. USING THE COMPUTATIONAL MODES 30

call dnaupd (ido, bmat, n, which, nev, tol, resid, ncv, v,
& 1dv, iparam, ipntr, workd, workl, lworkl, info)

Figure 3.3: Calling the ARPACK subroutine dnaupd.

be needed for a standard problem if the desired eigenvalues are in the interior
of the spectrum or if they are clustered at the desired part of the spectrum.
Once this decision has been made and OP has been specified, an efficient means
to implement the action of the operator OP on a vector must be devised. The
expense of applying OP to a vector will of course have direct impact on perfor-
mance.

Shift-Invert spectral transformations may be implemented with or without
the use of a weighted M-inner product. The relation between the eigenvalues of
0P and the eigenvalues of the original problem must also be understood in order
to make the appropriate specification of which in order to recover eigenvalues
of interest for the original problem. The user must specify the number of
eigenvalues to compute, which eigenvalues are of interest, the number of basis
vectors to use, and whether or not the problem is standard or generalized.
These items are controlled with the parameters listed in Table 2.2 of Chapter 2.

Setting nev and ncv for optimal performance is very much problem de-
pendent. If possible, it is best to avoid setting nev in a way that will split
clusters of eigenvalues. As a rule of thumb, ncv > 2 - nev is reasonable. There
are tradeoffs due to the cost of the user supplied matrix-vector products and
the cost of the implicit restart mechanism. If the user supplied matrix-vector
product is relatively cheap, then a smaller value of ncv may lead to more user
matrix-vector products and IRA iterations but an overall decrease in compu-
tation time. Convergence behavior can be quite different for various settings
of the which parameter. The Arnoldi process tends to converge most rapidly
to extreme points of the convex hull of the spectrum. Implicit restarting can
be effective in focusing on and isolating a selected set of eigenvalues near these
extremes. In principle, implicit restarting could isolate eigenvalues in the inte-
rior, but in practice this is difficult and usually unsuccessful. If one is interested
in eigenvalues near a point ¢ that is in the interior of the convex hull of the
spectrum, a shift-invert strategy is usually required for reasonable convergence.

The call to dnaupd is listed in Figure 3.3. The integer ido is the reverse
communication flag that will specify a requested action on return from dnaupd.
The character*1 parameter bmat specifies if this is a standard bmat = ‘I’
or a generalized bmat = ‘G’ problem. The integer n specifies the dimension of
the problem. The character#*2 parameter which specifies the nev eigenvalues
to be computed. The options for which differ depending on whether a Hermi-
tian or non-Hermitian eigenvalue problem is to be solved. Tables 3.3-3.4 list

CHAPTER 3. GENERAL USE OF ARPACK 31

call dsaupd (ido, bmat, n, which, nev, tol, resid, ncv, v,
& 1dv, iparam, ipntr, workd, workl, lworkl, info)

Figure 3.4: Calling the ARPACK subroutine dsaupd.

the different selections possible. The specification of problem type will be de-
scribed separately but the reverse communication interface and loop structure
is the same for each type of the three basic modes regular, regular-inverse,
shift-invert (standard or generalized). There are some additional special-
ized modes for symmetric problems (Buckling and Cayley) and for real non-
symmetric problems with complex shifts applied in real arithmetic. The user
is encouraged to examine the sample driver routines for these modes.

The integer nev indicates the number of eigenvalues to compute and tol
specifies the accuracy requested. The integer array iparam has eleven entries.
On input, iparam(1) should be set to O if the user wishes to supply shifts
for implicit restarting or to 1 if the default exact-shift strategy is requested.
The entry iparam(1) should be set to 1 unless the user has a great deal of
knowledge about the spectrum and about the IRAM and underlying theory.
The entry iparam(3) should be set to the maximum number of implicit restarts
allowed. The cost of an implicit restart step (major iteration) is on the order of
4n - (ncv — nev) Flops for the dense matrix operations and ncv - nev matrix-
vector products w < Av with the matrix A. On output, iparam(3) will
contain the number of implicit restarts taken during the computation.

With respect to shift-invert modes, entry iparam(7) is very important.
The remaining entries of iparam are either no longer referenced or are output
parameters. The legitimate values for iparam(7) differ with each problem type
and will be listed below for each of them.

3.5 Computational Modes for Real Symmetric Prob-
lems

The reverse communication interface subroutine for symmetric eigenvalue prob-
lems is dsaupd. The subroutine is called as shown in Figure 3.4. The argument
which may be any one of the settings listed in Table 3.3.

The following is a list of the spectral transformation options for symmetric
eigenvalue problems. In the following list, the specification of OP and B are
given for the various modes. Also, the iparam(7) and bmat settings are listed
along with the name of the sample driver for the given mode. Sample drivers
for the following modes may be found in the EXAMPLES/SYM subdirectory.

1. Regular mode (iparam(7) = 1, bmat = ’I’). Use driver dsdrvl.

(a) Solve Ax = xA in regular mode.

3.5. COMPUTATIONAL MODES FOR REAL SYMMETRIC PROBLENB®

Table 3.3: The various settings for the argument which in _saupd

WHICH DESCRIPTION

‘LA Largest algebraic eigenvalues.

‘SA’? Smallest algebraic eigenvalues.

‘LM’ Eigenvalues largest in magnitude.

‘SM’ Eigenvalues smallest in magnitude.

‘BE’ Compute nev eigenvalues, half from
each end of the spectrum. When nev
is odd, compute one more from the
high end than from the low end.

(b) 0P=A and B=1.
2. Shift-invert mode (iparam(7) = 3, bmat = ’I’). Use driver dsdrv2.

(a) Solve Ax = xA in shift-invert mode.

(b) 0P= (A —oI)"' and B=1.
3. Regular inverse mode (iparam(7) = 2, bmat = ’G’). Use driver dsdrv3.

(a) Solve Ax = MxA in regular inverse mode.

(b) 0P = M~!A and B = M.
4. Shift-invert mode (iparam(7) = 3, bmat = ’G’). Use driver dsdrv4.

(a) Solve Ax = MxA in shift-invert mode.
(b) 0P = (A — oM)~'M and B = M.

5. Buckling mode (iparam(7) = 4, bmat = G’). Use driver dsdrv5.

(a) Solve Kx = KgxA in Buckling mode.
(b) 0P = (K — cKg) 'K and B = K.

6. Cayley mode (iparam(7) = 5, bmat = ’G’). Use driver dsdrveé.

(a) Solve Ax = MxA in Cayley mode.
(b) 0P = (A — ocM)" (A + ¢M) and B = M.

CHAPTER 3. GENERAL USE OF ARPACK 33

c
c hm—mmmmm [/
c | No fatal errors occurred. |
c | Post-Process using DSEUPD. |
c | |
c | Computed eigenvalues may be extracted. |
c | |
C | Eigenvectors may also be computed now if |
c | desired. (indicated by rvec = .true.) |
c hm—mmmmm [/
c
rvec = .true.
c
call dseupd (rvec, ’All’, select, d, v, ldv, sigma,
& bmat, n, which, nev, tol, resid, ncv, v, ldv,
& iparam, ipntr, workd, workl, lworkl, ierr)
c

Figure 3.5: Post-Processing for Eigenvectors Using dseupd.

3.6 Post-Processing for Eigenvectors Using dseupd

On the final return from dsaupd (indicated by ido = 99), the error flag info
must be checked. If info = 0 then no fatal errors have occurred and it is
time to post-process using dseupd to get eigenvalues of the original problem
and the corresponding eigenvectors if desired. In the case shown here (shift-
invert and generalized), there are some subtleties to recovering eigenvectors
when M is ill-conditioned. This process is called eigenvector purification. It
prevents eigenvectors from being corrupted with noise due to the presence of
eigenvectors corresponding to near infinite eigenvalues (See Chapter 4). These
operations are completely transparent to the user. The general calling sequence
for dseupd is shown in Figure 3.5.

The input parameters bmat, n, ---, info are precisely the same param-
eters that appear in the calling sequence of dsaupd. It is extremely IMPOR-
TANT that none of these parameters are altered between the final return from
dsaupd and the subsequent call to dseupd.

There is negligible additional cost to obtain eigenvectors. An orthonormal
(Lanczos) basis is always computed. In the above example, this basis is over-
written with the eigenvectors in the array v . Both basis sets may be obtained
if desired but there is an additional storage cost of n - nev if both are requested
(in this case a separate n by nev array z must be supplied).

The approximate eigenvalues of the original problem are returned in as-
cending algebraic order in the array d. If it is desirable to retain the Lanczos

3.7. COMPUTATIONAL MODES FOR REAL NON-SYMMETRIC
PROBLEMS 34

call dnaupd (ido, bmat, n, which, nev, tol, resid, ncv, v,
& 1dv, iparam, ipntr, workd, workl, lworkl, info)

Figure 3.6: Calling sequence of subroutine dnaupd.

basis in v and storage is an issue, the user may elect to call this routine once
for each desired eigenvector and store it peripherally. There is also the option
of computing a selected set of these vectors with a single call.

The input parameters that must be specified are

e The logical variable rvec = .true. if eigenvectors are requested .false.
if only eigenvalues are desired.

e The character*1 parameter howmny that specifies how many eigenvec-
tors are desired. howmny = ’A’: compute nev eigenvectors; howmny =
’S?: compute some of the eigenvectors, specified by the logical array
select.

e sigma should contain the value of the shift used if iparam(7) = 3,4,5.
It is not referenced if iparam(7) = 1 or 2.

When requested, the eigenvectors returned by dseupd are normalized to have
unit length with respect to the B semi-inner product that was used. Thus,
if B = I they will have unit length in the standard 2-norm. In general, a
computed eigenvector x will satisfy 1 = x” Bx.

3.7 Computational Modes for Real Non-Symmetric
Problems

The following subroutines are used to solve non-symmetric generalized eigen-
value problems in real arithmetic. These routines are appropriate when A
is a general non-symmetric matrix and M is symmetric and positive semi-
definite. The reverse communication interface routine for the non-symmetric
double precision eigenvalue problem is dnaupd. The routine is called as shown
in Figure 3.6. The specification of which nev eigenvalues is controlled by the
character*2 argument which. Table 3.4 lists the choices available.

There are three different shift-invert modes for non-symmetric eigenvalue
problems. These modes are specified by setting the parameter entry iparam(7)
= mode where mode = 1,2,3, or 4.

In the following list, the specification of OP and B are given for the various
modes. Also, the iparam(7) and bmat settings are listed along with the name
of the sample driver for the given mode. Sample drivers for the following modes
may be found in the EXAMPLES/NONSYM subdirectory.

1. Regular mode (iparam(7) = 1, bmat = ’I’). Use driver dndrvi.

CHAPTER 3. GENERAL USE OF ARPACK 35

Table 3.4: The various settings for the argument which in _naupd

WHICH DESCRIPTION

‘LM’ Eigenvalues of largest magnitude.

‘SM’ Eigenvalues of smallest magnitude.
‘LR’ Eigenvalues of largest real part.

‘SR’ Eigenvalues of smallest real part.

‘LI’ Eigenvalues of largest imaginary part.
€SI’ Eigenvalues of smallest imaginary part.

(a) Solve Ax = xA in regular mode.

(b) 0P=A and B=1.

2. Shift-invert mode (iparam(7) = 3, bmat = ’I’). Use driver dndrv2
with sigma a real shift.

(a) Solve Ax = xA in shift-invert mode.
(b) 0P= (A -cl)~tand B=1.
3. Regular inverse mode (iparam(7) = 2, bmat = ’G’). Use driver dndrv3.

(a) Solve Ax = MxA in regular inverse mode.
(b) 0P = M~'A and B = M.

4. Shift-invert mode (iparam(7) = 3, bmat = ’G’). Use driver dndrv4
with sigma a real shift.
(a) Solve Ax = MxA in shift-invert mode.
(b) 0P = (A — oM)~'M and B = M.
5. Complex Shift-invert mode (iparam(7) = 3, bmat = ’G’). Use driver

dndrvbs when sigma is complex. A — oM must be factored in complex
arithmetic.

(a) Solve Ax = MxA using complex shift in real arithmetic.

(b) OP = Real{(A — cM)~'!M} and B = M.

6. Complex Shift-invert mode (iparam(7) = 4, bmat = ’G’). Use driver
dndrv6é when sigma is complex. A — oM must be factored in complex
arithmetic.

(a) Solve Ax = MxA using complex shift in real arithmetic.

(b) OP = Imag{(A — cM)"'M} and B = M.

3.8. POST-PROCESSING FOR EIGENVECTORS USING DNEUPD 36

Note that there are two shift-invert modes with complex shifts (See dndrvs
and dndrvé). Since o is complex, these both require the factorization of the
matrix A — ¢M in complex arithmetic even though both A and M are real.
The only advantage of using this option instead of using the standard shift-
invert mode in complex arithmetic with the routine znaupd is that all of the
internal operations in the IRAM are executed in real arithmetic. This results
in a factor of two savings in storage and a factor of four savings in arithmetic.
There is additional post-processing that is somewhat more complicated than
the other modes in order to get the eigenvalues and eigenvectors of the original
problem. These modes are only recommended if storage is extremely critical.

3.8 Post-Processing for Eigenvectors Using dneupd

On the final return from dnaupd (indicated by ido = 99), the error flag info
must be checked. If info = 0, then no fatal errors have occurred and it is
time to post-process using dneupd to get eigenvalues of the original problem
and the corresponding eigenvectors if desired. In the case shown here (shift-
invert and generalized), there are some subtleties to recovering eigenvectors
when M is ill-conditioned. This process is called eigenvector purification. It
prevents eigenvectors from being corrupted with noise due to the presence of
eigenvectors corresponding to near infinite eigenvalues (See Chapter 4). These
operations are completely transparent to the user. The general calling sequence
for dseupd is shown in Figure 3.7.

The input parameters bmat, n --- info are precisely the same parameters
that appear in the calling sequence of dnaupd. It is extremely IMPORTANT
that none of these parameters are altered between the final return from dsaupd
and the subsequent call to dneupd.

The approximate eigenvalues of the original problem are returned with real
part array dr and imaginary part in the array di. Since the problem is real,
complex eigenvalues must come in complex conjugate pairs. There is negligible
additional cost to obtain eigenvectors. An orthonormal (Schur) basis for the
invariant subspace corresponding to the converged approximate eigenvalues
is always computed. In the above example, this basis is overwritten with the
eigenvectors in the array v. When the eigenvectors corresponding to a complex
conjugate pair of eigenvaues are computed, the vector corresponding to the
eigenvalue with positive imaginary part is stored with real and imaginary parts
in consecutive columns of v. The eigenvector corresponding to the conjugate
eigenvalue is, of course, the conjugate of this vector. Both basis sets may be
obtained if desired but there is an additional storage cost of n - nev if both are
requested (in this case a separate n by nev array z must be supplied). In
some cases it may be desirable to have both basis sets.

In the non-Hermitian case, the eigenvector basis is potentially ill-conditioned
and may not even exist. While, eigenvectors may have physical meaning, they
are generally not the best basis to use. If a basis for a selected invariant sub-

CHAPTER 3. GENERAL USE OF ARPACK

37

O o0 0 o0 0 0 0 00 00 000 00 00000

&

[/

No fatal errors occurred.
Post-Process using DNEUPD.

Computed eigenvalues may be extracted.

Eigenvectors may also be computed now if
desired. (indicated by rvec = .true.)

The real part of the eigenvalue is returned
in the first column of the two dimensional
array D, and the IMAGINARY part is returned

in the second column of D. The corresponding

eigenvectors are returned in the first NEV
columns of the two dimensional array V if
requested. Otherwise, an orthogonal basis
for the invariant subspace corresponding to
the eigenvalues in D is returned in V.

rvec = .true.
call dneupd (rvec, ’A’, select, d, d(1,2), v, ldv,

sigmar, sigmai, workev, bmat, n, which, nev, tol,

resid, ncv, v, ldv, iparam, ipntr, workd,
workl, lworkl, ierr)

Figure 3.7: Post-Processing for Eigenvectors Using dneupd.

3.9. COMPUTATIONAL MODES FOR COMPLEX PROBLEMS 38

space is required, then it is generally better to compute a Schur basis. This
will provide an orthogonal, hence well conditioned, basis for the subspace.
The sensitivity of a given subspace to perturbations (such as roundoff error)
is another question. See § 4.6 for a brief discussion.

If it is desirable to retain the Schur basis in v and storage is an issue, the
user may elect to call this routine once for each desired eigenvector and store
it peripherally. There is also the option of computing a selected set of these
vectors with a single call.

The input parameters that must be specified are

e The logical variable rvec = .true. if eigenvectors are requested .false.
if only eigenvalues are desired.

e The character*1l parameter howmny specifies how many eigenvectors
are desired. howmny = ’A’: compute nev eigenvectors; howmny = ’P’:
Compute nev Schur vectors; howmny = ’S’: compute some of the eigen-
vectors, specified by the logical array select.

e sigmar, sigmai should contain the real and imaginary portions, respec-
tively, of the shift that was used if iparam(7) = 3 or 4. Neither is
referenced if iparam(7) = 1 or 2.

When requested, the eigenvectors returned by dneupd are normalized to have
unit length with respect to the B semi-inner product that was used. Thus,
if B = I they will have unit length in the standard 2-norm. In general, a
computed eigenvector x will satisfy 1 = x”Bx. Eigenvectors x4 = xp + ixs
corresponding to a complex conjugate pair of eigenvalues Ay = & & i with
n > 0 are returned with xp stored in the j — th column and x; stored in the
(7 + 1) — st column of the eigenvector matrix when Ay and A_ are the j — th
and (j + 1) — st eigenvalues. This is the same storage convention as the one
used for LAPACK. Note that 1 = x"Bx implies X%BXR + X?BX[=1.

3.9 Computational Modes for Complex Problems

This section describes the solution of eigenvalue problems in complex arith-
metic. The reverse communication interface subroutine for the double pre-
cision complex eigenvalue problem is znaupd. This routine is to be used for
both Hermitian and non-Hermitian problems. The routine is called as shown
in Figure 3.8. It should be noted that the calling sequences for znaupd and
zneupd differ slightly from those of dnaupd and dneupd. The main difference is
that an additional work array rwork is required by znaupd that is not required
by dnaupd.

Occasionally, when using znaupd on a complex Hermitian problem, eigen-
values will be returned with small but non-zero imaginary part due to un-
avoidable round-off errors. These should be ignored unless they are significant
with respect to the eigenvalues of largest magnitude that have been computed.

CHAPTER 3. GENERAL USE OF ARPACK 39

call znaupd (ido, bmat, n, which, nev, tol, resid, ncv, v,
& 1dv, iparam, ipntr, workd, workl, lworkl, rwork,info)

Figure 3.8: Calling the ARPACK subroutine znaupd.

There is little computational penalty for using the non-Hermitian routines in
this case. The only additional cost is to compute eigenvalues of a Hessenberg
rather than a tridiagonal matrix. For the problem configurations this software
is designed to solve, the size of these matrices are small enough that the differ-
ences in computational cost are negligible compared to the major O(n) work
that is required.

The integer ido is the reverse communication flag that specifies a requested
action on return from dnaupd. The character*1 parameter bmat specifies if
this is a standard bmat = ’I’ or a generalized bmat = ’G’ problem. The
integer n specifies the dimension of the problem. The character*2 parame-
ter which may take the same possible values listed for subroutine dnaupd in
Table 3.4.

There are three shift-invert modes for complex problems. These modes
are specified by setting the parameter entry iparam(7) = mode where mode =
1,2, or 3.

In the following list, the specification of OP and B are given for the various
modes. Also, the iparam(7) and bmat settings are listed along with the name
of the sample driver for the given mode. Sample drivers for the following modes
may be found in the EXAMPLES/COMPLEX subdirectory.

1. Regular mode (iparam(7) = 1, bmat = ’I’). Use driver zndrvl.

(a) Solve Ax = xA in regular mode.

(b) 0P=A and B=1.
2. Shift-invert mode (iparam(7) = 3, bmat = ’I’). Use driver zndrv2.

(a) Solve Ax = xA in shift-invert mode.

(b) 0P= (A —-cl)~tand B=1.
3. Regular inverse mode (iparam(7) = 2, bmat = ’G’). Use driver zndrv3.

(a) Solve Ax = MxA in regular inverse mode.
(b) 0P = M~'A and B = M.

4. Shift-invert mode (iparam(7) = 3, bmat = ’G’). Use driver zndrv4.

(a) Solve Ax = MxA in shift-invert mode.
(b) 0P = (A — ocM)™'M and B = M.

3.10. POST-PROCESSING FOR EIGENVECTORS USING ZNEUPD 40

c
c h=—mmmmm [/
c | No fatal errors occurred. |
c | Post-Process using CNEUPD. |
c | |
c | Computed eigenvalues may be extracted. [
c | |
c | Eigenvectors may also be computed now if |
c | desired. (indicated by rvec = .true.) |
c h=—mmmmm [/
c
rvec = .true.
c
call cneupd (rvec, ’A’, select, 4, v, 1dv, sigma,
& workev, bmat, n, which, nev, tol, resid, ncv, v,
& ldv, iparam, ipntr, workd, workl, lworkl, rwork,
& ierr)
c

Figure 3.9: Post-Processing for Eigenvectors Using cneupd.

3.10 Post-Processing for Eigenvectors Using zneupd

On the final return from znaupd (indicated by ido = 99), the error flag info
must be checked. If info = 0, then no fatal errors have occurred and it is
time to post-process using zneupd to get eigenvalues of the original problem
and the corresponding eigenvectors if desired. In the case shown here (shift-
invert and generalized), there are some subtleties to recovering eigenvectors
when M is ill-conditioned. This process is called eigenvector purification. It
prevents eigenvectors from being corrupted with noise due to the presence of
eigenvectors corresponding to nearly infinite eigenvalues. Details are given in
Chapter 4. These operations are completely transparent to the user. The
general calling sequence for dseupd is shown in Figure 3.9.

The input parameters bmat, n, ---, info are precisely the same param-
eters that appear in the calling sequence of znaupd. It is extremely IMPOR-
TANT that none of these parameters are altered between the final return from
znaupd and the subsequent call to zneupd.

There is negligible additional cost to obtain eigenvectors. An orthonormal
(Schur) basis for the invariant subspace corresponding to the converged ap-
proximate eigenvalues is always computed. In the above example, this basis
is overwritten with the eigenvectors in the array v. Both basis sets may be
obtained if desired but there is an additional storage cost of n - nev if both are

CHAPTER 3. GENERAL USE OF ARPACK 41

requested (in this case a separate n by nev array z must be supplied). In some
cases it may be desirable to have both basis sets.

In the non-Hermitian case, the eigenvector basis is potentially ill-conditioned
and may not even exist. While, eigenvectors may have physical meaning, they
are generally not the best basis to use. If a basis for a selected invariant sub-
space is required, then it is generally better to compute a Schur basis. This
will provide an orthogonal, hence well conditioned, basis for the subspace.
The sensitivity of a given subspace to perturbations (such as roundoff error)
is another question. See § 4.6 for a brief discussion.

If it is desirable to retain the Schur basis in v and storage is an issue, the
user may elect to call this routine once for each desired eigenvector and store
it peripherally. There is also the option of computing a selected set of these
vectors with a single call.

The input parameters that must be specified are

e The logical variable rvec = .true. if eigenvectors are requested .false.
if only eigenvalues are desired.

e The Character*1 parameter howmny specifies how many eigenvectors are

desired.
— howmny = ’A’: compute nev eigenvectors;
— howmny = ’P’: Compute nev Schur vectors;
— howmny = ’S’: compute some of the eigenvectors, specified by the

logical array select.

e sigma should contain the value of the (complex) shift that was used if
iparam(7) = 3 . It is referenced if iparam(7) = 1 or 2.

When requested, the eigenvectors returned by zneupd are normalized to
have unit length with respect to the B semi-inner product that was used.
Thus, if B = I they will have unit length in the standard 2-norm. In general,
a computed eigenvector x will satisfy 1 = x7Bx.

Chapter 4

The Implicitly Restarted
Arnoldi Method

This chapter presents an overview of the theory of Krylov subspace projection
and the underlying algorithms implemented in ARPACK. The basic Implicitly
Restarted Arnoldi Method (IRAM) is quite simple in structure and is very
closely related to the Implicitly Shifted QR-Algorithm for dense problems. This
discussion is intended to give a broad overview of the theory and to develop
a high level description of the algorithms. Specific implementation details
concerned with efficiency and numerical stability are treated in Chapter 5.

The remainder of this chapter will develop enough background to under-
stand the origins, motivation, and expected behavior of this algorithm. The
discussion begins with a very brief review of the structure of the algebraic
eigenvalue problem and some basic numerical methods that either influence or
play a direct role in the IRAM. Overcoming the basic disadvantages of the sim-
ple power method motivates the introduction of Krylov subspaces along with
the important projection idea and the related approximation properties. The
Lanczos/Arnoldi factorization is introduced as a concrete way to construct an
orthogonal basis for a Krylov subspace and provides a means to implement the
projection numerically. Implicit restarting is introduced as an efficient way to
overcome the often intractable storage and computational requirements in the
original Lanczos/Arnoldi method. This new technique turns out to be a trun-
cated form of the implicitly shifted QR algorithm and hence implementation
issues and ultimate behavior are closely tied to that well understood method.
Because of its reduced storage and computational requirements, the technique
is suitable for large scale eigenvalue problems. Implicit restarting provides a
means to approximate a few eigenvalues with user specified properties in space
proportional to n - k where k is the number of eigenvalues sought.

Generalized eigenvalue problems are discussed in some detail. They arise
naturally in PDE applications and they have a number of subtleties with re-
spect to numerically stable implementation of spectral transformations. Spec-
tral transformations are presented within the context of the generalized prob-

43

4.1. STRUCTURE OF THE EIGENVALUE PROBLEM 44

Figure 4.1: The Implicitly Restarted Arnoldi Method in ARPACK.

e Start: Build a length m Arnoldi factorization AV,, = V,,H,, + fmeg1
with the starting vector v;.

e [teration: Until convergence

1. Compute the eigenvalues {A; : j = 1,2,---,m} of H,,. Sort these
eigenvalues according to the user selection criterion into a wanted
set {\; :7=1,2,---,k} and an unwanted set {\; : j=k+ 1,k +
2,++-,m}.

2. Perform m — k = p steps of the QR iteration with the unwanted
eigenvalues {\; : j = k+1, k+2, - -+, m} as shifts to obtain H,,Q,,, =
Q. HJ.

3. Restart: Postmultiply the length m Arnoldi factorization with the
matrix Qp consisting of the leading & columns of Q,, to obtain
the length £ Arnoldi factorization AV,, Qi = VkaHlj + fgeg,
where H; is the leading principal submatrix of order & for H . Set

4. Extend the length & Arnoldi factorization to a length m factoriza-
tion.

lem as a means to improve the performance of Krylov methods.

The basic iteration of the IRAM is outlined in Figure 4.1 for those familiar
with Krylov subspace methods and basic dense eigenvalue methods. In the
iteration shown, H,, is an m x m upper Hessenberg matrix, VAV, =1, and
the residual vector f,, is orthogonal to the columns of V,,.

4.1 Structure of the Eigenvalue Problem

A brief discussion of the mathematical structure of the eigenvalue problem is
necessary to fix notation and introduce ideas that lead to an understanding of
the behavior, strengths and limitations of the algorithm. In this discussion,
the real and complex number fields are denoted by R and C respectively. The
standard n-dimensional real and complex vectors are denoted by R™ and C”
and the symbols R™*™ and C™*" will denote the real and complex matrices
with m rows and n columns. Scalars are denoted by lower case Greek letters,
vectors are denoted by lower case Latin letters and matrices by capital Latin
letters. The transpose of a matrix A is denoted by AT and the conjugate-
transpose by AH. The symbol, || - || will denote the Euclidean or 2-norm of a
vector. The standard basis for C™ is denoted by the set {e;}7_,;.

The set of numbers o(A) = {A € C : rank(A — M) < n)} is called the
spectrum of A. The elements of this discrete set are the eigenvalues of A

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 45

and they may be characterized as the n roots of the characteristic polynomial
pa(A) = det(AM — A). Corresponding to each distinct eigenvalue A € o(A)
is at least one nonzero vector x such that Ax = xA. This vector is called a
right eigenvector of A corresponding to the eigenvalue A. The pair (x, A) is
called an eigenpair. A nonzero vector y such that y7A = Ay" is called a
left eigenvector. The multiplicity n,(A) of A as a root of the characteristic
polynomial is the algebraic multiplicity and the dimension ng4 () of Null(A] —
A) is the geometric multiplicity of A. The matrix A is defectiveif ngy(A) < ng(A)
for some eigenvalue and otherwise it is non-defective. The eigenvalue A is simple
if ng(A) =1.

A subspace § of C™*" is called an invariant subspace of A if AS C S. It
is straightforward to show if A € C***, X € C"** and G € CF** satisfy

(4.1.1) AX = XG,

then § = Range(X) is an invariant subspace of A. Moreover, if X has full
column rank %k then the columns of X form a basis for this subspace and
o(G) C o(A). If, in addition, k¥ = n then ¢(G) = 6(A) and A is said to be
stmilar to G under the similarity transformation with X. A is diagonalizable
if it is similar to a diagonal matrix and this property is equivalent to A being
non-defective.

Invariant subspaces are central to the methods developed here. Invariant
subspaces generalize the notion of eigenvectors. If Ax = xA, then X = (x),
G = (A) and § = Range(X) = Span(x) is a one dimensional invariant sub-
space of A. More generally, if Ax; = x;\; for 7 = 1,2,---,k and we put
X = (x1,X2, -, Xx), then § = Range(X) is an invariant subspace of A and
indeed AX = XA where A = diag(A1, Ay, -+, A). If X = QR where Q
is unitary and R is upper trlangulal (the standard QR-factorization), then
AQ = QR where R = RAR! is an upper triangular matrix with the eigen-
values A; on its diagonal. The columns of Q provide an orthonormal basis for
the invariant subspace S.

A large condition number ||R|| - ||[R™!|| of R and hence of X will indicate
these eigenvalues and this invariant subspace are sensitive to perturbations in
A (such as those introduced by roundoff error in a finite precision computa-
tion). But this is not the entire story. Separation of eigenvalues and angles
between invariant subspaces also come into play. In the symmetric (Hermitian)
case, invariant subspaces corresponding to distinct eigenvalues are orthogonal
to each other and completely decouple the action of the matrix (as an operator
on C”. In the non-symmetric case, such a decoupling is generally not possible.
The nature of the coupling is completely described by the Jordan canonical
form but this form is usually extremely sensitive to perturbations and hence
unsuitable as the basis for a computational algorithm.

The Schur decomposition [?] does provide a means to express this coupling
and provides a foundation for the development of stable numerical algorithms.

4.1. STRUCTURE OF THE EIGENVALUE PROBLEM 46

In particular, the implicitly shifted QR algorithm computes a Schur decom-
position. Schur’s result states that every square matrix is unitarily similar to
an upper triangular matrix. In other words, for any linear operator on C”,
there is a unitary basis in which the operator has an upper triangular matrix
representation. The following result may be found in [?].

Theorem 4.1.1 (Schur Decomposition). Let A € C"*". Then there is a
unitary matriz Q and an upper triangular matriz R such that

(4.1.2) AQ = QR.

The diagonal elements of R are the eigenvalues of A.

A Schur decomposition is not unique. The eigenvalues of A may appear on
the diagonal of R in any specified order. Thus, for any specified set of k
eigenvalues of A, there is a Schur decompostion such that these k eigenvalues
appear as diagonal elements of the leading principal submatrix Ry of the upper
triangular matrix R. If Qj denotes the leading k& columns of the corresponding
unitary matrix Q, then

(4.1.3) AQr = QrRy

is obtained by equating the leading k columns on both sides of (4.1.2). We
shall call this a partial Shur decomposition. Note that S = Range(Qy) is an
invariant subspace of A corresponding to the k specified eigenvalues and that
the columns of Q form an orthonormal basis for this space. This is called
a Schur basis for the invariant subspace. The Implicitly Restarted Arnoldi
Method is designed to compute a partial Schur form corresponding to selected
eigenvalues of A.

The fundamental structure of Hermitian and normal matrices is easily de-
rived from the Schur decomposition.

Lemma 4.1.2 A matriz A € C™" is normal (AA" = A" A) if and only if
A = QAQY with Q € C™*" unitary and A € C™*" diagonal. Morevover, A
is Hermitian (A = AH) if and only if A is diagonal with real entries. In either
case, the diagonal entries of A are the eigenvalues of A and the columns of Q
are the corresponding eigenvectors.

For purposes of algorithmic development this structure is fundamental. In
fact, the well known Implicitly Shifted QR-Algorithm [?, ?] is designed to pro-
duce a sequence of unitary similarity transformations with Q; that iteratively
reduce A to upper triangular form. This algorithm begins with an initial uni-
tary similarity transformation of A with V to the condensed form AV = VH
where H is upper Hessenberg matrix. An upper Hessenberg matrix has zero
elements below its main subdiagonal so it is almost upper triangular. When
A is Hermitian, H is a real symmetric tridiagonal matrix in which case all the
elements are zero except for those on the main, sub and super diagonals.

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 47

Figure 4.2: Algorithm 1: Shifted QR-iteration.

Input: (A, V,H) with AV = VH, VFV =1, H upper Hessenberg;
For 5 =1,2,3, ... until convergence,

(al.1) Select a shift pu p;

(al.2) Factor [Q,R] = qr(H — pI) ;

(al.3) H+— Q"HQ ; V « VQ;
End_For

The QR-iteration is shown in Figure 4.2. The QR factorization of H— pul is
given by the unitary matrix Q and upper triangular R. It is easy to see that H
is unitarily similar to A throughout the course of this iteration. The iteration
is continued until the subdiagonal elements of H converge to zero, i.e. until
a Schur decomposition has been (approximately) obtained. In the standard
implicitly shifted QR-iteration, the unitary matrix Q is never actually formed.
It is computed indirectly as a product of 2 x 2 Givens or 3 X 3 Householder
transformations through a “bulge chase” process. The elegant details of an
efficient and stable implementation would be too much of a digression here.
They may be found in [?, ?, ?]. The convergence behavior of this iteration
is fascinating. The columns of V converge to Schur vectors at various rates.
These rates are fundamentally linked to the simple power method and its
rapidly convergent variant, inverse iteration. See [?] for further information
and references.

Despite the extremely fast rate of convergence and the efficient use of stor-
age, the implicitly shifted QR method is not suitable for large scale problems
and it has proven to be extremely difficult to parallelize. Large scale problems
are typically sparse or structured so that a matrix-vector product w < Av
may be computed with time and storage proportional to n rather than n%. A
method based upon full similarity transformations quickly destroys this struc-
ture. Storage and operation counts per iteration become order n?. Hence,
there is considerable motivation for methods that only require matrix-vector
products with the original A.

The power method provides a simple means to find the dominant eigenvalue
(of largest magnitude) of a matrix without performing matrix factorizations
and dense similarity transformations. It has the drawback that only one eigen-
pair may be found and that convergence may be slow or non-existent. Deflation
schemes and/or block variants may be employed to overcome the first problem
and spectral transformations may be used to accelerate convergence and focus
on selected eigenvalues. However, there is another very elegant way to extract
additional eigenvalue information from the power method sequence.

4.2. KRYLOV SUBSPACES AND PROJECTION METHODS 48

4.2 Krylov Subspaces and Projection Methods

The methods that underly the ARPACK software are derived from a class of
algorithms called Krylov subspace projection methods. These methods take
full advantage of the intricate structure of the sequence of vectors naturally
produced by the power method.

An examination of the behavior of the sequence of vectors produced by the
power method suggests that the successive vectors may contain considerable
information along eigenvector directions corresponding to eigenvalues other
than the one with largest magnitude. The expansion coefficients of the vectors
in the sequence evolve in a very structured way. Therefore, linear combinations
of the these vectors can be constructed to enhance convergence to additional
eigenvectors. A single vector power iteration simply ignores this additional
information, but more sophisticated techniques may be employed to extract it.

If one hopes to obtain additional information through various linear com-
binations of the power sequence, it is natural to formally consider the Krylov

subspace
Ki(A,v1) = Span {vi, Avy, A%vy, ..., AP v}

and to attempt to formulate the best possible approximations to eigenvectors
from this subspace.

It is reasonable to construct approximate eigenpairs from this subspace by
imposing a Galerkin condition: A vector x € K;(A,vy) is called a Ritz vector
with corresponding Ritz value 8 if the Galerkin condition

<w,Ax—x0>=0, forall weK;(A,v1)

is satisfied. There are some immediate consequences of this definition: Let W
be a matrix whose columns form an orthonormal basis for K = Ki(A,vy).
Let P = WW? denote the related orthogonal projector onto K, and define
A =PAP = WGWH where G = WHAW. [t can be shown that

Lemma 4.2.1 For the quantities defined above:
1. (x,0) is a Ritz-pair if and only if x = Ws with Gs = s .

2. [|T-P)AW| = [|(A - A)W| < [[((A - M)W||
for all M € C™*"™ such that MKy C Ky.

3. The Ritz-pairs (x,0) and the minimum value ||(I—P)AW|| are indepen-
dent of the choice of orthonormal basis W.

These facts are actually valid for any k£ dimensional subspace § in place of
K. Additional useful properties may be derived as consequences of the fact
that every w € Ky, is of the form w = ¢(A)v; for some polynomial ¢ of degree
less than k. A thorough discussion is given by Saad in [12] and in his earlier
papers. These facts have important algorithmic consequences. In particular, it
may be shown that Ky is an invariant subspace for A if and only if the starting

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 49

vector v is a linear combination of vectors spanning an invariant subspace of
A. An important example of this is to put vi = Qs where AQ; = QR is
a partial Schur decomposition of A.

There is some algorithmic motivation to seek a convenient orthonormal
basis V = WQ that will provide a means to successively construct these
basis vectors. It is possible to construct a & X k unitary Q using standard
Householder transformations such that vi = Ve; and H = Q¥ GQ is upper
Hessenberg with non-negative subdiagonal elements. It is also possible to show
that in this basis,

AV = VH + fel| where f=yp(A)vy,

with VHf = 0 implied by the projection property and p(A) = det(AI — H).

If it is possible to obtain a v; as a linear combination of k& eigenvectors
of A, the first observation implies that f = 0 and V is an orthonormal basis
for an invariant subspace of A. Hence, the Ritz values o(H) are eigenvalues
and corresponding Ritz vectors are eigenvectors for A. The second observation
leads to the Lanczos/Arnoldi process [?, ?].

4.3 The Arnoldi Factorization

Definition : If A € C™*™ then a relation of the form
AV, =V.H; + fkeg

where V;, € C"** has orthonormal columns, Vkak =0 and H; € CF*F i
upper Hessenberg with non-negative subdiagonal elements is called a k-step
Arnoldi Factorization of A. If A is Hermitian then Hj is real, symmetric
and tridiagonal and the relation is called a k-step Lanczos Factorization of A.
The columns of Vi, are referred to as the Arnoldi vectors or Lanczos vectors ,
respectively.

The preceding development of this factorization has been purely through
the consequences of the orthogonal projection imposed by the Galerkin condi-
tions. (A more straightforward but less illuminating derivation is to equate the
first k£ columns of the Hessenberg decomposition AV = VH.) An alternative
way to write this factorization is

1
Br

This factorization may be used to obtain approximate solutions to a linear
system Ax = b if b = vy and this underlies the GMRES method [?]. How-
ever, the purpose here is to investigate the use of this factorization to obtain
approximate eigenvalues and eigenvectors. The discussion of the previous sec-
tion implies that Ritz pairs satisfying the Galerkin condition are immediately
available from the eigenpairs of the small projected matrix Hy.

H
AV = (Vi, Viy) (ﬁk:T) where 8 = ||fy|| and vy = ——1f; .
k

4.3. THE ARNOLDI FACTORIZATION 50

If His = sf then the vector x = Vs satisfies
| Ax — x6|| = [[(AV), — Vi Hy)s|| = |Brels|.

The number |3rel's| is called the Ritz estimate for the the Ritz pair (x,6) as
an approximate eigenpair for A. Observe that if (x, 6) is a Ritz pair then

0=s"THs = (Vis)TA(Vys) = xTAx

is a Rayleigh quotient (assuming ||s|| = 1) and the associated Rayleigh quotient
residual r(x) = Ax — x# satisfies

e ()| = | Breis]-

When A is Hermitian, this relation may be used to provide computable rig-
orous bounds on the accuracy of the eigenvalues of Hy as approximations to
eigenvalues [?] of A. When A is non-Hermitian the possibility of non-normality
precludes such bounds and one can only say that the Rayleigh Quotient resid-
ual is small if |Brel’s| is small without further information. However, in either
case, if f = 0 these Ritz pairs become exact eigenpairs of A.

The k-step factorization may be advanced one step at the cost of a (sparse)
matrix-vector product involving A and two dense matrix vector products in-
volving V]];I and V. The explicit steps needed to form a k-Step Arnoldi fac-
torization are listed in Algorithm 2 shown in Figure 4.3. In exact arithmetic,
the columns of V; form an orthonormal basis for the Krylov subspace and H;
is the orthogonal projection of A onto this space. In finite precision arith-
metic, care must be taken to assure that the computed vectors are orthogonal
to working precision. The method proposed by Daniel, Gragg, Kaufman and
Stewart (DGKS) in [?] provides an excellent way to construct a vector f;4q
that is numerically orthogonal to V4. It amounts to computing a correction

c = Vj+1f]'+1, f]'+1 — f]'+1 — ‘[]‘_|_1(!7 h« h+ C;

just after Step (a2.4) if necessary. A simple test is used to avoid this DGKS
correction if it is not needed.

The dense matrix-vector products at Step (a2.4) and also the correction
may be accomplished using Level 2 BLAS. This is important for performance
on vector, and parallel-vector supercomputers. The Level 2 BLAS operation
_GEMYV is easily parallelized and vectorized and has a much better ratio of
floating point computation to data movement [3, ?] than the Level 1 BLAS
operations.

The information obtained through this process is completely determined
by the choice of the starting vector. Eigen-information of interest may not
appear until k gets very large. In this case it becomes intractable to maintain
numerical orthogonality of the basis vectors V. Moreover, extensive storage
will be required and repeatedly finding the eigensystem of Hj will become
prohibitive at a cost of O(k?) flops.

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 51

Figure 4.3: Algorithm 2: The k-Step Arnoldi Factorization

Input: (A, vy)
Put vi = v/|[vil]l; w=Avy; a; = vilw;
Put fi « w —viay ; Vi « (v1); Hy « (0‘1)
For 7 =1,2,3,..k-1,

(2.1) B = I8 Vi1 £/

H,
(a2.2) V41« (Vj,vig); Hy R
ﬁ]ej

(a2.4) h « V]_HW fir1 < w—V,h;
(a2.5
End_For

)
)
(a2.3) w « AV]+1,
)
) H

41 (Hj, h);

Failure to maintain orthogonality leads to several numerical difficulties. In
a certain sense, the computation (or approximation) of the projection indi-
cated at Step (a2.4) in a way that overcomes these difficulties has been the
main source of research activity for the Lanczos method. Paige [?] showed
that the loss of orthogonality occurs precisely when an eigenvalue of H; is
close to an eigenvalue of A. In fact, the Lanczos vectors lose orthogonality in
the direction of the associated approximate eigenvector. Moreover, failure to
maintain orthogonality results in spurious copies of the approximate eigenvalue
produced by the Lanczos method. Implementations based on selective and par-
tial orthogonalization [4, 7, ?] monitor the loss of orthogonality and perform
additional orthogonalization steps only when necessary. The approaches given
in [?, ?, ?] use only the three term recurrence with no additional orthogonaliza-
tion steps. These strategies determine whether multiple eigenvalues produced
by the Lanczos method are spurious or correspond to true multiple eigenvalue
of A. However, these approaches do not generate eigenvectors directly. Addi-
tional computation is required if eigenvectors are needed and this amounts to
re-generating the basis vectors with the Lanczos process.

A related numerical difficulty associated with failure to maintain orthogo-
nality stems from the fact that ||f;|| = 0 if and only if the columns of V}, span
an invariant subspace of A. When V. “nearly” spans such a subspace, ||fy||
should be small. Typically, in this situation, a loss of significant digits will
take place at Step (a2.4) through numerical cancellation unless special care is
taken (i.e. use of the DGKS correction).

Understanding this difficulty and overcoming it is essential for the IRA
iteration which is designed to drive ||fx|| to 0. It is desirable for ||f;|| to become
small because this indicates that the eigenvalues of Hjy are the eigenvalues
of a slightly perturbed matrix that is near to A. This is easily seen from a

4.4. RESTARTING THE ARNOLDI METHOD 52

re-arrangement of the Arnoldi relation:
(A - fvi)V, = V,H,

where v, = Vyiei. Hence, Range(Vy) is an invariant subspace for the per-
turbed matrix A + E with ||E|| = ||fev}|| = ||fx||- Thus, the eigenvalues of Hy,
will be accurate approximations to the eigenvalues of A if the approximated
eigenvalues are insensitive to perturbations (i.e. well conditioned). However,
this “convergence” may well lead to loss of numerical orthogonality in the up-
dated basis V41 unless care is taken to avoid this. Moreover, if subsequent
Arnoldi vectors are not forced to be orthogonal to the converged ones, then
components along these converged directions re-enter the basis via round-off
effects and quickly cause a spurious copy of the previously computed eigen-
value to appear in the spectrum of the projected matrix Hy. Repetition of this
phenomenon can cause several spurious approximations to the same eigenvalue
to occur.

4.4 Restarting the Arnoldi Method

An unfortunate aspect of the Lanczos/Arnoldi process is that one cannot know
in advance how many steps will be required before eigenvalues of interest are
well approximated by the Ritz values. This is particularly true when the prob-
lem has a wide range of eigenvalues but the eigenvalues of interest are clustered.
Without a spectral transformation, many Lanczos steps are required to obtain
the selected eigenvalues. In order to recover eigenvectors, one is obliged either
to store all of the Lanczos basis vectors (usually on a peripheral device) or to
re-compute them. Also, very large tridiagonal eigenvalue problems will have
to be solved at each step. In the Arnoldi process that is used in the non-
Hermitian case, not only do the basis vectors have to be stored, but the cost of
the Hessenberg eigenvalue subproblem is O(k?) at the k-th step. The obvious
need to control this cost has motivated the development of restarting schemes.

4.4.1 Implicit Restarting

A restarting alternative has been proposed by Saad based upon the polynomial
acceleration scheme developed by Manteuffel [?] for the iterative solution of lin-
ear systems. Saad [11] proposed to restart the factorization with a vector that
has been preconditioned so that it is more nearly in a k-dimensional invariant
subspace of interest. This preconditioning takes the form of a polynomial in A
applied to the starting vector that is constructed to damp unwanted compo-
nents from the eigenvector expansion. An iteration is defined by a repeatedly
restarting until the current Arnoldi factorization contains the desired informa-
tion. Saad’s ideas are closely related to techniques developed for the Lanczos
process by Paige [?], Cullum and Donath [?], and Golub and Underwood [?].
The first example of a restarted Lanczos method that we are aware of was
proposed by Karush [?].

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 53

The ARPACK software is based upon another approach to restarting that
offers a more efficient and numerically stable formulation. This approach
called implicit restarting is a technique for combining the implicitly shifted
QR scheme with a k-step Arnoldi or Lanczos factorization to obtain a trun-
cated form of the implicitly shifted QR-iteration. The numerical difficulties
and storage problems normally associated with Arnoldi and Lanczos processes
are avoided. The algorithm is capable of computing a few (k) eigenvalues with
user specified features such as largest real part or largest magnitude using
2nk + O(k?)storage. No auxiliary storage is required. The computed Schur
basis vectors for the desired k-dimensional eigen-space are numerically orthog-
onal to working precision. The suitability of this method for the development
of mathematical software stems from this concise and automatic treatment of
the primary difficulties with the Arnoldi/Lanczos process.

Implicit restarting provides a means to extract interesting information from
large Krylov subspaces while avoiding the storage and numerical difficulties
associated with the standard approach. It does this by continually compressing
the interesting information into a fixed size k-dimensional subspace. This
is accomplished through the implicitly shifted QR mechanism. An Arnoldi
factorization of length m =k + p
(4.4.1) AV,, =V, H, +f.el,
is compressed to a factorization of length k£ that retains the eigen-information
of interest. This is accomplished using QR steps to apply p shifts implicitly.
The first stage of this shift process results in

(4.4.2) AVE =VIHY 4 1f,elQ,

where VI =V, Q, Hf = Q"H,,Q, and Q = QQ; -- -Q,. Each Q; is the
orthogonal matrix associated with the shift p; used during the shifted QR
algorithm. Because of the Hessenberg structure of the matrices Q;, it turns
out that the first k—1 entries of the vector e, Q are zero (i.e. el Q = (cel, ")
). This implies that the leading k£ columns in equation (4.4.2) remain in an
Arnoldi relation. Equating the first £ columns on both sides of (4.4.2) provides
an updated k—step Arnoldi factorization

(4.4.3) AV = VIH] +ffel,

with an updated residual of the form f]j = V$ek+1ﬁk + f,,0. Using this as a
starting point it is possible to apply p additional steps of the Arnoldi process
to return to the original m-step form.

Each of these shift cycles results in the implicit application of a polynomial
in A of degree p to the starting vector.

p

(4.4.4) vy — P(A)vy with (X)) = H(/\ — ;).

4.4. RESTARTING THE ARNOLDI METHOD 54

The roots of this polynomial are the shifts used in the QR process and these
may be selected to filter unwanted information from the starting vector and
hence from the Arnoldi factorization. Full details may be found in [13].

The choice of shifts and hence construction of the polynomial is motivated
by the fact that if the starting vector vi = Z?Zl x;v; where Ax; = x;A;, then
f. =0, AV, = V.H; and thus V; will provide an orthonormal basis for the
invariant subspace § = Range(Vy). Moreover, the spectrum of Hy, will be the
desired eigenvalues: o(Hy) = {A1, Az, -+, Ak}

Figure 4.4: Algorithm 3: An Implicitly Restarted Arnoldi Method (IRAM).

Input: (A, V,H,f) with AV,, = V,,H,, +f,el,
an m-Step Arnoldi Factorization;
For £ =1,2,3,... until convergence
(a3.2) Compute o(H,,) and select set of p shifts pq, prg, ... 1
based upon o(H,,) or perhaps other information;
(a3.3) g «+ el;
(a3.4) For j =1,2,...,p,
Factor [Q,R] = qr(H,, — u;I);
H, « Q"H,Q; V, « V,Q;
q+q"Q;
End_For
(a3.5) fr Vk-}—lﬁk + £ 08;
(a3.6) Vi~V (1:n,1:k); Hy—H,,(1:k,1:k);
(a3.7) Beginning with the k-step Arnoldi factorization
AV = Vi H; + fref,
apply p additional steps of the Arnoldi process
to obtain a new m-step Arnoldi factorization
AV, =V, H, +f,el .
End_For

The repeated update of the starting vector vy through implicit restarting
is designed to enhance the components of this vector in the directions of the
wanted eigenvectors and damp its components in the unwanted directions. If
vy has an expansion as a linear combination of eigenvectors {x;} of A, the
effect of this polynomial restarting is illustrated as follows:

n n
vi =% = (A= Y% ()
j=1 j=1
If the same polynomial (i.e. the same shifts) were applied each time, then
after ¢ iterations, the j-th original expansion coefficient would be essentially

attenuated by a factor
<'¢(Aj))Z
Y(M)/)

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 55

-~ ktp —> - p— -~ k—><— P —

Figure 4.5: The set of rectangles represents the matrix equation VmHm—l—fmeﬁ
of an Arnoldi factorization. The unshaded region on the right is a zero matrix
of m — 1 columns.

-~ ktp —> -~ k—><— P —

Figure 4.6: After performing m — k implicitly shifted QR steps on H,,, the
middle set of pictures illustrates V,,Q,, Hf +f,.el Q,,. The last p columns of
fmeng are nonzero because of the QR iteration.

- k—> - k—

Figure 4.7: An implicitly restarted length & Arnoldi factorization results after
discarding the last m — k columns.

4.4. RESTARTING THE ARNOLDI METHOD 56

where the eigenvalues have been ordered according decreasing values of [(A;))].
The leading k eigenvalues become dominant in this expansion and the re-
maining eigenvalues become less and less significant as the iteration proceeds.
Adaptive choices of shifts can further enhance the isolation of the wanted com-
ponents in this expansion. Hence, the wanted eigenvalues are approximated
better and better as the iteration proceeds.

The basic iteration is listed in Figure 4.4 as Algorithm 3 and the diagrams
in Figures 4.5—4.7 describe how this iteration proceeds schematically. In Algo-
rithm 3 and in the discussion that follows, the notation M(1 : n, 1 : k) denotes
the leading n X k submatrix of M.

We illustrate a typical polynomial that was constructed during an iteration
on a matrix A that is a small example of a turbine model. The goal was to
compute the five eigenvalues of largest real part of this order 375 matrix. The
surface shown in Figure 4.8 is the log(|1/())]) plotted over a region containing
the spectrum of A. Here, ¥ is the product of all of the filter polynomials
constructed during the course of the iteration. The degree of 9 is around 600
and this would be quite challenging to apply directly. The “4” signs are the
eigenvalues of A in the complex plane and the contours are the level curves
of |1(A)|. The circled plus signs are the converged eigenvalues including two
complex conjugate pairs and on real root of largest real part. Observe how
well the the location of the unwanted portion of the spectrum was determined
and damped during the course of the iteration. The figure illustrates that this
method can isolate desired eigenvalues on the “boundary” of the spectrum
even though they may be quite close to other eigenvalues. However, when the
clustering becomes pronounced, it will be very difficult to achieve this.

Observe that if m = n then f,,, = 0 and this iteration is precisely the same
as the Implicitly Shifted QR iteration. Even for m < n, the first £ columns
of V,, and the Hessenberg submatrix H,,(1 : k,1 : k) are mathematically
equivalent to the matrices that would appear in the full Implicitly Shifted
QR iteration using the same shifts p;. In this sense, the Implicitly Restarted
Arnoldi method may be viewed as a truncation of the Implicitly Shifted QR
iteration. See [?] for details on a connection with subspace iteration and the QR
algorithm. The fundamental difference is that the standard Implicitly Shifted
QR iteration selects shifts to drive subdiagonal elements of H,, to zero from the
bottom up while the shift selection in the Implicitly Restarted Arnoldi method
is made to drive subdiagonal elements of H,, to zero from the top down.

Important implementation details concerning the deflation (setting to zero)
of subdiagonal elements of H,, and the purging of unwanted but converged
Ritz values are beyond the scope of this discussion. However, these details are
extremely important to the success of this iteration in difficult cases. Complete
details of these numerical refinements may be found in [7, 6].

The above iteration can be used to apply any known polynomial restart. If
the roots of the polynomial are not known there is an alternative implementa-
tion that only requires one to compute q; = ¥(H,,)e; where 1 is the desired
degree p polynomial. A sequence of Householder transformations may devel-

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 57

h————mmmm h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
A Picture of Total Filter Polynomial Goes Here /A
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h————mmmm h

Figure 4.8: Total Filter Polynomial From an IRA Iteration.

4.4. RESTARTING THE ARNOLDI METHOD 58

oped to form a unitary matrix Q such that Qe; = q; and H,, « Q7"H,,Q
is upper Hessenberg. The details which follow standard developments for the
Implicitly Shifted QR iteration will be omitted here.

A shift selection strategy that has proved successful in practice and is used
as the default in ARPACK is called the “Exact Shift Strategy”. In this strategy,
one computes o(H,,) and sorts this into two disjoint sets €, and €,. The
k Ritz values in the set €2, are regarded as approximations to the “wanted”
eigenvalues of A , and the p Ritz values in the set €2, are taken as the shifts ;.
An interesting consequence (in exact arithmetic) is that after Step (a3.4) above,
the spectrum of Hy, in Step (a3.6) is o(Hy) = Q,, and the updated starting
vector vy is a particular linear combination of the k Ritz vectors associated
with these Ritz values. In other words, the implicit restarting scheme with
exact shifts provides a specific selection of expansion coefficients «; for a new
starting vector as a linear combination of the current best estimates (the Ritz
vectors) for wanted eigenvectors. This implicit scheme costs p rather than the
k+p matrix-vector products the explicit scheme would require. Thus the exact
shift strategy can be viewed both as a means to damp unwanted components
from the starting vector and also as directly forcing the starting vector to be
a linear combination of wanted eigenvectors. See [?, 13] for information on the
convergence of IRAM and [?, ?] for other possible shift strategies for Hermitian
A. The reader is referred to [?, ?] for studies comparing implicit restarting with
other schemes.

4.4.2 Block Methods

Implicit restarting can also be used in conjunction with a block Arnoldi method.
A block method attempts to use the block Krylov subspace

Ki(A,U;) =Span {U;, AU, AUy, ..., A* UL},

where U; has b columns, to approximate eigenvalues and eigenvectors. A block
Arnoldi reduction uses a subspace drawn from a sequence of subspace iterates.
The details associated with implicitly restarting a block Arnoldi reduction are
laid out in [?, ?].

Block methods are used for two major reasons. The first one is to aid in
reliably determining multiple and/or clustered eigenvalues. Although [7] indi-
cates that an unblocked Arnoldi method coupled with an appropriate deflation
strategy may be used to compute multiple and/or clustered eigenvalues, a rel-
atively small convergence tolerance is required to reliably compute clustered
eigenvalues. Many problems do not require this much accuracy, and such a
criterion can result in unnecessary computation. The second reason for us-
ing a block formulation is related to computational efficiency. Often, when
a matrix-vector product with A is very costly, it is possible to compute the
action of A on several vectors at once with roughly the same cost as comput-
ing a single matrix-vector product. This can happen, for example, when the
matrix is so large that it must be retrieved from disk each time a matrix-vector

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 59

product is performed. In this situation, a block method may have considerable
advantages.

The performance tradeoffs of block methods and potential improvements
to deflation techniques are under investigation.

4.5 The Generalized Eigenvalue Problem

A typical source of large scale eigenproblems is through a discrete form of a
continuous problem. The resulting finite dimensional problems become large
due to accuracy requirements and spatial dimensionality. Typically this takes
the form

Ax = Mx),

where A is a finite dimensional approximation to the continuous operator
obtained either through finite difference approximations on a spatial grid or
through restriction of the continuous operator to a finite dimensional subspace.
In the latter “finite element” case, the entries of M are inner products of the
respective basis functions for the finite dimensional space and these basis func-
tions are usually chosen so that few entries in a typical row of A or M are
nonzero. In structures problems A is called the “stiffness” matrix and M is
called the “mass” matrix. In chemistry and physics M is often referred to as
the “overlap” matrix. A nice feature of finite element approach to discretiza-
tion is that boundary conditions are naturally incorporated into the discrete
problem. Moreover, in the self-adjoint case, the Rayleigh principle is preserved
from the continuous to the discrete problem. In particular, since Ritz values
are Rayleigh quotients, this assures the smallest Ritz value is greater than or
equal to the smallest eigenvalue of the original problem.

Basis functions that provide sparsity are usually not orthogonal in the nat-
ural inner product and hence, M is usually not diagonal. Thus it is typical for
large scale eigenproblems to arise as generalized rather than standard prob-
lems with M symmetric and positive semi-definite. The matrix A is generally
symmetric when the underlying continuous operator is self-adjoint and non-
symmetric otherwise. There are a number of ways to convert the generalized
problem to standard form. There is always motivation to preserve symmetry
when it is present.

The simplest direct conversion to a standard problem is through factoriza-
tion of M. If M is positive definite then factor M = LL? and the eigenvalues
of A =L "AL™" are the cigenvalues of (A, M) and the eigenvectors are ob-
tained by solving L¥x = % where % is an eigenvector of A. This standard
transformation is fine if one wants the eigenvalues of largest magnitude and
it preserves symmetry if A is symmetric. However, when M is ill-conditioned
this can be a dangerous transformation leading to numerical difficulties. Since
a matrix factorization will have to be done anyway, one may as well formulate
a spectral transformation.

4.5. THE GENERALIZED EIGENVALUE PROBLEM 60

4.5.1 Structure of the Spectral Transformation

The use of spectral transformations is closely related to the inverse power and
inverse iteration techniques. They are typically designed to enhance conver-
gence to eigenvalues near a selected point o in the complex plane. For example,
if one were interested in computing the smallest eigenvalues of a symmetric
positive definite matrix then ¢ = 0 would be a reasonable choice.

A convenient way to provide such a spectral transformation is to note that

Ax =Mx) < (A-oM)x=Mx(X - o)

Thus
1

A—o’

A moments reflection will reveal the advantage of such a spectral trans-

(A — oM)™'Mx = xv, where v =

formation. Eigenvalues A that are near o will be transformed to eigenvalues
v = ﬁ that are at the extremes and typically well separated from the rest of
the transformed spectrum. The corresponding eigenvectors remain unchanged.
Perhaps more important is the fact that eigenvalues far from the shift o are
mapped into a tight cluster in the interior of the transformed spectrum. We
illustrate this by showing the transformed spectrum of the matrix A from Fig-
ure 4.8 with a shift ¢ = .2 (here M = I). Again, we show the total filter
polynomial that was constructed during an IRA iteration on the transformed
matrix (A — oI)~!. Here we compute the six eigenvalues v of largest magni-
tude. These will transform back to eigenvalues of A nearest to o through the
formula A = 0 4+ 1/v. The surface shown in Figure 4.9 is again log(|»(A)|) but
plotted over a region containing the spectrum of (A — oI)~!. Here, 1 is the
product of all of the filter polynomials constructed during the course of the
iteration. Since the extrem eigenvalues are well separated the iteration con-
verges much faster and degree of ¥ is only 45 in this case. Here, the “+” signs
are the eigenvalues of (A — o)~! in the complex plane and the contours are
the level curves of |1/()A)|. The circled plus signs are the converged eigenvalues.
The figure illustrates how much easier it is to isolate desired eigenvalues after
a spectral transformation.

If A is symmetric then one can maintain symmetry in the Arnoldi/Lanczos
process by taking the inner product to be

(x,y) = x"My.

It is easy to verify that the operator (A —oM) ™M is symmetric with respect
to this inner product if A is symmetric. In the Arnoldi/Lanczos process the
matrix-vector product w + Av is replaced by w + (A — cM)"'!Mv and
the step h < V£ is replaced by h «+ VH(Mf). If A is symmetric then the
matrix H is symmetric and tridiagonal. Moreover, this process is well defined
even when M is singular and this can have important consequences even if A
is non-symmetric. We shall refer to this process as the M-Arnoldi process.

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 61

h————mmmm h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
A Picture of Total Filter Polynomial Goes Here /A
h h
A Shift Invert A
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h————mmmm h

Figure 4.9: Total Filter Polynomial with Spectral Transformation

4.5. THE GENERALIZED EIGENVALUE PROBLEM 62

If M is singular then the operator S = (A —oM)~'M has a non-trivial null
space and the bilinear function (x,y) = x”My is a semi-inner product and
lIx||ar = V/(x, %) is a semi-norm. Since A — oM is assumed to be nonsingular,
N = Null(S) = Null(M). Vectors in N are generalized eigenvectors corre-
sponding to infinite eigenvalues. Typically, one is only interested in the finite
eigenvalues of (A, M) and these will correspond to the non-zero eigenvalues
of S. The invariant subspace corresponding to these non-zero eigenvalues is
easily corrupted by components of vectors from A during the Arnoldi process.
However, using the M-Arnoldi process with some refinements can provide a
solution.

In order to better understand the situation, it is convenient to note that
since M is positive semi-definite, there is an orthogonal matrix Q such that

7 D o
Q"MQ = l 0 0o]

where D is a positive definite diagonal matrix of order n, say. Thus
- S; 0
= H — 1
$=Q SQ—lSQ 0],

where Sy is a square matrix of order n and S, is an m X n matrix with the
original A, M being of order m 4+ n. Observe now that a non-zero eigenvalue
v of S satisfies Sx = xv , i.e.

81X1 o Xlg

SQXl o X20
so that xo = #71S,x; must hold. Note also that for any eigenvector xH =
(xH xIT), the leading vector x; must be an eigenvector of S;. Since S is block
triangular, ¢(S) = 0(S;) U ¢(0,,). Assuming S, has full rank, it follows that
if S has a zero eigenvalue then there is no corresponding eigenvector (since
S2x1 = 0 would be implied). Thus, if zero is an eigenvalue of S; with algebraic
multiplicity m,, then zero is an eigenvalue of S of algebraic multiplicity m+m,
and with geometric multiplicity m. Of course, since S is similar to S all of these

statements hold for S as well.

4.5.2 Eigenvector/Null-Space Purification

With these observations in hand, it is possible to see the virtue of using M-
Arnoldi on S. After k-steps of M-Arnoldi,

SV = VH + fe! with VIMV =1, VEMf = 0.
Introducing the similarity transformation Q gives

SV =VH+fe!l with (QV)"MQV =TI, (QV)"MQf = o,

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 63

where V.= Q7V and f = Qf. Partitioning VH = [VI VI]and f7 =
[] £] consistent with the blocking of S gives

S,V, =V H+fiel with VEDV, =1,, VFDf, = 0.

Moreover, the side condition S;V; = VoH + fgez holds, so that in exact
arithmetic a zero eigenvalue should not appear as a converged Ritz value of
H. This argument shows that M-Arnoldi on S is at the same time doing
D-Arnoldi on S; while avoiding convergence to zero eigenvalues.

Round-off error due to finite precision arithmetic will cloud the situation, as
usual. It is clear that the goal is to prevent components in A/ from corrupting
the vectors V. Thus to begin, the starting vector vy should be of the form
vi = Sv. If a final approximate eigenvector x has components in N they may
be purged by replacing x + Sx and then normalizing. To see the effect of this,
note that

81X1
SQXl

x:Q[il] implies Sx:Q[

and all components in A/ which are of the form Q g will have been purged.

This final application of S may be done implicitly in two ways. One is to note
that if x = Vs with Hs = sf then Sx = VHs + fe%s = x0 + fe%s and
the approximate eigenvector x is replaced with the improved approximation
x + (x0+fel's)/r where 7 = ||x6+fel's||m = /62 + (Bre] s)2. This correction
was originally suggested by Ericsson and Ruhe [?] as a mean of performing a
formal step of the power method with S. The residual error of the computed
Ritz vector with respect to the original problem is

leis|
16]?

(4.5.1) |Ax — MxA|| = ||Mf]

where A = 0 + 1/6. Keeping in mind that under the spectral transformation
|6| is usually quite large, this estimate indicates even greater accuracy than
expected from the usual estimate. This is the purification used in ARPACK.

Another recent suggestion due to Meerbergen and Spence is to use implicit
restarting with a zero shift [?]. Recall that implicit restarting with ¢ zero
shifts is equivalent to starting the M-Arnoldi process with a starting vector
of S%v; and all the resulting Ritz vectors will be multiplied by S* as well.
After applying the implicit shifts to H, the leading submatrix of order k£ — ¢
will provide the updated Ritz values. No additional explicit matrix-vector
products with S are required.

The ability to apply ¢ zero shifts (i.e. to multiply by St implicitly) is very
important when Sy has zero eigenvalues. If S;x; = 0 then

BRI P

4.6. STOPPING CRITERION 64

Thus, in order to completely eradicate components from A one must multiply
by 8¢ where £ is equal to the dimension of the largest Jordan block correspond-
ing to a zero eigenvalue of S;. Eigenvector purification by implicit restarting
may be incorporated into ARPACK at a future date.

Spectral transformations were studied extensively by Ericsson and Ruhe [?]
and the first eigenvector purification strategy was developed in [?]. Shift and
invert techniques play an essential role in the block Lanczos code developed by
Grimes, Lewis, and Simon and the many nuances of this technique in practical
applications are discussed thoroughly in [4]. The development presented here
and the eigenvector purification through implicit restarting is due to Meerber-
gen and Spence [?].

4.6 Stopping Criterion

This section considers the important question of determining when a length
m Arnoldi factorization has computed approximate eigenvalues of acceptable

accuracy.
Let H,,;s = s where ||s|| =1 and x = V,;;s. Then

(4.6.1) |A%x — %6|| = ||AV s — V. H,s|| = ||| |eLs],

suggests that the Ritz pair (x,6) is a good approximation to an eigenpair
of A if the last component of an eigenvector for H,, is small. If the upper
Hessenberg matrix H is unreduced (has no zero subdiagonal elements) then
standard results imply that |els| # 0. However, this quantity can be quite
small even if all of the subdiagonal element of H are far from zero. Usually,
this is how convergence takes place, but it is also possible for f,,, to become
small. If the quantity ||f,|| is small enough, then all m eigenvalues of H,,
are likely to be good approximations to m eigenvalues of A. In the Hermitian
case, this estimate on the residual can be turned into a precise statement about
the accuracy of the Ritz value # as an approximation to the eigenvalue of A
that is nearest to #. However, an analogous statement in the non-Hermitian
case is not possible without further information concerning non-normality and
defectiveness.

We shall develop a crude but effective assessment of accuracy based upon
this estimate. Far more sophisticated analysis is available for the symmetric
problem in [?] and in [12] for the non-symmetric case. It is easily shown that
(4.6.2) (A+E)x=%6, with E=—(e]s)f,x".

m

Thus, the Ritz pair (%, #) is exact eigenpair for a nearby problem whenever ||f,, ||
or |el s| is small (relative to ||A]|). The advantage of using the Ritz estimate
|I£.|| |el s| is to avoid explicit formation of the direct residual Ax — %6 when
accessing the numerical accuracy of an approximate eigenpair.

In the Hermitian case a small residual implies an accurate answer. However,
in the non-Hermitian case, a small ||E|| does not necessarily imply that the

CHAPTER 4. THE IMPLICITLY RESTARTED ARNOLDI METHOD 65

Ritz pair (%,) is an accurate approximation to an eigenpair (x,A) of A. The
following theorem indicates what accuracy might be expected of a Ritz value
as an approximation to an eigenvalue of A.

Theorem 4.6.1 Suppose that A is a simple eigenvalue of A nearest the eigen-
value 8 of A + E. Denote the left and right eigenvectors for A by y and x,
respectively, each of unit length. Then
[[E] 2
Aol < Il o(ElR)
Proof : See Wilkinson [?, p. 68].

The number |y"x| is the cosine of the angle between y and x and it de-
termines the conditioning of A. Thus, if y and x are nearly orthogonal, the
eigenvalue A is highly sensitive to perturbations in A but if they are nearly
parallel then X is insensitive to perturbations. For Hermitian matrices y = x so
that |y"x| = 1 and @ will be an excellent approximation to A. However, if the
left and right eigenvectors are nearly orthogonal, then even if ||E|| & ea||A]|,
where €ps is machine precision, # may contain few digits, if any, of accuracy.
Roughly, as a rule of thumb, if |[y”x|~ 107¢ and eps ~ 10~ then the leading
t — d decimal digits of # will agree with those of A.

The question of how close the Ritz vector x is to x is complicated by the fact
that an eigenvector is not a unique quantity. Any scaling of an eigenvector by
a nonzero complex number is also an eigenvector. For this reason, it is better
to estimate the positive angle ¢ between an eigenvector and its approximation.

H
Theorem 4.6.2 Suppose that AQ = Q 3 1;12 is a Schur form for A
22

and let X be a simple eigenvalue of A nearest the eigenvalue 8 of A + E with
corresponding eigenvectors x and X respectively. If ¢ is the positive angle

between x and X then
2||E|l# 2
— L+ O(||E|l%).
R +OUEI)

Proof: See § 51in [?].
The definition of the quantity sep in this theorem is
|Az" — 2" R

12|

Y

sep(A, Raz) = szl;ig

and the norm ||E||r = (trace EHE)% is the Frobenius norm.
This is a more refined indicator of eigenvector sensitivity that accounts for
non-normality as well as clustering of eigenvalues. Varah [?] shows that
sep(A, R < min A=
p(' 22) T M#EMNAET(Ra2) | il
|y x|

||t12]| ———,
V1= lyPx[?

IA

(4.6.3) sep(A, Roo)

4.6. STOPPING CRITERION 66

where the latter bound is only defined for nonzero ri3. Thus, the condition-
ing of the eigenvector problem depends upon both the distance to the other
eigenvalues of A and the sensitivity of A. Varah also notes that both upper
bounds may be significant over estimates. Note that when A is symmetric,
ri2 = 0 and it may be shown that the first bound is an equality. Multiple
eigenvalues or clusters of eigenvalues cause further complications. The above
estimates may be extended to these cases through the conditioning of invariant
subspaces and angles between invariant subspaces.

The conclusion we must draw is that the eigenvalues of a non-symmetric
matrix may be very sensitive to perturbations such as those introduced by
round-off error. This sensitivity is intricately tied to the departure from nor-
mality of the given matrix. The classic example of a matrix with an extremely
ill-conditioned eigensystem is J,, (A) + ce,,el where J,,()\) is bi-diagonal with
the number A on the diagonal and all ones on the super-diagonal. The eigen-
values 6; of this perturbed Jordan matrix satisfy |6; — A| = . This is quite
contrary to the behavior of eigenvalues of normal matrices. If the matrix A is
near to a matrix with such an ill-conditioned eigensystem, then we can say lit-
tle about the accuracy of the computed eigenvalues and eigenvectors. The best
we can say is that we have computed the exact eigenvalues and eigenvectors
of a nearby matrix (or matrix pencil).

We must be content with a stopping criterion that assures small backward
error. This strategy is used in ARPACK, where the Ritz pair (X, 6) is considered
converged when

£l leqs| < max(ear|[Hyall, tol - |6])

is satisfied where €ps is machine precision. d. Since |6| < ||H,,|| < ||A]|, this
implies that (4.6.2) is satisfied with ||E|| < tol||A|| and this test is invariant
to scaling of A through multiplication by a nonzero scalar.

The backward error is defined as the smallest, in norm, perturbation AA
such that the Ritz pair is an eigenpair for A + AA. The recent study [?]
presents a thorough discussion of the many issues involved in determining
stopping criteria for the non-symmetric eigenvalue problem. In ARPACK we
are more stringent than just asking for a small backward error relative to ||A]|.
We instead ask for small backward error relative to the projected matrix H,,.

Chapter 5

Computational Routines

This chapter will discuss the implementation details of the main computational
routines of ARPACK. We first give an outline of the code structure. This shows
how the Implicitly Restarted Arnoldi/Lanczos Method that was described in
Algorithm 3 of Chapter 4 is modularized. Each of the basic steps described in
the algorithm defines a subroutine module, i.e. a computational routine. The
basic tasks and salient implementation details are presented here for each of
these computational routines.

ARPACK relies heavily upon a number of basic operations and algorithms
provided by the BLAS and LAPACK. These have contributed greatly to the
robustness, accuracy, and computational performance of ARPACK. The most
important of these with respect to performance is the BLAS subroutine _gemv.
For a fixed number nev of requested eigenvalues and a fixed length ncv Arnoldi
basis, the computational cost scales linearly with n, the order of the matrix.
The rate of execution (in FLOPS) for the IRA iteration is asymptotic to the
rate of execution of _gemv.

In the outline of the implementation described in Figure 5.1, H; is a j X j
upper Hessenberg matrix, Vf[BVj = I;, and the residual vector f; is B-
orthogonal to the columns of V;. For each j,

OPV]‘ = VjH]' + fjef

where OP and B are defined with respect to one of the computational modes
described in Chapter 3.

The integer k denotes the desired number of eigenvalue approximations and
this may, at times, be greater than the users request for nev approximations.
The integer m = ncv will be the largest size factorization constructed. An
eigenvalue § of H; is a Ritz value of OP and x = Vs is the corresponding Ritz
vector when H;s = sf. (A formal definition of Ritz value and vector is given
in Chap. 4). The normalization |s|| =1 is assumed throughout.

67

68

Figure 5.1: XYaupd — Implementation of the IRAM/IRLM in ARPACK

e Perform basic error checks, partition the internal workspace. Set & = nev
and m = ncv.

e Enter XYaup2. Generate a random initial vector V,,e; = v; by calling
XgetvO, unless the initial vector is provided by the caller.

e Call XYaitr to compute the initial Arnoldi/Lanczos factorization
0PV, =V H;, + fkez of length k£ = nev.

e For iter = 1,..., maxiter +1,

1.

Call XYaitr to extend the length & Arnoldi/Lanczos factorization
to a length m factorization. Reverse communication is performed
to compute matrix vector products with OP and possibly B.

. Compute the eigenvalues of H,, and the associated error bounds.

Call Xseigt for the symmetric eigenvalue problem or Xneigh oth-
erwise.

. Call XYgets to partition the eigenvalues into two sets €, and €,.

The k eigenvalues in the set €2, are the desired approximations while
the remaining eigenvalues in the set €0, are to be used as shifts.

Call XYconv to determine how many of the wanted Ritz values sat-
isfy the convergence tolerance.

. Exit the loop if all £ eigenvalues in €2, satisfy the convergence cri-

terion, or if iter> maxiter.

. Possibly increment k. Determine p = m — k shifts {u;}_,. If the

exact shift strategy is used, the eigenvalues of €2, are used as shifts
otherwise the p shifts are provided through a reverse communication
interface. If p = 0, exit the loop.

Implicitly restart the Arnoldi/Lanczos factorization by calling
XYapps.

(a) Perform p steps of the implicitly shifted QR algorithm on H,,
with shifts {¢1;}7_; to get H,,Q,, = Q,H}}, where Hf and Q,,
are upper Hessenberg and orthogonal matrices respectively.

(b) Let Qg denote the matrix consisting of the first & columns of
Q,, and H; the leading principal submatrix of H}, of order k.
Update Vi = V,,Q; to get the new length k& Arnoldi factor-
ization 0PV}, = VIHT + f;eg, (See Algorithm 3, Chap.
4).

e End For

e Call XYeupd for computing Ritz and/or Schur vectors and for transform-
ing the Ritz values of OP if a spectral transformation was used.

CHAPTER 5. COMPUTATIONAL ROUTINES 69

5.1 ARPACK subroutines

Table 5.1 lists all the auxiliary subroutines of ARPACK. The naming con-
vention is XY<mnemonic> The first letter X is one of the letter s,d,c,z and
denotes the data type as follows:

s single precision real arithmetic,
d double precision real arithmetic,
c single precision complex arithmetic,
z double precision complex arithmetic.

If the second letter Y occurs, it is one of the letters s, n that denote the type
of eigensystem as follows:

n non-symmetric,
s symmetric.

For the subroutines listed in Table 5.1 that start with “[X1,X2]”, only those
data types are available.

5.1.1 XYaupd

The top level subroutine XYaupd provides the reverse communication interface
to IRAM or IRLM. The user directly calls subroutine XYaupd in one of the
reverse communication modes to compute the eigenvalues of the linear operator
defined by OP required for the computational mode selected by the user. Every
time an operation involving OP and/or B is needed, XYaupd prompts the user
to provide the action of OP and/or B on a vector and then re-enter XYaupd.
This is the reverse communication interface.

During the initial call to subroutine XYaupd, error checking is performed
on many of the input arguments. The workspace provided to XYaupd is also
partitioned and various counters and pointers are initialized.

5.1.2 XYaup2

Subroutine XYaup2 implements Algorithm 2 (see Figure 4.3) in Chapter 4. The
decision to terminate the IRAM/IRLM is made in XYaup2. The iteration is
terminated either when the requested number of wanted Ritz values satisfy the
convergence criterion or when the specified maximum number of iterations has
been exceeded. For both situations XYaup?2 is exited with a complete length
m Arnoldi/Lanczos factorization and the number of Ritz values that satisfy
the convergence criterion is stored. This allows the user to call XYeupd and
compute the eigenvalues and eigenvectors or Schur vectors that have converged
to within the requested tolerance.

At step 6, £ may be increased for one of three reasons. The primary
reason occurs when the exact shift strategy is used. In this case, the number
of shifts to apply is decreased by 1 for every wanted Ritz value in €2, that
satisfies the convergence criterion. Since p = m — k this is most easily achieved

5.1. ARPACK SUBROUTINES

70

Table 5.1: Description of the auxiliary subroutines of ARPACK.

ROUTINE DESCRIPTION

XYaupd Top level subroutine that implements the IRAM.

XYeupd This routine computes eigenvectors and/or Schur vectors
for the computed eigenvalues.

XYaup2 Intermediate level interface called by XYaupd that
performs the iteration.

XgetvO Initial vector generation subroutine.

XYaitr Arnoldi factorization subroutine.

Xneigh Compute Ritz values and error bounds subroutine for the
non-symmetric and non-Hermitian eigenvalue problems.

[s,d]seigt Compute Ritz values and error bounds subroutine for
the symmetric eigenvalue problem.

XYgets Sort the Ritz values and corresponding error bounds.

[s,d]Yconv Determines which Ritz values satisfy the convergence
criterion.

XYapps Application of implicit shifts routine.

Xortc Sorting routines for complex vectors.

[s,dlortr Sorting routine for real vectors.

[s,d]laqrb Compute the eigenvalues and the last components of the
Schur vectors of an upper Hessenberg matrix.

[s,dlstqrb Compute the eigenvalues and the last components of the
eigenvectors of a symmetric tridiagonal matrix.

CHAPTER 5. COMPUTATIONAL ROUTINES 71

by increasing the value of k. This scheme helps prevent stagnation of the
IRAM/IRLM. If k is held fixed at its original value of nev, the polynomial
restarting becomes less and less effective as as the number of converged wanted
Ritz values approaches nev. The linear rate of convergence is related directly
to the ratios [¥(A;)|/|¥(Ai)| of the restart (or filter) polynomial 2 evaluated
at wanted eigenvalues A; and unwanted eigenvalues A; (See (4.4.4) in Chapter
4). These ratios become unfavorable for wanted eigenvalues A; that are too
close to the convex hull of the zero set of the filter polynomial . Increasing
k artificially increases the distance of the wanted eigenvalues to the zero set
of the filter polynomial and as a consequence improves (i.e. decreases) these
ratios and decreases the linear convergence factor. A check is performed so
that k& never exceeds (ncv-nev)/2.

A second reason to increase k is when an unwanted Ritz value in Q, has
converged to the point that it has a computed zero error estimate. The value
of k is incremented for every such instance. This prevents attempting to im-
plicitly shift with a converged unwanted Ritz value that is located in a leading
submatrix of H,, that has split from active portion of the iteration.

The third way k£ may be increased can only occur in [s,d]naup2. Complex
conjugate pairs of Ritz values must be classified together either as members of
the unwanted set €, or of the wanted set €2,,. If such a pair would have to be
split between the two sets then the value of k is increased by 1 so that both
are included in the wanted set €,,.

If the user has decided to provide the shifts for implicit restarting via reverse
communication, the only manner in which p may be decreased from m —k is for
second and third reasons given above. One example of shifts that the user may
wish to provide is the set of roots of a Chebyshev polynomial of degree p that
has been constructed to be small in magnitude over an elliptical region that
(approximately) encloses the unwanted eigenvalues. Typically, an ellipse that
encloses the set €2, but excludes the set €2, is constructed and the Chebyshev
polynomial of degree p that is small on the ellipse is then specified [11].

5.1.3 XYaitr

Subroutine XYaitr is responsible for all the work associated with building the
needed factorization. It implements Algorithm 2 of Chapter 4 using the classi-
cal Gram-Schmidt procedure with possible re-orthogonalization by the DGKS
scheme. At each step j, a residual vector f; is computed that is numerically
orthogonal to the columns of V. If ||f;|| < sin(7w/4)||AV,e;||, a step of re-
orthogonalization is performed in order to produce an updated residual f'j. If
the angle between the successive residual vectors f'j and f; is greater than 7 /4
then the orthogonalization has been successful and f; is replaced by f'j and
the last column of H; is updated. Otherwise, another re-orthogonalization
step is required. This is repeated at most one more time. If a third re-
orthogonalization is necessary, then the original AV e; lies in the numerical
span of the columns of V.

5.1. ARPACK SUBROUTINES 72

In the event that a third re-orthogonalization is necessary, special action
must be taken. If this occurs, then it means that the component of the original
AV je; that is orthogonal to the Range(V;) is indistiguishable from roundoff
error. Numerically, the columns of V; form a basis for an invariant subspace
of A and consequently the corresponding subdiagonal element §; is set to zero.
In order to continue building the Arnoldi factorization to the desired length,
an arbitrary nonzero vector v;;; must be generated that is orthogonal to the
existing columns of V. This is accomplished by generating a random vector
and orthogonalizing it against the columns of V; to get the new basis vector

Vitl

5.1.4 XgetvO0

The subroutine XgetvO is responsible for generating starting vectors. It is
called upon to construct the initial Arnoldi/Lanczos vector when this option
is requested. XgetvO is also called upon to generate a new basis vector when
the re-orthogonalization scheme of XYaitr calls for this, i.e. when an invariant
subspace is encountered early during the construction of the Arnoldi factor-
ization. In the latter case, the vector that is returned by XgetvO is already
orthogonalized against the existing set of basis vectors. In either case, if the
(shift-invert) computational mode calls for it, the vector is also forced to be
in the range of OP. The LAPACK subroutine Xlarnv is used to generate the
random vectors. Subroutine XgetvO is called by XYaup2 and XYaitr.

5.1.5 Xneigh

Subroutine [s,d]lneigh calls the ARPACK subroutine [s,d]laqrb. This rou-
tine is a modified version of the LAPACK subroutine [s,d]lahqr for computing
a real Schur form for an upper Hessenberg matrix. Subroutine [s,d]laqrb
computes the upper quasi-triangular Schur matrix just as [s,d]lahqr does
but it only computes the last components of the associated Schur vectors since
these are all that is needed for the error estimates. The complex arithmetic
subroutine [c,z]lneigh computes the complete Schur decomposition of the
projected matrix H,, using LAPACK subroutine [c,z]1lahqr.

The subroutine [c,z]lneigh then calls the LAPACK subroutine [c,z]trevc
to compute the eigenvectors of the upper triangular Schur matrix. However,
just as in real arithmetic case, only the last components of these eigenvectors
are needed for computing error estimates.

5.1.6 [s,d]lseigt

Subroutine [s,d]seigt calls the ARPACK subroutine [s,d]stqrb that com-
putes the eigenvalues and last components of the corresponding eigenvectors
of the real symmetric tridiagonal matrix. This is a modification of the LA-
PACK subroutine [s,d]stqr. [s,d]lseigt performs the task equivalent to
[s,d]neigh but takes advantage of symmetry.

CHAPTER 5. COMPUTATIONAL ROUTINES 73

5.1.7 [s,d]Yconv

Subroutine [s,d]Yconv declares that a Ritz value 6 is an acceptable approxi-
mation to an eigenvalue of OP if ||f,,|| |e] s| < max(ear||H,n||, tol-|8]) is satisfied
where €ps is machine precision. Subroutine [c,z]naup2 performs the checks
directly within the code. The value of tol is defined by the user and has a
default of machine precision €pr. Since ||[0Px — x8|| = ||f.|||els|, ARPACK
avoids computation of the direct residual OPx — xf# when assessing the numer-
ical quality of the Ritz pair.

CAUTION: Only for symmetric (Hermitian) eigenproblems may the user as-
sume that a computed Ritz value is an accurate approximation to an eigenvalue
of OP. As § 4.6 of Chapter 4 explained, determining whether an IRAM com-
putes accurate eigenvalues for non-symmetric (non Hermitian) eigenproblems
depends on the sensitivity of the eigenproblem. If OP arises from a shift-invert
spectral transformation, then the eigenvector purification step performed by
XYeupd will most likely result in smaller residuals for the original problem than
those obtained for OP (See (4.5.1) in Chapter 4).

5.1.8 XYapps

Subroutine XYapps applies the shifts using an implicitly shifted QR mechanism
on the projected matrix H,,. If a shift is complex, then [s,d]lnapps employs
a double implicit shift application so that the complex conjugate of the shift is
applied simultaneously. This allows the implicit shift application to take place
in real arithmetic. Finally, XYapps updates the current Arnoldi/Lanczos basis
to obtain the new length £ factorization and f]j'. Subdiagonal elements of the
Hessenberg matrices are set to zero if they satisfy the same criterion as used in
a standard implementation of the QR algorithm. (This amounts to checking if
any subdiagonal of H,, is less than the product of machine precision and the
sum of the two adjacent diagonal elements of H,,.)

5.1.9 XYeupd

The purpose of XYeupd is to obtain the requested eigenvalues and eigenvec-
tors (or Schur basis vectors) for the original problem Ax = MxA\ from the
information computed by XYaupd for the linear operator OP. Regardless of
whether a spectral transformation is used, the eigenvectors will remain un-
changed on transforming back to the original problem. If a spectral transfor-
mation is used, then subroutine XYaupd will compute eigenvalues of OP. Sub-
routine XYeupd maps them to those of Ax = MxA\ except in two cases. The
exceptions occur when using [s,d]naupd with a complex shift & with either of
0P = Real((A — cM)~'M) or 0P = Imag((A — ¢M)~'M). Note that if ¢ is a
real shift, [s,d]neupd can recover the eigenvalues since then OP .1 = OP .1
Otherwise, the eigenvalues must be recovered by the user, preferably by using
the converged Ritz vectors and computing Rayleigh quotients with them for
the original problem. We hope to automate this step in a future release.

5.1. ARPACK SUBROUTINES 74

Figure 5.2: Outline of algorithm used by subroutine XYeupd to compute Schur
vectors and possibly eigenvectors.

1. Compute the partial Schur form H,,Qr = QiR where the k converged
wanted Ritz values computed by XYaupd are located on the diagonal of
the upper triangular matrix Ry of order k.

2. Compute the approximate Schur vectors of A by forming V,,Qp and
placing in the first & columns of V,,. Denote the matrix consisting of
these first £ columns by V.

3. If eigenvectors are desired, then

(a) Compute the eigendecomposition R;S; = S;Dy.
(b) Compute the Ritz vectors by forming V;Sy.

If eigenvectors are desired, an orthonormal basis for the invariant subspace
corresponding to the converged Ritz values is first computed. The vectors of
this orthonormal basis are called approximate Schur vectors for A. Figure 5.2
outlines our strategy. Refer to Figure 5.2 for definitions of the quantities
discussed in the remainder of this section.

For symmetric eigenvalue problems [s,d]seupd does not need Step 3 of
Figure 5.2 since Schur vectors are also eigenvectors. Moreover, a special routine
is not required to re-order the Schur form since Ry is a diagonal matrix of real
eigenvalues.

For real non-symmetric eigenvalue problems, [s,d]neupd uses the real
Schur form. That is, Ry is an upper quasi-triangular matrix with 1-by-1 and
2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements
equal and its off-diagonal elements of opposite sign. Associated with each
2-by-2 diagonal block is a complex conjugate pair of eigenvalues. The real
eigenvalues are stored on the diagonal of Ry. Similarly, Dy is a block diagonal
matrix. When the eigenvalue is complex, the complex eigenvector associated
with the eigenvalue with positive imaginary part is stored in two consecutive
columns of Sg. The first column holds the real part of the eigenvector and the
second column holds the imaginary part. The eigenvector associated with the
eigenvalue with negative imaginary part is simply the complex conjugate of
the eigenvector associated with the positive imaginary part. The computed
Ritz vectors are stored in the same manner.

The computation of the partial Schur form needed at Step 1 is performed
by first calling the appropriate LAPACK subroutine that computes the full
Schur decomposition of H,,. Another LAPACK subroutine, Xtrsen, re-orders
the computed Schur form to obtain Q; and Ry. The approximate Schur vectors
are formed by computing the QR factorization of Qj and then postmultiplying
V,, with the factored form. This avoids the need for the additional storage

CHAPTER 5. COMPUTATIONAL ROUTINES 75

that would be necessary if V,,Q; were computed directly. The appropriate
LAPACK subroutines are used to compute and apply the QR factorization of
Q. The factored approach described above is extremely stable and efficient
since Qy is a numerically orthogonal matrix.

In exact arithmetic, there would be no need to perform the reordering (or
the sorting for the symmetric eigenvalue problem). In theory, the implicit
restarting mechanism would obviate the need for this. However, computing in
finite precision arithmetic (as usual) complicates the issue and make these final
reorderings mandatory. See Chapter 5 in [6] and [7] for further information.

When Ritz vectors are required, the LAPACK subroutine Xtrevc is called
to compute the decomposition RiS; = SpDy. Since Sp is an upper quasi
triangular matrix, the product V;Sy is easily formed using the level 3 BLAS
subroutine Xtrmm.

The computed eigenvectors (Ritz vectors) returned by XYeupd are normal-
ized to have unit length with respect to the B semi-inner product that was
used. Thus, if B = I they will have unit length in the standard 2-norm. In
general, a computed eigenvector x will satisfy 1 = x”Bx with respect to the
B matrix that was specified.

5.2 LAPACK routines used by ARPACK

ARPACK uses a variety of LAPACK auxiliary and computational subroutines.
An auxiliary routine is one that performs some basic computation and/or an
unblocked form of an algorithm. On the other hand, a computational routine
typically implements the block version of the algorithm. For example, the
computational subroutine Xhseqr determines the eigenvalues and Schur de-
composition of an upper Hessenberg matrix using a multishift QR algorithm.
The auziliary routine X1ahqr implements the standard double shift form of the
QR algorithm for determining the eigenvalues and Schur decomposition. For
further details and information, see Chapter 2 and Appendices A and B in [1].

Tables 5.2 and 5.3 list all the LAPACK routines used by ARPACK. The
current release of LAPACK used is version 2.0.

5.3 BLAS routines used by ARPACK

Tables 5.4-5.6 list all the BLAS subroutines called by ARPACK directly. We
remark that there are other BLAS subroutines needed by ARPACK that are
called by the LAPACK routines.

5.3. BLAS ROUTINES USED BY ARPACK

76

Table 5.2: Description of the LAPACK computational routines used by

ARPACK.
ROUTINE DESCRIPTION
Xtrsen Re-orders the Schur form of a matrix.

ctrevc

strevc

[s,d]lsteqr Diagonalize a symmetric tridiagonal matrix.

Computes the eigenvectors of a matrix in upper
triangular form.

Computes the eigenvectors of a matrix in upper
quasi-triangular form.

Table 5.3: Description of the LAPACK auxiliary routines used by ARPACK.

ROUTINE DESCRIPTION

Xlahqr Computes the Schur decomposition of an upper
Hessenberg matrix.

Xgeqr2 Computes the QR factorization of a matrix.

sorm2r Applies a real orthogonal matrix in factored form.

cunm2r Applies a complex orthogonal matrix in factored form.

Xlascl Scales a matrix stably.

Xlanhs Compute various matrix norms of a Hessenberg matrix.

Xlacpy Perform a matrix copy.

Xlamch Determine various machine parameters.

[s,d]1labad Determines over- and underflow limits.

[s,d]lapy2 Compute /22 + y2 stably.

Xlartg Generates a plane rotation.

[s,d]larfg Generates a real elementary reflector.

[s,d]larf Applies a real elementary reflector H to a real matrix.

Xlaset Initialize a matrix.

CHAPTER 5. COMPUTATIONAL ROUTINES

77

Table 5.4: Description of the Level three BLAS used by ARPACK.

ROUTINE DESCRIPTION

Xtrmm Matrix times an upper triangular matrix.

Table 5.5: Description of the Level two BLLAS used by ARPACK.

ROUTINE DESCRIPTION

Xgemv Matrix vector product.

[s,dlger Rank one update to a real matrix.

[c,z]lgeru Rank one update to a complex matrix.

Table 5.6: Description of the Level one BLAS used by ARPACK.

ROUTINE DESCRIPTION
Xaxpy Compute a vector triad.
Xscal Scale a vector.
[s,d]ldot Compute a real inner product.
[c,z]ldotc Compute a complex inner product.

[cs,zd]scal Scale a complex vector with a real constant.
[s,d]nrm2 Computes the Euclidean norm of a real vector.
[sc,dz]lnrm2 Computes the Euclidean norm of a complex vector.

Xcopy Copy one vector to another.

Xswap Swap two vectors

Appendix A

Templates and Driver
Routines

A collection of simple driver routines was described in Chapter 2. This ap-
pendix describes a more sophisticated set of example drivers that illustrate
all of the available computational modes and shift-invert strategies available
within ARPACK. All aspects of solving standard or generalized eigenvalue prob-
lems, as well as computing a partial SVD are covered here. As with the simple
drivers, these have been designed to use as templates that may be modified for
a specific user application. These drivers can be found in the following subdi-
rectories in the EXAMPLES directory. The contents of this EXAMPLES directory
are:

SYM Real symmetric eigenvalue problems,

NONSYM Real non-symmetric eigenvalue problems,

COMPLEX Complex eigenvalue problems,

BAND Eigenvalue problems in which matrices
are stored in LAPACK band form,
SVD Singular value decomposition (SVD) problems.

Each driver illustrates how variables are declared and used, how the reverse
communication communication interface is used within a particular computa-
tional mode, and how to check the accuracy of the computed results.

This Appendix provides some guidance on deciding which driver to select
and how to use it effectively. In order to aid the process of building a user’s
application code from these drivers, we discuss the necessary steps to be fol-
lowed to use these drivers as templates and modify them appropriately. These
steps may be summarized as follows:

e Selecting an appropriate driver.

e Identifying and constructing the linear operator OP and the matrix B used
in a driver.

e Substituting the constructed linear operator OP and the matrix B in the
reverse communication interface.

79

A.l. SYMMETRIC DRIVERS 80

e Modifying the problem dependent variables.
e Checking the accuracy of the computed results.

This procedure is discussed in §§ A.1-A.3 for the solution of symmetric, non-
symmetric and complex arithmetic eigenvalue problems with ARPACK. Each
case is discussed independently, so there is considerable repetition. The user
is encouraged to select the section that discusses the specific problem type of
interest.

A.1 Symmetric Drivers

There are six drivers for the symmetric eigenvalue problem (A = AT and
M = M7). They are named in the form of XsdrvY, where the first character
X specifies the precision used as follows:

s single precision
d double precision.

The last character Y is a number between 1 and 6 indicating the type of the
problem to be solved and the mode to be used. Each number is associated with
a unique combination of the bmat and iparam(7) parameters. The parameter
which used to select the eigenvalues of interest is controlled by the user, but
recommended settings are given in the discussion that follows. Table A.1 lists
the problem solved by each double precision driver. The first four drivers
are the most commonly used. The last two drivers use two special spectral
transformations that may accelerate the convergence for particular problems.

A.1.1 Selecting a Symmetric Driver

Several drivers may be used to solve the same problem. However, one driver
may be more appropriate or may be easier to modify than the others. This
decision typically depends upon the nature of the application and the portion
of the spectrum to be computed. See § 3.2 of Chapter 3 for more discus-
sion on the issues that should be considered when deciding to use a spectral
transformation.

Standard Mode

Driver dsdrv1 solves the standard eigenvalue problem
Ax =xA\.

This mode only requires matrix vector products with A. It is most appropriate
for computing extremal, non-clustered eigenvalues. This mode can be success-
ful for clustered eigenvalues, but convergence is often much slower in this case.
Since this mode is generally the easiest to try, it is recommended to use it

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 81

Table A.1: The functionality of the symmetric drivers.

DRIVER PROBLEM SOLVED

dsdrvi Standard eigenvalue problem (bmat =
in the regular mode (iparam(7) = 1).

)I:)

dsdrv2 Standard eigenvalue problem (bmat = ’I°)
in a shift-invert mode (iparam(7) = 3).

dsdrv3 Generalized eigenvalue problem (bmat = ’G’)
in the regular inverse mode (iparam(7) = 2).

dsdrv4 Generalized eigenvalue problem (bmat = ’G?)
in a shift-invert mode (iparam(7) = 3).

dsdrvb Generalized eigenvalue problem (bmat = ’G’)

in the Buckling mode (iparam(7) = 4).

dsdrvé Generalized eigenvalue problem (bmat = ’G’)
in the Cayley mode (iparam(7) = 5).

initially and convert to more appropriate modes after some information about
the distribution of the spectrum has been obtained. It can be particularly
useful to run initially with which = ’BE’ with a loose tolerance just to get an
idea of the largest and smallest eigenvalues.

Shift-Invert Mode

Driver dsdrv2 uses the shift-invert mode to find eigenvalues closest to a shift
o. This is often used to compute interior eigenvalues or clustered extremal
eigenvalues. For a discussion of shift-invert mode, see § 3.2 in Chapter 3. To
use dsdrv2, the user is required to supply the action of

W (A — o) lv.

This is typically accomplished by factoring the matrix A — oI once before
the iteration begins and then using this factorization repeatedly to solve the
sequence of linear systems that arise during the calculation. The IRL iteration
will find selected eigenvalues of (A — oI)~! depending on the setting of which.
To compute the eigenvalues of A just to the right of o, one should set which
= LA’ and for those just to the left set which = ’SA’. Eigenvalues closest to
o may be obtained by setting which = *LM’. Eigenvalues to either side of o
may be obtained by setting which = ’BE’.

A.l. SYMMETRIC DRIVERS 82

Generalized Eigenvalue Problem

If the generalized eigenvalue problem
Ax = MxA,

is to be solved, then one of the drivers dsdrv3, dsdrv4, dsdrv5, dsdrvé
should be used. If either A or M may be factored, then the generalized eigen-

value problem may be converted to a standard eigenvalue problem as described
in § 3.2 of Chapter 3,

Regular Inverse Mode

Driver dsdrv3 uses the regular inverse mode to solve the generalized eigenvalue
problem. This mode is appropriate when M is symmetric and positive definite
but it is not feasible to compute a sparse direct Cholesky factorization M =
LL”T. It might also be appropriate if M can be factored but there is reason
to think that M is ill-conditioned. To use dsdrv3 the user must supply the
action of

w— M 1Av and w« Mv

The action of M™! is typically done with an iterative solver such as pre-
conditioned conjugate gradient. The use of M-inner products restores sym-
metry. If M can be factored and is reasonably well conditioned, then direct
conversion to a standard problem is recommended. Also, note that if A is
positive definite and the smallest eigenvalues are sought, then it is best to re-
verse the roles of A and M and compute the largest eigevalues of A~'M. The
reciprocals of these will then be the eigenvalues of interest.

Shift-Invert Mode

Driver dsdrvé4 uses the shift-inverse mode to solve the generalized eigenvalue
problem. FEigenvalues closest to a shift ¢ can be obtained by computing selected

eigenvalues v for
(A — oM)™'Mx = xv.

To compute the eigenvalues of (A, M) just to the right of o, one should set
which = ’LA’ and for those just to the left set which = ’SA’. Eigenvalues
closest to ¢ may be obtained by setting which = ’BE’.

The eigenvalue A of the original problem and v are related by

1
A=o+ —
v
To use dsdrv4, the user is required to supply the two matrix vector operations
w (A —oM) v, and w+« Mv

where o is the shift defined by the user. Typically, the above matrix operation
is performed by factoring A — oM once at the beginning and and then using

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 83

this factorization repeatedly to solve the resulting linear system. Note, this
will require a symmetric indefinite factorization whenever ¢ is a point in the
interior of the spectrum of (A, M). A general (sparse) LU factorization may
also be used, but there will be a storage penalty for ignoring symmetry.

Buckling Mode

Driver dsdrv5 implements the Buckling transformation. Eigenvalues closest
to a shift o can be obtained by computing the selected eigenvalues v of

0Px = (A — oM)'Ax = xv.

Settings of which are the same as those of the shift-invert modes. This mode
assumes that A is a symmetric postive semi definite matrix. Note that the
operator 0P is symmetric with respect to the semi-inner product defined by A.
The eigenvalue A of the original problem and v are related by

ov

v—1
Note that o = 0 should not be used for this mode. The two operations
w i (A—oM) 'y and y + Av

are required in order to use this driver.

Cayley Transformation Mode

Driver dsdrvé implements the Cayley spectral transformation. Eigenvalues
closest to a shift & can be obtained by computing the selected eigenvalues v of

0Px = (A — o M) (A + oM)x = xv.

Settings of which are the same as those of the shift-invert modes. It is easy to
verify that OP is symmetric with respect to the (semi) inner product defined
by M so it is best to use M-inner products with this transformation. The
eigenvalue X of the original problem and v are related by

A:0(1+V).
1—-v

Note that the transformation becomes ill-defined as ¢ — 0 since v — 1. The
expression does have a limit as ¢ — 0 but it would be better to use regular
inverse mode or to use shift-invert mode with ¢ = 0 when eigenvalues near the
origin are sought.

The Cayley transformation has slightly different properties than the stan-
dard shift and invert spectral transformation used by drivers dsdrv3 and
dsdrv4. To use this driver, the operations

wi (A -oM)ly, y+ (A+oM)v and w ¢« Mv

are required.

A.l. SYMMETRIC DRIVERS 84

Table A.2: The operators OP and B for dsaupd.

DRIVER oP B |
dsdrvi A I
dsdrv2 (A —oI)7! I
dsdrv3 M-'A M
dsdrv4 (A —oM)"'M M
dsdrvb (A —oM) A A
dsdrvée (A -oM)"}(A+oM) M

A.1.2 Identify OP and B for the Driver

Once an appropriate driver has been selected, it is necessary to construct the
action of the linear operator OP and matrix B associated with that driver.
Eigenvalues of OP are computed by the computational routine dsaupd. These
eigenvalues are converted to those of A or (A, M) by the post-processing rou-
tine dseupd. The Lanczos vectors generated by dsaupd are orthogonal with
respect to the (semi-) inner product defined by B. It is imperative that the
operations OPv and Bv be computed as prescribed for the selected driver. Ta-
ble A.2 summarizes the operators OP and B required for each driver.

Because of the reverse communication interface in ARPACK, the construc-
tion of

w & 0Pv and w <« Bv

is left completely to the user. This means that the user is free to choose any
convenient data structure for the matrix representation. If the matrix is not
available, the user is free to express the action of the matrix on a vector through
a subroutine call or a code segment.

A.1.3 The Reverse Communication Interface

The use of the reverse communication interface for the regular and shift-invert
modes was illustrated in Chapter 2 and 3, respectively. The most general
structure of the reverse communication loop is presented in Figure A.1.

The specific actions to be taken within the reverse communication loop
vary with each of the different drivers. Each action in Figure A.1 corresponds
to an ido value returned from the call to dsaupd. These actions involve matrix
vector operations such as w ¢ OPv and w < Bv. The matrix vector operation
must be performed on the correct portion of the work array workd. Below, we
list the the specific matrix-vector operations that must be performed in each
driver for a given returned value of the reverse communication parameter ido.

APPENDIX A. TEMPLATES AND DRIVER ROUTINES

85

a o o o0

o o o0 o0 o0 o000

10

MAIN LOOP (Reverse communication loop) |

ontinue

e %

| Repeatedly call the routine DSAUPD and take |

| actions indicated by parameter IDO until |

| either convergence is indicated or maxitr

| has been exceeded. |

A %

call dsaupd (ido, bmat, n, which, nev, tol, resid,
ncv, v, ldv, iparam, ipntr, workd, workl,
lworkl, info)

if (ido .eq. -1) then

W < 0Pxv
h ——— LOOP B ACK to call DSAUPD again.
go to 10

else if (ido .eq. 1) then

W < 0OPxv
h ——— LOOP B ACK to call DSAUPD again.
go to 10

else if (ido .eq. 2) then

W < Bxv
h ————= LOOP B ACK to call DSAUPD again.
go to 10

end if

Figure A.1: Reverse communication structure

A.l. SYMMETRIC DRIVERS 86

Driver dsdrvil

0P=A and B=1
The action w < Av is required in this driver.

e ido=1
Action Required:

Matrix vector multiplication w + Av.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver dsdrv2

0P=(A-ocl)"tand B=1
The action w < (A — oI)~!v is required in this driver.

e ido=-1 or ido=1
Action Required:

Solve (A — cI)w = v for w.
The righthand side v is in the array workd(ipntr(1)).
The solution w must be returned in the array workd(ipntr(2)).

Driver dsdrv3

0P=M"'Aand B=M
The actions w <~ Av , w ¢+ M~'v and w < Mv are required.

e ido=-1 or ido=1
Actions Required:

Compute y ¢+ Av. Solve Mw =y for w.

The vector v is in workd(ipntr(1)).

The vector y must returned in (overwrite) workd(ipntr(1)).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w <+ Mv.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver dsdrv4

0P=(A-oM)"'"Mand B=M
The actions w < (A — cM)~!v. and w + Mv are required.

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 87

e ido=-1
Actions Required:

Compute y <+ Mv. Solve (A —-oM)w =1y for w.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

Solve (A — eM)w = v for w.

The vector v is in workd (ipntr(3)) (Action by M has already been
made).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w < Mv.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver dsdrvs

0P=(A-oM)'AandB=A
The actions w < (A — ocM)~!v. and w < Av are required.

e ido=-1
Actions Required:

Compute y < Av. Solve (A —-oM)w =1y for w.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

Solve (A — eM)w = v for w.

The vector v is in workd (ipntr(3)) (Action by A has already been
made).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w < Av.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

A.l. SYMMETRIC DRIVERS 88

Driver dsdrvé

0P=(A-0oM)"'(A+oM)and B=M
The actions w < (A — cM)~'v, w < Av, and w + Mv are required.

e ido=-1
Actions Required:

Compute y < (A +oM)v. Solve (A —-ocM)w =y forw.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

Compute y < (A +oM)v. Solve (A —-ocM)w =y forw.
The vector v is in workd (ipntr(3)) .
The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w < Mv.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

A.1.4 Modify the Problem Dependent Variables

To set up the proper storage and to arrange for effective use of the IRLM
various parameters will have to be set. These variables include:

n The dimension of the problem.

nev The number of eigenvalues needed.

ncv The length of the Lanczos factorization. This represents the
maximum number of Lanczos vectors used.

which The eigenvalues of interest.

info Set to 0 for a randomly generated starting vector. If the user
decides to use another starting vector, this value should be set
to 1, and the starting vector should be provided in the array
resid.

sigma The shift used if a spectral transformation is employed.

The variable nev may be set to be a value larger than the number of eigenvalues
desired to avoid splitting a eigenvalue cluster. The only restriction is that nev

must be less than ncv. The recommended initial choice of ncv is to set ncv

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 89

Table A.3: The eigenvalues of interest for symmetric eigenvalue problems.

which EIGENVALUES

"LA°> Largest (algebraic) eigenvalues.
’SA’ Smallest (algebraic) eigenvalues.
’LM’ Largest eigenvalues in magnitude.
’SM’ Smallest eigenvalues in magnitude.

’BE’ FEigenvalue at both ends. When nev
is odd, compute one more from the

high end than from the low end.

2 - nev. The user is encouraged to experiment with both nev and ncv. The
possible choices for the input variable which are listed in Table A.3. When
a spectral transformation is employed, only the selections *BE’, LA’ or ’SA’
should be used.

Once the above variables are modified, the storage declarations

integer maxn, maxnev, maxncv, 1ldv
parameter (maxn=256, maxnev=10, maxncv=25, ldv=maxn)

should be adjusted so that the conditions

n < maxn,
nev < maxnev,
ncv < maxncv,
nev + 1 < ncv

are satisfied.

Other Variables

The following variables are also set in all drivers. Their usage is described in
Chapter 2. In most cases, they do not need to be changed.

lworkl The size of the work array workl used by dsaupd. Must be set
to at least ncv*(ncv+8).

tol The convergence criterion. The default setting is machine pre-
cision. However, the value of tol should be set to control the
desired accuracy. Typically, the smaller this value the more work
is required to satisfy the stopping criteria. However, setting this
value too large may cause eigenvalues to be missed when there
are multiple or clustered eigenvalues.

A.2. REAL NONSYMMETRIC DRIVERS 90

ido The reverse communication flag. Must be set to 0 before entering
dsaupd.
bmat Designates whether a standard (bmat = ’I’)or generalized eigen-

value (bmat = ’G’) problem

iparam(1) The shifting strategy used during the implicitly restarted portion
of an IRLM. Unless the user has an expert understanding of
IRLM, an exact shifting strategy selected by setting iparam(1)
= 1 should be used.

iparam(3) Maximum number of IRLM iterations allowed.
iparam(7) Indicates the algorithmic mode used with ARPACK.

rvec Indicates whether eigenvectors are desired. If the eigenvectors
are of to be computed, then one must set rvec = .true. and
otherwise set it to .false. .

A.1.5 Postprocessing and Accuracy Checking

Once the eigenvalues and eigenvectors have been extracted from the post-
processing routine dseupd, the user may check the accuracy of the result by
computing the direct residuals ||[Ax — xA|| or ||Ax — MxA|| for standard or
generalized eigenvalue problems, respectively. In order to compute the above
quantities, the matrix vector product routines for Ax and Mx must be sup-
plied, even if they are not used in the reverse communication loop. Residual
checking is provided in all drivers.

A.2 Real Nonsymmetric Drivers

There are six drivers for nonsymmetric eigenvalues problem. They are named
in the form of XndrvY, where the first character X specifies the precision used,

s single precision
d double precision

and the last character Y is a number between 1 and 6 indicating the mode to be
used. Each number is associated with a combination of bmat and iparam(7)
parameters used in that driver and also on whether the desired shift o is real
or complex. The parameter which used to select the eigenvalues of interest is
controlled by the user, but recommended settings are given in the discussion
that follows. Table A.4 summarizes the features of the double precision drivers.
The first four drivers are the ones most commonly used. The last two drivers
are used when the complex shift used in the shift-invert mode has a nonzero
imaginary part. Either dndrv5 or dndrv6 may be modified to solve a standard
eigenvalue problem in shift-invert mode with a complex shift. If the amount of
storage used by complex arithmetic is not prohibitive, then the complex drivers

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 91

Table A.4: The functionality of the non-symmetric drivers.

DRIVER PROBLEM SOLVED

dndrvi Standard eigenvalue problem (bmat = ’I7)
in the regular mode (iparam(7) = 1) No shift is

needed in this driver.

dndrv2 Standard eigenvalue problem (bmat = *I?)
in a shift-invert mode (iparam(7) = 3) The shift is
real (sigmai = 0.0).

dndrv3 Generalized eigenvalue problem (bmat = ’G’)
in the regular inverse mode (iparam(7) = 2) No shift
is needed in this driver.

dndrv4 Generalized eigenvalue problem (bmat = ’G’)
in a shift-invert mode (iparam(7) = 3) with
a real shift (sigmai = 0.0).
dndrvs Generalized eigenvalue problem (bmat = ’G’)
in a shift invert mode (iparam(7) = 3) The shift
has a nonzero imaginary part (sigmai # 0.)

dndrvé Solve a generalized eigenvalue problem (bmat = ’G’)
in a shift invert mode (iparam(7) = 4) The shift
has a nonzero imaginary part (sigmai # 0).

of § A.3 should be used instead. A procedure for modifying a nonsymmetric
driver is outlined below. It is similar to the one used for the symmetric drivers.

A.2.1 Selecting a Non-symmetric Driver

Several drivers may be used to solve the same problem. However, one driver
may converge faster or may be easier to modify than the other depending on
the nature of the application. The decision of what to use should be based
on the type of problem to be solved and the part of the spectrum that is of
interest. See § 3.2 of Chapter 3 for more discussion on the issues that should
be considered when deciding to use a spectral transformation.

Standard Mode

Driver dndrv1 solves the standard eigenvalue problem
Ax =xA\.

This mode only requires matrix vector products with A. This driver will com-
pute the eigenvalues of largest or smallest magnitude, largest or smallest real

A.2. REAL NONSYMMETRIC DRIVERS 92

part, largest or smallest imaginary part depending on the setting of which.

It is most appropriate for computing extremal, non-clustered eigenvalues (here
extremal means extreme points of the convex hull of the spectrum). In partic-
ular, if the operation A~'x can be easily formed, then using the shift-invert
driver dndrv2 with zero shift is certainly a far more effective way to compute
eigenvalues of the smallest magnitude.

Shift-Invert Mode

Driver dndrv2 uses the shift-invert mode to find eigenvalues closest to a real
shift o. This is often used to compute interior eigenvalues. For a discussion of
shift-invert mode, see § 3.2 in Chapter 3. To use dndrv2, the user is required
to supply the action of

w i (A — o) v,

This is typically accomplished by factoring the matrix A — oI once before
the iteration begins and then using this factorization repeatedly to solve the
sequence of linear systems that arise during the calculation. The IRAM will
find selected eigenvalues of (A — oI)™! depending on the setting of which.
The recommended setting for computing the eigenvalues of A nearest to o is
which = ’LM’. If the desired shift has a nonzero imaginary part, then dndrvs
or dndrvé should be modified to solve the problem. For eigenvalue problems
where the additional storage needed is not prohibitive, the complex shift-invert
driver zndrv2 should be used.

Generalized Nonsymmetric Eigenvalue Problem

If the generalized eigenvalue problem
Ax = Mx)\

is to be solved, one can either convert it into a standard eigenvalue problem
as described in § 3.2 of Chapter 3 or use dndrv3, dndrv4, dndrv5, dndrvé
that are designed specifically for the generalized problem.

Regular Inverse Mode

Driver dndrv3 uses the regular inverse mode to solve the generalized eigenvalue
problem. This mode should be used if M is symmetric and positive definite
but it is not possible to factor into a Cholesky factorization M = LL” or if
there is reason to think that M is ill-conditioned. To use dndrv3 the user must
supply the action of

w M 'Av and w « Mv

The action of M~! is typically done with an iterative solver such as pre-
conditioned conjugate gradient. If M can be factored then direct conversion
to a standard problem is recommended. This driver is appropriate for which

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 93

= ’LM’,’LR’, ’SR’,’LI’,’SI’ settings. If interior eigenvalues are sought
then driver dndrv4 is probably more appropriate. If convergence is slower than
desired then one of the shift-invert modes described below should be used.

Spectral Transformations for Non-symmetric Eigenvalue Problems

If eigenvalues near a point o are sought, then one of the shift-invert drivers
dndrv4, dndrv5 or dndrv6 should be used. Driver dndrv4 can be used when
the shift o has a zero imaginary part. Otherwise, either dndrv5 or dndrvé6
should be used. To use these drivers, one is required to supply the action of

W (A —oM)" 'Mv.

When ¢ has a nonzero imaginary part, a complex factorization routine or a
complex iterative solver will be required. In that case, the vector w will in
general be a complex vector. However, only the real or imaginary part will
be passed into dnaupd and all arithmetic and data types within the ARPACK
routines will be real. In any case, the IRAM will find selected eigenvalues of
(A — oM)~! depending on the setting of which. The recommended setting
for computing eigenvalues of the pair (A, M) nearest to o is which = *LM’.
However, other settings are not precluded.

A.2.2 Identify 0P and B for the Driver

Once a driver is chosen, the next step is to identify OP and B associated with
that driver. Eigenvalues of OP are computed by the computational routine
dnaupd. These eigenvalues are converted to those of A or (A, M) in the post-
processing routine dseupd. The Arnoldi vectors generated by dnaupd are B-
orthonormal. It is very important to construct the matrix vector operations

w < 0Pv and w < Bv

correctly. Table A.5 summarizes the operators OP and B used by the drivers.
The notation Real(A) and Real(M) is used to denote the real and imaginary
parts of a complex matrix, respectively.
Because of the reverse communication interface of ARPACK, the construc-
tion of
w < 0Pv and w < Bv

is left completely to the user. This means that the user is free to choose any
convenient data structure for the matrix representation. If the matrix is not
available, the user is free to express the action of the matrix on a vector through
a subroutine call or a code segment.

A.2.3 The Reverse Communication Interface

The basic structure of the reverse communication loop for the nonsymmetric
drivers is similar to that for the symmetric driver with dsaupd replaced with

A.2. REAL NONSYMMETRIC DRIVERS 94

Table A.5: The operators OP and B for dnaupd.

DRIVER 0)3 B
dndrvi A 1
dndrv2 (A —oI)7! I
dndrv3 M-'A M
dndrv4 (A —oM)"'M M
dndrvs Real(A —ocM)"'M M
dndrvé Imag(A —ocM)"'M M

dnaupd. See Figure A.1. The actions taken in dndrvi, dndrv2, dndrv3 and
dndrv4 are exactly the same as those in dsdrvl dsdrv2, dsdrv3 and dsdrv4.
The matrix-vector operations required of each driver are listed in detail below.
The operator OP defined in dndrv5 and dndrvé is designed to accomplish spec-
tral transformations for real nonsymmetric problems while computing exclu-
sively in real arithmetic, the actions taken in these two drivers are completely
different from dsdrv5 and dsdrvs.

Driver dndrvil

0P=A and B=1
The action w < Av is required in this driver.

e ido=1
Action Required:

Matrix vector multiplication w < Av.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver dndrv2

0P=(A-ocl)tand B=1
The action w < (A — ¢I)~'v is required in this driver.

e ido=-1 or ido=1
Action Required:

Solve (A — cI)w = v for w.
The righthand side v is in the array workd(ipntr(1)).
The solution w must be returned in the array workd(ipntr(2)).

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 95

Driver dndrv3

0P=M"'A and B=M
The actions w + Av , w+ M~!'v and w < Mv are required.

e ido=-1 or ido=1
Actions Required:

Compute y + Av. Solve Mw =y for w.

The vector v is in workd(ipntr(1)).

The vector y must returned in (overwrite) workd (ipntr(1)).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w +— Mv.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver dndrv4

0P=(A-oM)"'Mand B=M
The actions w < (A — ocM)~'v and w < Mv are required.

e ido=-1
Actions Required:

Compute y <+ Mv. Solve (A —-oM)w =1y for w.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

Solve (A — eM)w = v for w.

The vector v is in workd (ipntr(3)) (Action by M has already been
made).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w <+ Mv.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

A.2. REAL NONSYMMETRIC DRIVERS 96

Driver dndrv5s

0P = Real [(A — cM)~'M] and B = M.
The actions w < Real [(A — cM)~!v] and w < Mv are required. Note,
the factorization of (A — cM) will generally need to be computed in complex
arithmetic and stored as complex data.

e ido=-1
Actions Required:

Compute y <+ Mv. Solve (A —oM)z =y for z.

Set w = Real [z].

The vector v is in workd (ipntr(1)).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

Solve (A — ocM)z = v for z.

Set w = Real [z].

The vector v is in workd (ipntr(3)) (Action by M has already been
made).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w <+ Mv.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver dndrvé

0P = Imag [(A — cM)~'M] and B = M.

The actions w ¢ Imag [(A — oM)~!v]. and w + Mv are required. Note,
the factorization of (A — cM) will generally need to be computed in complex
arithmetic and stored as complex data.

e ido=-1
Actions Required:

Compute y <+ Mv. Solve (A —oM)z =y for z.

Set w = Imag [z].

The vector v is in workd(ipntr(1)).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 97

Solve (A — oM)z = v for z.

Set w = Imag [z].

The vector v is in workd (ipntr(3)) (Action by M has already been
made).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w <+ Mv.
The vector v is in workd (ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

A.2.4 Modify the Problem Dependent Variables

To set up the proper storage and to arrange for effective use of the IRAM
various parameters will have to be set. These variables include:

n The dimension of the problem.

nev The number of eigenvalues needed.

ncv The length of the Arnoldi factorization. This represents the
maximum number of Arnoldi vectors used.

which The eigenvalues of interest.

info Set to 0 for a randomly generated starting vector. If the user

decides to use another starting vector, this value should be set
to 1, and the starting vector should be provided in the array

resid.

sigmar The real part of the shift used if a spectral transformation is
employed.

sigmai The imaginary part of the shift used if a spectral transformation

is employed.

The variable nev may be set to be a value larger than the number of eigenvalues
desired to avoid splitting an eigenvalue cluster. The only restriction is that
nev must be less than ncv. The recommended choice of ncv is to set ncv
= 2 - nev. The user is encouraged to experiment with both nev and ncv.
The possible choices for the input variable which are listed in Table A.6.
When using a spectral transformation, the selection of which = ’SM’ should
be avoided.
Once the above variables are modified, the storage declarations

integer maxn, maxnev, maxncv, 1ldv
parameter (maxn=256, maxnev=10, maxncv=25, ldv=maxn)

A.2. REAL NONSYMMETRIC DRIVERS 98

Table A.6: The eigenvalues of interest for non-symmetric eigenvalue problems.

which EIGENVALUES

’LM’ Largest magnitude

’SM’ Smallest magnitude
’LR’ Largest real parts

’SR’ Smallest real parts

LI Largest imaginary parts

’ST° Smallest imaginary parts

should be adjusted so that the conditions

n < maxn,
nev < maxnev,
ncv < maxncv,
nev+2 < ncv

are satisfied. The last condition on nev is needed to assure that complex

conjugate pairs of eigenvalues are kept together.

Other Variables

The following variables are also set in all drivers. Their usage is described in
Chapter 2. In most cases, they do not need to be changed.

lworkl

tol

ido

bmat

iparam(1)

The size of the work array workl used by dnaupd. Must be set
to at least 3*ncv*(ncv+6).

The convergence criterion. The default setting is machine pre-
cision. However, the value of tol should be set to control the
desired accuracy. Typically, the smaller this value the more work
is required to satisfy the stopping criteria. However, setting this
value too large may cause eigenvalues to be missed when there
are multiple or clustered eigenvalues.

The reverse communication flag. Must be set to 0 before entering
dsaupd.

Designates whether a standard (bmat = ’I’)or generalized eigen-
value (bmat = ’G’) problem

The shifting strategy used during the implicitly restarted portion
of an TRAM. Unless the user has an expert understanding of

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 99

IRAM, an exact shifting strategy selected by setting iparam(1)
= 1 should be used.

iparam(3) Maximum number of IRAM iterations allowed.

iparam(7) Indicates the algorithmic mode used with ARPACK.

rvec Indicates whether eigenvectors are needed. If the eigenvectors
are of interest, then rvec = .true. and set to .false. other-
wise.

A.2.5 Postprocessing and Accuracy Checking

The eigenvalues and eigenvectors of A and (A, M) can be extracted with a call
to dneupd when using drivers dndrvl - dndrv4. However, since the eigenval-
ues v computed for OP by the drivers dndrv5 and dndrvé are related to the
eigenvalues A of Ax = MxA by

1 1 1 1 1

1
y_§(/\—0'+/\—|—0)7 and V__'(/\—U—I_/\—}—U

),

respectively. These equations do not have a unique solution A and it appears
to be difficult to match the correct solution with a given eigenvector. Thus,
the Rayleigh Quotient A = zH Ax/(2FMx) must be formed by the user to
obtain the eigenvalue corresponding to the eigenvector x. This will be done
automatically in dneupd in a later release of ARPACK.

Once the converged eigenvalues and eigenvectors have been obtained the
user may check the accuracy of the results by computing the direct residuals
||[Ax —xA|| and ||[Ax—MxA|| for a standard or generalized eigenvalue problems.
Residual checking is provided in all drivers.

A.3 Complex Drivers

There are four drivers for complex date type problems. They are named in
the form of XndrvY, where the first character X specifies the precision used as
follows:

c single precision complex,
z double precision complex,

and the last character Y is a number between 1 and 4 indicating the type of the
problem to be solved and the mode to be used. Each number is associated with
a unique combination bmat and iparam(7) value. The parameter which used
to select the eigenvalues of interest is controlled by the user, but recommended
settings are given in the discussion that follows. Table A.7 summarizes the
features of each double precision complex arithmetic driver. The procedure for
modifying a complex driver is similar to that is used for the first four symmetric
drivers.

A.3. COMPLEX DRIVERS 100

Table A.7: The functionality of the complex arithmetic drivers.

DRIVER PROBLEM SOLVED

zndrvi Standard eigenvalue problem (bmat = ’I°)
in the regular mode (iparam(7) = 1).

zndrv2 Standard eigenvalue problem (bmat = ’I°)
in a shift-invert mode (iparam(7) = 3).

zndrv3 Generalized eigenvalue problem (bmat = ’G’)
in the regular inverse mode (iparam(7) = 2).

zndrvé4 Generalized eigenvalue problem (bmat = ’G’)
in a shift-invert mode (iparam(7) = 3).

A.3.1 Selecting a Complex Arithmetic Driver

Several drivers may be used to solve the same problem. However, one driver
may work better or may be easier to modify than the other depending on
the nature of the application. The decision of what to use should be based
on the type of problem to be solved and the part of the spectrum that is of
interest. See § 3.2 of Chapter 3 for more discussion on the issues that should
be considered when deciding to use a spectral transformation.

Standard Mode

Driver zndrv1 solves the standard eigenvalue problem
Ax =xA\.

This mode only requires matrix vector products with A. This driver will com-
pute the eigenvalues of largest or smallest magnitude, largest or smallest real
part, largest or smallest imaginary part depending on the setting of which. It
is most appropriate for computing extremal, non-clustered eigenvalues (here
extremal means extreme points of the convex hull of the spectrum). In partic-
ular, if the operation A~!'x can be easily formed, then using the shift-invert
driver zndrv2 with zero shift is certainly a far more effective way to compute
eigenvalues of the smallest magnitude.

Shift and Invert Spectral Transformation

Driver zndrv2 uses the shift-invert mode to find eigenvalues closest to a real
shift o. This is often used to compute interior eigenvalues. For a discussion of
shift-invert mode, see § 3.2 in Chapter 3. To use zndrv2, the user is required
to supply the action of

w ¢ (A - oDy,

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 101

This is typically accomplished by factoring the matrix A — oI once before
the iteration begins and then using this factorization repeatedly to solve the
sequence of linear systems that arise during the calculation. The TIRAM will
find selected eigenvalues of (A —oI)~! depending on the setting of which. The
recommended setting for computing the eigenvalues of A nearest to ¢ is which
= ’LM’.

Generalized Eigenvalue Problems

If the generalized eigenvalue problem
Ax = MxA

is to be solved, one can either convert it into a standard eigenvalue problem as
described in § 3.2 of Chapter 3, or employ zndrv3 or zndrv4 that are designed
for the generalized problem.

Regular Inverse Mode

Driver zndrv3 uses the regular inverse mode to solve the generalized eigenvalue
problem. This mode should be used if M is Hermitian and positive definite
but it is not possible to factor into a Cholesky factorization M = LLY or if
there is reason to think that M is ill-conditioned. To use zndrv3 the user must
supply the action of

w M'Av and w « Mv

The action of M™! is typically done with an iterative solver such as pre-
conditioned conjugate gradient. If M can be factored then direct conversion
to a standard problem is recommended. This driver is appropriate for which
= ’LM’,’LR’, ’SR’,’LI’,’SI’ settings. If interior eigenvalues are sought
then driver zndrv4 is probably more appropriate.

General Shift-Invert Spectral Transformation

If eigenvalues near a point o are sought, then the shift-invert driver zndrv4
should be used. To use this driver, one is required to supply the action of

W (A — M) 'Mv.

The TRAM will find selected eigenvalues of (A — ocM)~! depending on the
setting of which. The recommended setting for computing eigenvalues of the
pair (A, M) nearest to o is which = ’LM’. However, other settings are not
precluded.

A.3. COMPLEX DRIVERS 102

Table A.8: The operators OP and B for znaupd.

DRIVER 0)3 B
zndrvl A I
zndrv2 (A —oI)7! I
zndrv3 M~'A M
zndrvd (A -oM)™'M M

A.3.2 Identify OP and B for the Driver to be Modified

Once a driver is chosen. The next step is to identify OP and B associated with
that driver. Eigenvalues of OP are computed by the computational routine
znaupd. These eigenvalues are converted to those of A or (A, M) in the post-
processing routine zneupd. The Arnoldi vectors generated by znaupd are B-
orthonormal. It is very important to construct the operation OPv and Bv
correctly. The following list summarize the operator OP and B defined in each
driver.

Because of the reverse communication interface of ARPACK, the construc-
tion of

w & 0Pv and w < Bv

is left completely to the user. This means that the user is free to choose any
convenient data structure for the matrix representation. If the matrix is not
available, the user is free to express the action of the matrix on a vector through
a subroutine call or a code segment.

A.3.3 The Reverse Communication Interface

The basic reverse communication loop for the complex driver is exactly the
same as those used for the symmetric driver except that dsaupd is replaced
by znaupd. (Figure A.1.) Actions to be taken within the loop vary from one
driver to the other. Some drivers may take only one or two actions listed
in Figure A.1. Each action corresponds to an ido value returned from the
call to znaupd. These actions involve matrix vector operations such as w
0Pv and w + Bv. The matrix vector operation must be performed correctly
on the correct portion of the work array workd (either workd(ipntr(1)) or
workd(ipntr(3)).) The output should also be returned in the correct portion
of workd (either workd (ipntr(2)) or workd(ipntr(1))) before the loop goes
back to the next call to znaupd. The matrix-vector operations required of each
driver are listed in detail below.

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 103

Driver zndrvi

0P=Aand B=1
The action w < Av is required in this driver.

e ido=1
Action Required:

Matrix vector multiplication w + Av.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver zndrv2

0P=(A-cl)"tand B=1
The action w < (A — oI)~'v is required in this driver.

e ido=-1 or ido=1
Action Required:

Solve (A — cI)w = v for w.
The righthand side v is in the array workd(ipntr(1)).
The solution w must be returned in the array workd(ipntr(2)).

Driver zndrv3

0P=M"1'Aand B=M
The actions w <~ Av , w ¢+ M~'v and w < Mv are required.

e ido=-1 or ido=1
Actions Required:

Compute y + Av. Solve Mw =y for w.

The vector v is in workd(ipntr(1)).

The vector y must returned in (overwrite) workd (ipntr(1)).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w < Mv.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

Driver zndrv4

0P=(A-oM)"'"Mand B=M
The actions w < (A — ocM)~!v. and w < Mv are required.

A.3. COMPLEX DRIVERS 104

e ido=-1
Actions Required:

Compute y <+ Mv. Solve (A —oM)w =1y for w.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

e ido=1
Actions Required:

Solve (A — eM)w = v for w.

The vector v is in workd (ipntr(3)) (Action by M has already been
made).

The result vector w must be returned in the array workd (ipntr(2)).

e ido=2
Action Required:

Compute w < Mv.
The vector v is in workd(ipntr(1)).
The result vector w must be returned in the array workd (ipntr(2)).

A.3.4 Modify the Problem Dependent Variables

To set up the proper storage and to arrange for effective use of the IRAM
various parameters will have to be set. These variables include:

n The dimension of the problem.

nev The number of eigenvalues needed.

ncv The length of the Arnoldi factorization. This represents the
maximum number of Arnoldi vectors used.

which The eigenvalues of interest.

info Set to 0 for a randomly generated starting vector. If the user

decides to use another starting vector, this value should be set
to 1, and the starting vector should be provided in the array
resid.

sigma The shift used if a spectral transformation is employed.

The variable nev may be set to be a value larger than the number of eigenvalues
desired to avoid splitting a eigenvalue cluster. The only restriction is that
nev must be less than ncv. The recommended choice of ncv is to set ncv
= 2 - nev. The user is encouraged to experiment with both nev and ncv.
The possible choices for the input variable which are listed in Table A.9.
When using a spectral transformation, the selection of which = ’SM’ should
be avoided.
Once the above variables are modified, the storage declarations

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 105

Table A.9: The eigenvalues of interest for complex arithmetic eigenvalue prob-
lems.

which FEIGENVALUES
YLM? Largest magnitude

’SM? Smallest magnitude
’LR’ Largest real parts
’SR’ Smallest real parts

LI Largest imaginary parts

’ST? Smallest imaginary parts
integer maxn, maxnev, maxncv, 1ldv
parameter (maxn=256, maxnev=10, maxncv=25, ldv=maxn)

should be adjusted so that the conditions

n < maxn,
nev < maxnev,
ncv < maxncv,
nev+l < ncv

are satisfied.

Other Variables

The following variables are also set in all drivers. Their usage is described in
Chapter 2. In most cases, they do not need to be changed.

lworkl The size of the work array workl used by znaupd. Must be set
to at least 3*ncv*(ncv+5).

tol The convergence criterion. The default setting is machine pre-
cision. However, the value of tol should be set to control the
desired accuracy. Typically, the smaller this value the more work
is required to satisfy the stopping criteria. However, setting this
value too large may cause eigenvalues to be missed when there
are multiple or clustered eigenvalues.

ido The reverse communication flag. Must be set to O before entering
dsaupd.
bmat Designates whether a standard (bmat = *I’) orgeneralized eigen-

value (bmat = ’G’) problem

A.4. BAND DRIVERS 106

iparam(1) The shifting strategy used during the implicitly restarted portion
of an TRAM. Unless the user has an expert understanding of
IRAM, an exact shifting strategy selected by setting iparam(1)
= 1 should be used.

iparam(3) Maximum number of IRAM iterations allowed.

iparam(7) Indicates the algorithmic mode used with ARPACK.

rvec Indicates whether eigenvectors are needed. If the eigenvectors
are of interest, then rvec = .true. and set to .false. other-
wise.

A.3.5 Post-processing and Accuracy Checking

Once the eigenvalues and eigenvectors have been extracted from the post-
processing routine zneupd, the user may check the accuracy of the result by
computing the direct residuals ||Ax — xA|| and ||Ax — MxA|| for standard or
generalized eigenvalue problems, respectively.

A.4 Band Drivers

If the matrix A and M are stored in LAPACK band form, then one of the
band drivers may be used. Band drivers are named in the form of XYbdrZ,
where the first character X specifies the precision and data type,

single precision
double precision
single precision complex
double precision complex

N 0O Q@ ®n

the second character Y indicates the symmetry property of the problem,

s symmetric problem
n nonsymmetric problem

and the third character Z is a number between 1 and 6 indicating the type of
the problem to be solved and the mode to be used. Each number is associ-
ated with a combination of bmat and iparam(7) settings used in that driver.
Tables A.10—A.12 list the double precision band storage drivers.

There are no special drivers for complex Hermitian problem. Complex
Hermitian problems can be solved by using [c,z]nbdrZ. These drivers call
the band eigenvalue computation routine XYband, where the first character
X (s,d) specifies the precision and data type as listed above, and the second
character Y indicates the symmetry property of the problem that can be solved
with this routine. Since the reverse communication interface has already been
implemented in these computational routines, users only need to provide the
matrix and modify a few variables in these drivers to solve their own problem.
A procedure for modifying these drivers is presented below.

APPENDIX A. TEMPLATES AND DRIVER ROUTINES

107

Table A.10: Band storage drivers for symmetric eigenvalue problems

BAND DRIVER

PROBLEM SOLVED

dsbdri

dsbdr2

dsbdr3

dsbdr4

dsbdrb

dsbdré

Standard eigenvalue problem (bmat = ’I°)

in the regular mode (iparam(7) = 1).
Standard eigenvalue problem (bmat = ’I°)
in a shift-invert mode (iparam(7) = 3).
Generalized eigenvalue problem (bmat = ’G’)
in the regular inverse mode (iparam(7) = 2).
Generalized eigenvalue problem (bmat = ’G’)
in a shift-invert mode (iparam(7) = 3).
Generalized eigenvalue problem (bmat = ’G’)

in the Buckling mode (iparam(7) = 4).

Generalized eigenvalue problem (bmat = ’G’)
in the Cayley mode (iparam(7) = 5).

Table A.11: Band storage drivers for non-symmetric eigenvalue problems

BAND DRIVER

PROBLEM SOLVED

dnbdri

dnbdr2

dnbdr3

dnbdr4

dnbdrb

dnbdré

Standard eigenvalue problem (bmat = ’I°)
in the regular mode (iparam(7) = 1).
Standard eigenvalue problem (bmat = ’I°)
in a shift-invert mode (iparam(7) = 3).
Generalized eigenvalue problem (bmat = ’G’)
in the regular inverse mode (iparam(7) = 2).
Generalized eigenvalue problem (bmat = ’G’)
in a real shift-invert mode (iparam(7) = 3).

Standard eigenvalue problem (bmat = °I?)

in a complex shift invert mode (iparam(7) = 4).

Generalized eigenvalue problem (bmat = ’G’)

in a complex shift invert mode (iparam(7) = 4).

A.4. BAND DRIVERS 108

Table A.12: Band storage drivers for Complex arithmetic eigenvalue problems.

BAND DRIVER PROBLEM SOLVED

znbdri Standard eigenvalue problem (bmat = ’I°)
in the regular mode (iparam(7) = 1).
znbdr2 Standard eigenvalue problem (bmat = ’I°)

in a shift-invert mode (iparam(7) = 3).

znbdr3 Generalized eigenvalue problem (bmat = ’G’)
in the regular inverse mode (iparam(7) = 2).

znbdr4 Generalized eigenvalue problem (bmat = ’G’)
in a shift-invert mode (iparam(7) = 3).

A.4.1 Selecting a Band Storage Driver

Several drivers may be used to solve the same problem. However, one driver
may work better or may be easier to modify than the other depending on the
nature of the application. The decision of what to use should be based on the
type of problem to be solved and the part of the spectrum that is of interest.
Typically, regular mode drivers can be used to find extremal eigenvalues and
shift-invert drivers are used to find interior eigenvalues or extremal eigenvalues
that are clustered.

All of the drivers discussed in the previous sections are available in band
form. For more detail on a particular mode, select the driver from the appro-
priate section above and then use its banded counterpart. For example, if the
appropriate general driver is dndrv4 then the corresponding band driver would
be dnbdr4. The primary difference between these two is that dnbdr4 has been
derived from dndrv4 by modifying it to use band storage and LAPACK band
factorization routines.

A.4.2 Store the matrix correctly

The band routines assume the matrix A and M are stored in LAPACK band
form. In the following we used AB and M B to denote A and B stored in band
form. If the matrix A has kl subdiagonals and ku superdiagonals, then the
ijth element of A a;; is stored in AB(kl+ku+1+1i—j,7) for maz(1, j—ku) <
i < min(m,j+ kl). An example of a band matrix A with k&l =2, ku = 1 is

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 109

illustrated below.

ayy
a21
A = asy

* * * * *

a

12 * * * * *

@22 @23 * a a a a
12 23 34 45

a3z 33 34 — AB =

@11 G2 a33 Q44 0Uss
@21 Q32 Q43 G54 *
a3y G4 0as53 * *

(g Q43 (G44 G45
53 (G54 G55

The elements marked * in the matrix AB need not be set.

A.4.3 Modify problem dependent variables

These variables include the following

n
nev
ncv
which

sigma

sigmar

sigmai

The dimension of the problem.

The number of eigenvalues needed.

The length of the Arnoldi factorization.
Part of the spectrum that is of interest.

Real shift used in dsbdr2 and dsbdr4, or complex shift used in
znbdr2 and znbdr4.

The real part of the shift used in a real nonsymmetric shift invert
mode driver (dnbdr2, dnbdr4, dnbdr5, dnbdré.)

The imaginary part of the shift used in a real nonsymmetric shift
invert mode driver (dnbdr5, dnbdr6). It should be set to zero
in dnbdr2 and dndrv4.

A.4.4 Modify other variables if necessary

The following variables are also set in all drivers. Their usage is described in
Chapters 2 and 3. In most cases, they do not need to be changed.

lworkl

tol

ido

info

Must be set to at least ncv*ncv+3*ncv.

Usually set to zero. It can be changed depending on the accu-
racy desired. Typically, the smaller this value the more work is
required to satisfy the stopping criteria. However, setting this
value too large may cause eigenvalues to be missed when they
are multiple or very tightly clustered.

Must be set to 0 before entering dnaupd.

Usually set to 0. In this case, a random starting vector is gen-
erated to start the Arnoldi iteration. If the user decides to use
other starting vector, this value should be set to 1, and the start-
ing vector should be provided in the array resid.

A.5. THE SINGULAR VALUE DECOMPOSITION 110

bmat Either I’ or G’ depending on the problem to be solved. This
variable has been set appropriately in each driver. The user
should not change its value.

iparam(1) Usually set to 1. This indicates that ezact shift strategy is used
in the computation. For a discussion on shift strategy see § 4.4.1
of Chapter 4.

iparam(3) Maximum iterations allow. It is set to 300 in all drivers. But it
can be reset to any reasonable value.

iparam(7) Indicate algorithmic mode. This variable has been set appropri-
ately in each driver. The user should not change its value.

rvec Indicate whether eigenvector is needed. It is set to .true. in all
drivers. If no eigenvector is needed, this may be set to .false.

A.4.5 Accuracy checking

Once the eigenvalues and eigenvectors have been obtained, the user may check
the accuracy of the result by computing the direct residuals ||Ax — Ax]|, and
||Ax — AMx||, for a standard and generalized eigenvalue problem, respectively.

A.5 The Singular Value Decomposition

Every rectangular matrix A € R™*" with m > n may be factored into the
form

(A.5.1) A =UsVT

where UTU = VTV = I,, are matrices with orthonormal columns and the
diagnoal matrix S = diag(oy, 03, -+, 0,). The numbers 0y > 09 > --- > 0, >
0 are called the singular values of A. The columns of U are the left singular
vectors and the columns of 'V are the right singular vectors of A. This is the
so-called “short form” of the Singular Value Decompositon (SVD) of A.

The relationship (A.5.1) may be manipulated using orthogonality to reveal
that

(A.5.2) ATA =VSs?VT with U=AVS™,

if 0, > 0. Thus selected singular values and the corresponding right singular
vectors may be computed by finding eigenvalues and vectors for the n x n
matrix ATA.

In many applications, one is iterested in computing a few (say k) of the
largest singular values and corresponding vectors. If Uy, V} denote the leading
k-columns of U and V respectively, and if S; denotes the leading principal
submatrix of S then

A, =U.S, VT

APPENDIX A. TEMPLATES AND DRIVER ROUTINES 111

Figure A.2: Compute w < ATAv by Blocks

Initialize w < 0;

For j =1,2,3,...0,
C <+« A;; % Read next block of A%
z « Cv;
W — W+ CTZ;

End _For

is the best rank-k approximation to A in both the 2-norm and the Frobenius
norm. Often a very small £ will suffice to approximate important features of
the original A or to approximately solve least squares problems involving A.

This partial SVD may be computed efficiently using ARPACK subroutine
_saupd in mode = 1 with which = ’LA’ and taking

0P =ATA and B=1
Of course, the action of w + 0Pv should be computed with the steps
1. Matrix-vector multiply z + Av.
2. Matrix-vector multiply w « ATz,

Also, note that if the matrix A is huge and must be stored on a peripheral
device, then A may be read in by blocks to achieve the action of w < 0OPv
using the fact that

£
O0Pv = Z AjTAjV7
j=1
where AT = (AT AT ... AT) to obtain the loop shown in Figure A.2.

The drivers illustrate how to compute the leading £ terms of the SVD as
just described. The left singular vectors are recovered from the right singular
vectors. As long as the largest singular values are not multiple or tightly
clusterd, there should be no problem in obtaining numerically orthogonal left
singular vectors from the computed right singular vectors. However, there is
a way to get the both the left and right singular vectors directly. This is to

define
0P — 0 A
“VAT o
and utilize the fact that

(5 2)(8)-(9):

to extract the columns of Uy from the first m components of the converged
eigenvectors of OP and the columns of Vi from the remaining n components. If

A.5. THE SINGULAR VALUE DECOMPOSITION 112

this scheme is used, it is important to set which = ’LA’ because the blocked
matrix OP will have both ¢; and —o; as eigenvalues for j =1,2,---,n.

We only provide the first approach in the ARPACK drivers. We also should
mention that in case you have a matrix A with m < n then replace A with
AT in the above discussion and reverse the roles of U and V.

A.5.1 The SVD Drivers

The drivers for computing the singular value decomposition are of the form
Xsvd where X denotes the precision and data type,

s single precision
d double precision.

Of course, the SVD is defined for complex matrices as well and it is a
straightforward matter to convert the real arithmetic driver to a corresponding
complex arithmetic driver.

These drivers may be easily modified to estimate the 2-norm condition
number r2(A) = ZL by setting which = *BE’. This will ask for a few of the
smallest and a few of the largest singular values simultaneously. The condition
number could then be estimated by taking the ratio of the largest and smallest
singular values.

Since these drivers are simply special cases of dsdrvi, the parameter set-
tings will not be described further. The only cautionary note is that the
parameter which may be set to >SA’ if desired but this is not recommended if
it is expected that A will be nearly rank deficient.

Appendix B

Tracking the progress of
ARPACK

This appendix describes two mechanisms that are helpful in debugging and
also for understanding performance issues and convergence behavior. We shall
discuss the trace facility that is included as part of the ARPACK codes. We
also describe how to include a check pointing capability for longer runs that
may require intermittent interruptions or recovery from system crashes.

B.1 Obtaining Trace Output

ARPACK provides a means to trace the progress of the computation as it
proceeds. Various levels of output may be specified from no output, level =
0, to voluminous, level = 3. The following statements may be used within the
calling program to initiate and request this output.

include ’debug.h’
ndigit = -3

logfil
msgets
msaitr

1]
O O O, OO OO,

msapps
msaupd
msaup?2
mseigt
mseupd =

The parameter logfil specifies the logical unit number of the output file. The
parameter ndigit specifies the number of decimal digits and the width of the
output lines. A positive value of ndigit specifies that 132 columns are used
during output and a negative value specifies eighty columns are to be used.
The values of the remaining parameters indicate the output levels from the
indicated routines.

For the above example, msaitr indicates the level of output requested
for the subroutine ssaitr or dsaitr. The above configuration will give a

113

B.1. OBTAINING TRACE OUTPUT 114

Figure B.1: Sample output produced by dsaupd.

= Symmetric implicit Arnoldi update code =
= Version Number: 2.1 =
= Version Date: 11/15/95 =

Total number update iterations = 8
Total number of OP*x operations = 1256
Total number of B*x operations = 0
Total number of reorthogonalization steps = 125
Total number of iterative refinement steps = 0
Total number of restart steps = 0
Total time in user 0OP*x operation = 0.020002
Total time in user B*x operation = 0.000000
Total time in Arnoldi update routine = 0.210021
Total time in ssaup2 routine = 0.190019
Total time in basic Arnoldi iteration loop = 0.110011
Total time in reorthogonalization phase = 0.070007
Total time in (re)start vector generation = 0.000000
Total time in trid eigenvalue subproblem = 0.040004
Total time in getting the shifts = 0.000000
Total time in applying the shifts = 0.040004
Total time in convergence testing = 0.000000

breakdown of the number of matrix vector products required, the total number
of iterations, the number of re-orthogonalization steps and an estimate of the
time spent in each routine and phase of the computation. The output displayed
by Figure B.1 is produced.

The user is encouraged to experiment with the other settings once some
familiarity has been gained with the routines. The sample drivers discussed in
Chapter 2 use the trace debugging capability.

The include statement sets up the storage declarations that are solely asso-
ciated with this trace debugging feature. The structure of debug.h is displayed
in Figure B.2. The parameters on the line starting with msaupd are for the sym-
metric codes, while the next two lines are for the nonsymmetric and complex

arithmetic codes, respectively. A comprehensive break down of each parameter
is listed in Table B.1.

APPENDIX B. TRACKING THE PROGRESS OF ARPACK 115

Table B.1: Description of the message level settings for ARPACK.

Routine

Level

Description

mYaupd

1

Print the total number of iterations taken, the number
of converged Ritz values, the Ritz values and corres-
ponding Ritz estimates, and various timing statistics.

mYaup2

Print the current iteration and the number of converged
Ritz values. Upon exit, print the number of converged
Ritz values, the Ritz values and estimates.

Print the length of the Arnoldi extended factorization,
the B—norm of its residual vector. Print NEV and NP,
the Ritz values and estimates at each iteration.

Print the real and imaginary parts of all the Ritz

values and associated Ritz estimates, NEV, NP, NUMCNV,
NCONV. Print the shifts. If the exact shift strategy is
used, also print the associated Ritz estimates of the
shifts. Print the B—norm of the residual of the
compressed factorization and the compressed upper
Hessenberg matrix.

mYaitr

Notification of a restart.

Print the number of Arnoldi vector being generated and
the B—norm of the current residual.

Print the columns of the Hessenberg matrix as

they are generated, reorthogonalization and iterative
refinement information, the final upper Hessenberg
matrix of order K+NEV, and VI Bf;/||f;||B.

mYeigh

Print the last row of the Schur matrix for H, and the
last row of the eigenvector matrix for H.

Print the initial upper Hessenberg matrix, the computed
eigenvalues associated Ritz estimates.

mYapps

Print information about where deflation occurred.
Print sigmak, betak, order of the final Hessenberg
matrix, and the final compressed upper Hessenberg
matrix.

Print implicit application of shift number, real and
imaginary part of the shift, and the indices of the
submatrix that the shift is applied.

mYeupd

Print the NCV eigenvalues. Print the final
set of converged Ritz values.
Print the reordered eigenvalues.

B.2. CHECK POINTING ARPACK 116

Figure B.2: The include file debug.h.

c
c\SCCS Information: @(#)
¢ FILE: debug.h SID: 2.3 DATE OF SID: 11/16/95 RELEASE: 2

O
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=

3]
wn
®
®
Q.
®
on
c

[0¢]
Q.
1)
I3}
'_h
)
H
Q.
1)
3]
c
3
®
=]
ot
)
=
e
o
=]

O
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=

integer 1logfil, ndigit, mgetvO,
msaupd, msaup2, msaitr, mseigt, msapps, msgets,
mseupd, mnaupd, mnaup2, mnaitr, mneigh, mnapps,
mngets, mneupd, mcaupd, mcaup2, mcaitr, mceigh,

L5 =

mcapps, mcgets, mceupd

common /debug/
logfil, ndigit, mgetvO,
msaupd, msaup2, msaitr, mseigt, msapps, msgets,
mseupd, mnaupd, mnaup2, mnaitr, mneigh, mnapps,
mngets, mneupd, mcaupd, mcaup2, mcaitr, mceigh,

R

mcapps, mcgets, mceupd

B.2 Check Pointing ARPACK

There are several situations where it would be desirable to have a mechanism
to recover from an unexpected interruption in a computation. One way to
accomplish this is to save the state of the computation every so often at regular
intervals or check points. In case of an interruption, the computation may be
resumed from the last point before the fault occurred. This section explains
how to implement this check pointing with the ARPACK codes. Familiarity with
the ARPACK codes and with the reverse communication protocol is assumed.

There are two major reasons why check pointing might be done. The
first, is that the computation is sufficiently time consuming (say at least a
day) that the user might want to save the state of the computation in case
of hardware/system failures. The second is that the user exceeds the maxi-
mum number of iterations initially set and the user may desire to continue the
computation to convergence without starting over completely. For example,
the user initially set NEV=6 and after IPARAM(3) = MXITER only five Ritz val-
ues satisfy the convergence requirement specified by TOL. The user would then
increase the value of MXITER and resume the computation.

We briefly explain the procedure for check pointing the A RPACK codes us-
ing the double precision symmetric code dsaupd as an example. The example
shows how to save the state of the computation every 10 iterations. This will
require a minor modification to the source codes dsaupd.f and dsaup2.f found

APPENDIX B. TRACKING THE PROGRESS OF ARPACK 117

Figure B.3: Reading in a previous state with the example program dssave.

O o o0 o0

99 open(12,err=199,file=’arpack_state’,status=’0ld’)
print*,’dssave: input existing state’
iounit = 12
read(iounit,8000) ido, bmat, n, which, nev, tol, ncv,
& iparam, ipntr, lworkl, info, np,
& rnorm, nconv, nev2
valfmt = ’(3e22.16)°
read(iounit,valfmt) (resid(i), i
ntmp = 3*n
read(iounit,valfmt) (workd(i), i = 1, ntmp)
read(iounit,valfmt) (workl(i), i = 1, lworkl)
do 7002 j=1,ncv
read(iounit,valfmt) (v(i,j), i = 1, n)
7002 continue

1, n)

in the ARPACK subdirectory SRC (see Chapter 1). These modified codes are al-

ready available at the ftp site in the directory pub/software/ARPACK/CONTRIBUTED.
The driver routine is called dssave. When executed, control first seeks

the file arapck_state that is located in the current working directory. This is

done by the following

a o o0 o0 o0
o
el
o
=}
o+
=
[0}
[oN)
[
(2
[
Hh
[
=
[}
o+
=
[\
ot
=
.
=
=
2]
[}
<
[0}
(23
=
0]
]
(3
[\
ot
[}

open(12,err= 99,file=’arpack_state’,status=’new’)

This statement attempts to open the file arpack_state. Since the open
statement contains the status=’new’ flag, an error is encountered if a file
named arpack_state exists and a jump to the statement labeled 99 is taken.
The open statement successfully occurs only if there is no file named arpack _state.
The statements immediately following the open statement are executed.

The section of code listed in Figure B.3 is executed when the file arpack_state
exists. The code reads in a previous state of computation.

The section of code listed in Figure B.4 writes the state of the computation
when ido=-2. This occurs when the number of iterations equals 10. This is
all accomplished within the modified subroutine dsaup2. The do 100 restrt
= 1,mxstrt will allow up to mxstrt writes of the state of the computation
to the file arpack state. Note that before each save of the computation,

B.2. CHECK POINTING ARPACK 118
Figure B.4: Writing a state with the example program dssave.
c
c hmmmmmm e [/
c | Start of the checkpointing loop |
c === h
c
mxstrt = 3
do 100 restrt = 1,mxstrt
c
c h———mmmm e [/
c | MAIN L OOP (Reverse communication loop) |
c === h
c
10 continue
c
c h———mmm [/
c | Repeatedly call the routine DSAUPD and take |
c | actions indicated by parameter IDO until |
c | either convergence is indicated or maxitr |
c | has been exceeded. |
c h———mm [/
c
call dsaupd (ido, bmat, n, which, nev, tol, resid,
& ncv, v, ldv, iparam, ipntr, workd, workl,
& lworkl, info, np, rnorm, nconv, nev2)
c

the file arpack_state is rewound resulting in an overwrite of the contents

arpack_state.

of

APPENDIX B. TRACKING THE PROGRESS OF ARPACK 119

Figure B.5: Writing a state with the example program dssave contd.

if (ido .eq. -2) then
c
c === e o h
c | After maxitr iterations without convergence, |
c | output the computed quantities to the file state. |
c h=mmmmmm h
c
rewind(iounit,err=399)
write(iounit,8000) ido, bmat, n, which, nev, tol,
& ncv, iparam,
& ipntr, lworkl, info,
& np, rnorm, nconv, nev2
8000 format(i2,al,i14,a2,i14,d23.16,16x,/,
& 12i5,12x,/,
& 13i5,7x,/,
& i5,d23.16,1i5,i5)
ifmt = 16
len = ifmt + 6
nperli = 3
write(valfmt,8001) nperli,len,ifmt
8001 format(1h(,i1,1he,i2,1h.,i2,1h))
write(iounit,valfmt) (resid(i), i = 1, n)
ntmp = 3*n
write(iounit,valfmt) (workd(i), i = 1, ntmp)
write(iounit,valfmt) (workl(i), i = 1, lworkl)
do 8002 j=1,ncv
write(iounit,valfmt) (v(i,j), i = 1, n)
8002 continue
go to 100
endif

B.2. CHECK POINTING ARPACK 120

Appendix C

The XYaupd ARPACK

Routines

In this appendix we exhibit the headers of the three main computational rou-
tines dsaupd, dnaupd, and znaupd. Although these codes are nearly identical
in structure and usage, there are a number of differences that are problem
dependent. Therefore, each is listed separately.

Information on the calling sequence, input and output parameters, storage
and data types may be found here. Also, error flags and warnings are listed.

121

C.1 DSAUPD

c---

c\BeginDoc

C

c\Name: dsaupd

C

c\Description:

C

NN O0O0O0O00O0O00000O00000000000000A0O00000000O0O0O

Reverse communication interface for the Implicitly Restarted Arnoldi
Iteration. For symmetric problems this reduces to a variant of the Lanczos
method. This method has been designed to compute approximations to a

few eigenpairs of a linear operator OP that is real and symmetric

with respect to a real positive semi-definite symmetric matrix B,

i.e.

B*0P = (OP’)#B.
Another way to express this condition is
< x,0Py > = < OPx,y > where < z,w > = z’Bw

In the standard eigenproblem B is the identity matrix.
(A’ denotes transpose of A)

The computed approximate eigenvalues are called Ritz values and
the corresponding approximate eigenvectors are called Ritz vectors.

dsaupd is usually called iteratively to solve one of the
following problems:

Mode 1: A#x = lambda*x, A symmetric
===> 0P = A and B = 1.

Mode 2: Asx = lambda*M*x, A symmetric, M symmetric positive definite
> OP = inv[M]*A and B = M.
> (If M can be factored see remark 3 below)

Mode 3: = lambda*M*x, K symmetric, M symmetric positive semi-definite
> OP = (inv[K - sigma*M])*M and B = M.

> Shift-and-Invert mode

Mode 4: K#x = lambda*KG*x, K symmetric positive semi-definite,
KG symmetric indefinite

===> 0P = (inv[K - sigma*KG])*K and B = K.

> Buckling mode

Mode 5: A#x = lambda*M*x, A symmetric, M symmetric positive semi-definite
> 0P = inv[A - sigma*M]*[A + sigma*M] and B = M.
===> Cayley transformed mode

NOTE: The action of w <- inv[A - sigma*Ml*v or w <- inv[Ml#v
should be accomplished either by a direct method
using a sparse matrix factorization and solving

[A - sigma*Ml*w = v or M¢w = v,
or through an iterative method for solving these
systems. If an iterative method is used, the
convergence test must be more stringent than
the accuracy requirements for the eigenvalue
approximations.

\Usage:
call dsaupd
(IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
IPNTR, WORKD, WORKL, LWORKL, INFO)

\Arguments
IDO Integer. (INPUT/OUTPUT)
Reverse communication flag. IDO must be zero on the first
call to dsaupd. IDO will be set internally to
indicate the type of operation to be performed. Control is
then given back to the calling routine which has the
responsibility to carry out the requested operation and call
dsaupd with the result. The operand is given in
WORKD (IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
(If Mode = 2 see remark 5 below)
0: first call to the reverse communication interface
-1: compute Y = 0P * X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y.
This is for the initialization phase to force the
starting vector into the range of OP.
compute Y = 0P * Z and Z = B * X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y,
IPNTR(3) is the pointer into WORKD for Z.
compute Y = B % X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y.
compute the IPARAM(8) shifts where
IPNTR(11) is the pointer into WORKL for
placing the shifts. See remark 6 below.
ID0 = 99: done
After the initialization phase, when the routine is used in
either the "shift-and-invert' mode or the Cayley transform
mode, the vector B # X is already available and does not
need to be recomputed in forming OP*X.

IDO0

u
-

D0

u
N

nOonooaoac0c0O0O0O0O0O0O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODO
—
o
o
n
w

adnvsa o

¢el

aonooaooo0o0o0o0o0o00aoaaaa

Ao O0N00000000000000000000000a000a0a

BMAT

WHICH

NEV

TOL

RESID

NCV

Character*1. (INPUT)
BMAT specifies the type of the matrix B that defines the
semi-inner product for the operator OP.

B = I’ -> standard eigenvalue problem A*x = lambda*x
B = G’ -> generalized eigenvalue problem A*x = lambda*B*x
Integer. (INPUT)

Dimension of the eigenproblem.

Character*2. (INPUT)
Specify which of the Ritz values of OP to compute.

"LA’ - compute the NEV largest (algebraic) eigenvalues.

’SA’ - compute the NEV smallest (algebraic) eigenvalues.

LM’ - compute the NEV largest (in magnitude) eigenvalues.

’SM> - compute the NEV smallest (in magnitude) eigenvalues.

’BE’ - compute NEV eigenvalues, half from each end of the
spectrum. When NEV is odd, compute one more from the

high end than from the low end.
(see remark 1 below)

Integer. (INPUT)
Number of eigenvalues of OP to be computed. O < NEV < N.

Double precision scalar. (INPUT)
Stopping criterion: the relative accuracy of the Ritz value
is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I)).
If TOL .LE. 0. is passed a default is set:
DEFAULT = DLAMCH(’EPS’) (machine precision as computed
by the LAPACK auxiliary subroutine DLAMCH)
Double precision array of lengthN. (INPUT/OUTPUT)
On INPUT:
If INFO .EQ. O, a random initial residual vector is used.
If INFO .NE. O, RESID contains the initial residual vector,
possibly from a previous run.
On OUTPUT:
RESID contains the final residual vector.

Integer. (INPUT)

Number of columns of the matrix V (less than or equal to N).
This will indicate how many Lanczos vectors are generated

at each iteration. After the startup phase in which NEV
Lanczos vectors are generated, the algorithm generates
NCV-NEV Lanczos vectors at each subsequent update iteration.
Most of the cost in generating each Lanczos vector is in the
matrix-vector product OP#x. (See remark 4 below).

Double precision N by NCY array. (OUTPUT)
The NCV columns of V contain the Lanczos basis vectors.

aoaa

o000 00O000O00000000000000000000000000000000aO0a0

LDV

IPARAM

Integer. (INPUT)
Leading dimension of V exactly as declared in the calling
program.

Integer array of length 11. (INPUT/OUTPUT)

IPARAM(1) = ISHIFT: method for selecting the implicit shifts.

The shifts selected at each iteration are used to restart

the Arnoldi iteration in an implicit fashion.

ISHIFT = 0: the shifts are provided by the user via
reverse communication. The NCV eigenvalues of
the current tridiagonal matrix T are returned in
the part of WORKL array corresponding to RITZ.
See remark 6 below.

: exact shifts with respect to the reduced
tridiagonal matrix T. This is equivalent to
restarting the iteration with a starting vector
that is a linear combination of Ritz vectors
associated with the "wanted" Ritz values.

ISHIFT

n
-

IPARAM(2) = LEVEC
No longer referenced. See remark 2 below.

IPARAM(3) = MXITER
On INPUT:
On OUTPUT: actual number of Arnoldi update iterations taken.

IPARAM(4) = NB: blocksize to be used in the recurrence.
The code currently works only for NB = 1.

IPARAM(5) = NCONV: number of 'converged'" Ritz values.
This represents the number of Ritz values that satisfy
the convergence criterion.

IPARAM(6) = IUPD
No longer referenced. Implicit restarting is ALWAYS used.

IPARAM(7) = MODE

On INPUT determines what type of eigenproblem is being solved.
Must be 1,2,3,4,5; See under \Description of dsaupd for the
five modes available.

IPARAM(8) = NP
When ido = 3 and the user provides shifts through reverse
communication (IPARAM(1)=0), dsaupd returns R, the number

of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark
6 below.

IPARAM(9) = NUMOP, IPARAM(10) = NUMOB, IPARAM(11) = NUMREO,
OUTPUT: NUMOP = total number of OP*x operations,

maximum number of Arnoldi update iterations allowed.

SHNLLOOY MOVdUHY AddAVAX HHL "D XIANHddVY

€cl

nOooo0o00O0O0O0OO0OO0OOOOOOOOOOOOOOOOODOOOOOODOOOOOOOOOOOOOOQORO

IPNTR

WORKD

WORKL

LWORKL

INFO

NUMOPB = total number of B#x operations if BMAT=’G’,
NUMREO = total number of steps of re-orthogonalization.

Integer array of length 11. (OUTPUT)
Pointer to mark the starting locations in the WORKD and WORKL
arrays for matrices/vectors used by the Lanczos iteration.

IPNTR(1): pointer to the current operand vector X in WORKD.
IPNTR(2): pointer to the current result vector Y in WORKD.
IPNTR(3): pointer to the vector B * X in WORKD when used in

the shift-and-invert mode.
IPNTR(4): pointer to the next available location in WORKL

that is untouched by the program.
IPNTR(5) : pointer to the NCV by 2 tridiagonal matrix T in WORKL.
IPNTR(6): pointer to the NCV RITZ values array in WORKL.
IPNTR(7): pointer to the Ritz estimates in array WORKL associated

with the Ritz values located in RITZ in WORKL.

Note: IPNTR(8:10) is only referenced by dseupd. See Remark 2.
IPNTR(8) : pointer to the NCV RITZ values of the original system.
IPNTR(9): pointer to the NCV corresponding error bounds.
IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors

of the tridiagonal matrix T. Only referenced by

dseupd if RVEC = .TRUE. See Remarks.
Note: IPNTR(8:10) is only referenced by dseupd. See Remark 2.
IPNTR(11): pointer to the NP shifts in WORKL. See Remark 6 below.

Double precision work array of length 3*N. (REVERSE COMMUNICATION)
Distributed array to be used in the basic Arnoldi iteration

for reverse communication. The user should not use WORKD

as temporary workspace during the iteration. Upon termination
WORKD(1:N) contains B#RESID(1:N). If the Ritz vectors are desired
subroutine dseupd uses this output.

See Data Distribution Note below.

Double precision work array of length LWORKL. (OUTPUT/WORKSPACE)
Private (replicated) array on each PE or array allocated on
the front end. See Data Distribution Note below.

Integer. (INPUT)
LWORKL must be at least NCV*#2 + 8+NCV

Integer. (INPUT/OUTPUT)

If INFO .EQ. O, a randomly initial residual vector is used.

If INFO .NE. O, RESID contains the initial residual vector,

possibly from a previous run.

Error flag on output.

0: Normal exit.

1: Maximum number of iterations taken.
All possible eigenvalues of OP has been found. IPARAM(S)
returns the number of wanted converged Ritz values.

Ao oO0O0O0O0O0OOO0O0O0O0O0O0000O000000O0O00000000000000O00O000O0O0O0O0O

= 2: No longer an informational error. Deprecated starting
with release 2 of ARPACK.
= 3: No shifts could be applied during a cycle of the
Implicitly restarted Arnoldi iteration. One possibility
is to increase the size of NCV relative to NEV.
See remark 4 below.
-1: N must be positive.
-2: NEV must be positive.
-3: NCV must be greater than NEV and less than or equal to N.
-4: The maximum number of Arnoldi update iterations allowed
must be greater than zero.
-5: WHICH must be one of ’LM’, ’SM’, ’LA’, ’SA’
-6: BMAT must be one of ’I’ or ’G’.
-7: Length of private work array WORKL is not sufficient.
-8: Error return from trid. eigenvalue calculation;
Informational error from LAPACK routine dsteqr.
-9: Starting vector is zero.
-10: IPARAM(7) must be 1,2,3,4,5.
-11: IPARAM(7) = 1 and BMAT = ’G’ are incompatable.
-12: IPARAM(1) must be equal to 0 or 1.
-13: NEV and WHICH = ’BE’ are incompatable.
-9999: Could not build an Arnoldi factorization.
IPARAM(S) returns the size of the current Arnoldi
factorization. The user is advised to check that
enough workspace and array storage has been allocated.

or ’BE’.

\Remarks
1.

The converged Ritz values are always returned in ascending
algebraic order. The computed Ritz values are approximate
cigenvalues of OP. The selection of WHICH should be made

with this in mind when Mode = 3,4,5. After convergence,
approximate eigenvalues of the original problem may be obtained
with the ARPACK subroutine dseupd.

If the Ritz vectors corresponding to the converged Ritz values

are needed, the user must call dseupd immediately following completion

of dsaupd. This is new starting with version 2.1 of ARPACK.

If M can be factored into a Cholesky factorization M = LL’
then Mode = 2 should not be selected. Instead one should use
Mode = 1 with OP = inv(L)#A*inv(L’). Appropriate triangular
linear systems should be solved with L and L’ rather

than computing inverses. After convergence, an approximate
eigenvector z of the original problem is recovered by solving
L’z = x where x is a Ritz vector of OP.

. At present there is no a-priori analysis to guide the selection
The only formal requirement is that NCV > NEV.

of NCV relative to NEV.

However, it is recommended that NCV .ge. 2#NEV. If many problems of

the same type are to be solved, one should experiment with increasing

adnvsa 1o

vel

nooo0oaN0cO0O0O0O0OOO0OOOOOOOOOO0OOON

NCV while keeping NEV fixed for a given test problem. This will
usually decrease the required number of OP#x operations but it

also increases the work and storage required to maintain the orthogonal
basis vectors. The optimal 'cross-over' with respect to CPU time

is problem dependent and must be determined empirically.

5. If IPARAM(7) = 2 then in the Reverse communication interface the user
must do the following. When IDO = 1, Y = OP # X is to be computed.
When IPARAM(7) = 2 OP = inv(B)#A. After computing A*X the user
must overwrite X with A*X. Y is then the solution to the linear set
of equations B*Y = A*X.

6. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the
NP = IPARAM(8) shifts in locations:
1 WORKL(IPNTR(11))
2 WORKL(IPNTR(11)+1)

NP WORKL(IPNTR(11)+NP-1).

The eigenvalues of the current tridiagonal matrix are located in
WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1). They are in the

order defined by WHICH. The associated Ritz estimates are located in
WORKL (IPNTR(8)), WORKL(IPNTR(8)+1), , WORKL(IPNTR(8)+NCV-1).

C.2 DNAUPD

c\BeginDoc

C

c\Name: dnaupd

C

c\Description:

C

nooooaaooooaaon

Reverse communication interface for the Implicitly Restarted Arnoldi
iteration. This subroutine computes approximations to a few eigenpairs

of a linear operator '"OP" with respect to a semi-inner product defined by
a symmetric positive semi-definite real matrix B. B may be the identity
matrix. NOTE: If the linear operator "OP'" is real and symmetric

with respect to the real positive semi-definite symmetric matrix B,

i.e. B#0P = (OP’)#B, then subroutine ssaupd should be used instead.

The computed approximate eigenvalues are called Ritz values and
the corresponding approximate eigenvectors are called Ritz vectors.

dnaupd is usually called iteratively to solve one of the
following problems:

Mode 1: A#x = lambda*x.
===> 0P = A and B =1.

Mode 2: A*x = lambda*M*x, M symmetric positive definite
> 0P = inv[MI#A and B = M.
> (If M can be factored see remark 3 below)

Mode 3: A*x = lambda*M*x, M symmetric semi-definite

===> 0P = Real_Part{ inv[A - sigma*Ml*M } and B = M.

===> shift-and-invert mode (in real arithmetic)

If OP#x = amu*x, then

amu = 1/2 * [1/(lambda-sigma) + 1/(lambda-conjg(sigma)) 1.

Note: If sigma is real, i.e. imaginary part of sigma is zero;
Real_Part{ inv[A - sigma*M]#M } == inv[A - sigma*M]*M
amu == 1/(lambda-sigma).

Mode 4: A*x = lambda*M*x, M symmetric semi-definite

= Imaginary_Part{ inv[A - sigma*M]#M } and B = M.
===)> shift-and-invert mode (in real arithmetic)

If OP#x = amu#¥x, then

amu = 1/2i * [1/(lambda-sigma) - 1/(lambda-conjg(sigma)) 1.

Both mode 3 and 4 give the same enhancement to eigenvalues close to
the (complex) shift sigma. However, as lambda goes to infinity,

the operator OP in mode 4 dampens the eigenvalues more strongly than
does OP defined in mode 3.

NOTE: The action of w <- inv[A - sigma*Ml#v or w <- inv[Ml#v
should be accomplished either by a direct method
using a sparse matrix factorization and solving

[A - sigma*Ml*u = v or M#u = v,
or through an iterative method for solving these
systems. If an iterative method is used, the
convergence test must be more stringent than
the accuracy requirements for the eigenvalue
approximations.

\Usage:
call dnaupd
(IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
IPNTR, WORKD, WORKL, LWORKL, INFO)

\Arguments
ID0 Integer. (INPUT/OUTPUT)
Reverse communication flag. IDO must be zero on the first
call to dnaupd. IDO will be set internally to
indicate the type of operation to be performed. Control is
then given back to the calling routine which has the

o000 0O00000000O00000000000000000000000000000000a0a0

SHNLLOOY MOVdUHY AddAVAX HHL "D XIANHddVY

gel

noOOo0O0O0O0O0O0O00O000O00000000000000000000000000000O0O0O0O0O0O-0O-O

BMAT

WHICH

NEV

TOL

responsibility to carry out the requested operation and call
dnaupd with the result. The operand is given in
WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
IDO
IDO

: first call to the reverse communication interface
compute Y = 0P * X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y.
This is for the initialization phase to force the
starting vector into the range of OP.
ID0 = 1: compute Y = 0P # Z and Z = B # X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y,
IPNTR(3) is the pointer into WORKD for Z.
ID0O = 2: compute Y = B % X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y.
ID0 = 3: compute the IPARAM(8) real and imaginary parts
of the shifts where INPTR(14) is the pointer
into WORKL for placing the shifts. See Remark

5 below.
ID0O = 4: compute Z = 0P % X
ID0O = 99: done

After the initialization phase, when the routine is used in
the '"shift-and-invert" mode, the vector B * X is already
available and does not need to be recomputed in forming OP*X.

Character*1. (INPUT)

BMAT specifies the type of the matrix B that defines the
semi-inner product for the operator OP.

BMAT = I’ -> standard eigenvalue problem A#x = lambda*x

BMAT = G’ -> generalized eigenvalue problem A*x = lambda*B*x

Integer. (INPUT)
Dimension of the eigenproblem.

Character*2. (INPUT)

LM’ -> want the NEV eigenvalues of largest magnitude.

’SM’ -> want the NEV eigenvalues of smallest magnitude.

’LR’> -> want the NEV eigenvalues of largest real part.

’SR’ -> want the NEV eigenvalues of smallest real part.

’LI’ -> want the NEV eigenvalues of largest imaginary part.
’SI’ -> want the NEV eigenvalues of smallest imaginary part.

Integer. (INPUT)
Number of eigenvalues of OP to be computed. O < NEV < N-1.

Double precision scalar. (INPUT)
Stopping criterion: the relative accuracy of the Ritz value
is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))

noOoo0o00O0O0O0OO0OO0OOOOOOOOOOOOOOOOOOO0OOOODOOOOOOOOOOO

RESID

NCV

LDV

IPARAM

where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
DEFAULT = DLAMCH(’EPS’) (machine precision as computed
by the LAPACK auxiliary subroutine DLAMCH)

Double precision array of lengthN. (INPUT/OUTPUT)
On INPUT:
If INFO .EQ. O, a random initial residual vector is used.
If INFO .NE. O, RESID contains the initial residual vector,
possibly from a previous run.
On OUTPUT:
RESID contains the final residual vector.

Integer. (INPUT)

Number of columns of the matrix V. NCV must satisfy the two
inequalities 2 <= NCVY-NEV and NCV <= N.

This will indicate how many Arnoldi vectors are generated

at each iteration. After the startup phase in which NEV

Arnoldi vectors are generated, the algorithm generates
approximately NCV-NEV Arnoldi vectors at each subsequent update
iteration. Most of the cost in generating each Arnoldi vector is
in the matrix-vector operation OP*x.

NOTE: 2 <= NCV-NEV in order that complex conjugate pairs of Ritz
values are kept together. (See remark 4 below)

Double precision array N by NCV. (OUTPUT)
Contains the final set of Arnoldi basis vectors.

Integer. (INPUT)
Leading dimension of V exactly as declared in the calling program.

Integer array of length 11. (INPUT/OUTPUT)

IPARAM(1) = ISHIFT: method for selecting the implicit shifts.

The shifts selected at each iteration are used to restart

the Arnoldi iteration in an implicit fashion.

ISHIFT = 0: the shifts are provided by the user via
reverse communication. The real and imaginary
parts of the NCV eigenvalues of the Hessenberg
matrix H are returned in the part of the WORKL
array corresponding to RITZR and RITZI. See remark
5 below.

ISHIFT = 1: exact shifts with respect to the current
Hessenberg matrix H. This is equivalent to
restarting the iteration with a starting vector
that is a linear combination of approximate Schur
vectors associated with the '"wanted" Ritz values.

IPARAM(2) = No longer referenced.

IPARAM(3) = MXITER

adnvNd '¢D

9¢l

anOono0on000O0O0O0O0O0O0O0OOOOO0O0O0O0O0O0OON

aooa

nooo0oo0o0o0oac000acaacac000000o0

IPNTR

On INPUT: maximum number of Arnoldi update iterations allowed.
On OUTPUT: actual number of Arnoldi update iterations taken.

IPARAM(4) = NB: blocksize to be used in the recurrence.
The code currently works only for NB = 1.

IPARAM(5) = NCONV: number of '"converged'" Ritz values.
This represents the number of Ritz values that satisfy
the convergence criterion.

IPARAM(6) = IUPD

No longer referenced. Implicit restarting is ALWAYS used.
IPARAM(7) = MODE

On INPUT determines what type of eigenproblem is being solved.
Must be 1,2,3,4; See under \Description of dnaupd for the
four modes available.

IPARAM(8) = NP

When ido = 3 and the user provides shifts through reverse
communication (IPARAM(1)=0), dnaupd returns R, the number

of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark
5 below.

IPARAM(9) = NUMOP, IPARAM(10) = NUMOB, IPARAM(11) = NUMREO,
OUTPUT: NUMOP = total number of OP#x operations,
NUMOPB = total number of B#x operations if BMAT='G’,
NUMRED = total number of steps of re-orthogonalization.

Integer array of length 14. (OUTPUT)
Pointer to mark the starting locations in the WORKD and WORKL
arrays for matrices/vectors used by the Arnoldi iteration.

IPNTR(1): pointer to the current operand vector X in WORKD.
IPNTR(2): pointer to the current result vector Y in WORKD.
IPNTR(3): pointer to the vector B # X in WORKD when used in
the shift-and-invert mode.
IPNTR(4): pointer to the next available location in WORKL
that is untouched by the program.
IPNTR(5): pointer to the NCV by NCV upper Hessenberg matrix
H in WORKL.
IPNTR(6): pointer to the real part of the ritz value array
RITZR in WORKL.
IPNTR(7): pointer to the imaginary part of the ritz value array
RITZI in WORKL.
IPNTR(8): pointer to the Ritz estimates in array WORKL associated

with the Ritz values located in RITZR and RITZI in WORKL.

Note: IPNTR(9:13)

IPNTR(9): pointer to the real part of the NCV RITZ values of the

is only referenced by dneupd. See Remark 2 below.

OO0 0O0O0O0O0O0O0000O0O000000000000000000000000000000000a0a0

WORKD

WORKL

LWORKL

INFO

original system.

IPNTR(10): pointer to the imaginary part of the NCV RITZ values of
the original system.
IPNTR(11): pointer to the NCV corresponding error bounds.
IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
Schur matrix for H.
IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
of the upper Hessenberg matrix H. Only referenced by
dneupd if RVEC = .TRUE. See Remark 2 below.
Note: IPNTR(9:13) is only referenced by dneupd. See Remark 2 below.

IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below.

Double precision work array of length 3#N.
Distributed array to be used in the basic Arnoldi iteration

for reverse communication. The user should not use WORKD

as temporary workspace during the iteration. Upon termination
WORKD(1:N) contains B*RESID(1:N). If an invariant subspace
associated with the converged Ritz values is desired, see remark
2 below, subroutine dneupd uses this output.

See Data Distribution Note below.

Double precision work array of length LWORKL. (OUTPUT/WORKSPACE)
Private (replicated) array on each PE or array allocated on
the front end. See Data Distribution Note below.

Integer. (INPUT)
LWORKL must be at least 3#NCV**2 + 6%NCV.

Integer. (INPUT/OUTPUT)

If INFO .EQ. O, a randomly initial residual vector is used.

If INFO .NE. O, RESID contains the initial residual vector,

possibly from a previous run.

Error flag on output.

0: Normal exit.

1: Maximum number of iterations taken.
All possible eigenvalues of OP has been found. IPARAM(S)
returns the number of wanted converged Ritz values.

= 2: No longer an informational error. Deprecated starting
with release 2 of ARPACK.
= 3: No shifts could be applied during a cycle of the

Implicitly restarted Arnoldi iteration. One possibility
is to increase the size of NCV relative to NEV.
See remark 4 below.
-1: N must be positive.
-2: NEV must be positive.
-3: NCV-NEV >= 2 and less than or equal to N.
-4: The maximum number of Arnoldi update iteration
must be greater than zero.
-5: WHICH must be one of ’LM’, ’SM’,
-6: BMAT must be one of ’I’ or ’G’.

'LR’, ’SR’, ’LI’, ’SI’

(REVERSE COMMUNICATION)

SHNLLOOY MOVdUHY AddAVAX HHL "D XIANHddVY

Lcl

nOooo0o00O0O0O0OO0O0OOOOOOOOOOOOOOOOOONOOOOOODOOOOOOOOOOOGOOORO

-7: Length of private work array is not sufficient.

-8: Error return from LAPACK eigenvalue calculation;

-9: Starting vector is zero.

-10: IPARAM(7) must be 1,2,3,4.

-11: IPARAM(7) = 1 and BMAT = ’G’ are incompatable.

-12: IPARAM(1) must be equal to 0 or 1.

-9999: Could not build an Arnoldi factorization.
IPARAM(S) returns the size of the current Arnoldi
factorization.

\Remarks
1.

The computed Ritz values are approximate eigenvalues of OP. The
selection of WHICH should be made with this in mind when

Mode = 3 and 4. After convergence, approximate eigenvalues of the
original problem may be obtained with the ARPACK subroutine dneupd.

If a basis for the invariant subspace corresponding to the converged Ritz

values is needed, the user must call dneupd immediately following
completion of dnaupd. This is new starting with release 2 of ARPACK.

If M can be factored into a Cholesky factorization M = LL’
then Mode = 2 should not be selected. Instead one should use
Mode = 1 with OP = inv(L)#A*inv(L’). Appropriate triangular
linear systems should be solved with L and L’ rather

than computing inverses. After convergence, an approximate
eigenvector z of the original problem is recovered by solving
L’z = x where x is a Ritz vector of OP.

. At present there is no a-priori analysis to guide the selection of NCV

relative to NEV. The only formal requirement is that NCV > NEV + 2.
However, it is recommended that NCV .ge. 2#NEV+1. If many problems of
the same type are to be solved, one should experiment with increasing
NCV while keeping NEV fixed for a given test problem. This will
usually decrease the required number of OP#x operations but it

also increases the work and storage required to maintain the orthogonal
basis vectors. The optimal '‘cross-over' with respect to CPU time

is problem dependent and must be determined empirically.

See Chapter 8 of Reference 2 for further information.

. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the

NP = IPARAM(8) real and imaginary parts of the shifts in locations

real part imaginary part
1 WORKL(IPNTR(14)) WORKL (IPNTR(14)+NP)
2 WORKL(IPNTR(14)+1) WORKL (IPNTR(14)+NP+1)
NP WORKL(IPNTR(14);NP-1) WORKL(IPNTR(14);2*NP-1).

Only complex conjugate pairs of shifts may be applied and the pairs

must be placed in consecutive locations. The real part of the
eigenvalues of the current upper Hessenberg matrix are located in

WORKL (IPNTR(6)) through WORKL(IPNTR(6)+NCV-1) and the imaginary part

in WORKL(IPNTR(7)) through WORKL(IPNTR(7)+NCV-1). They are ordered
according to the order defined by WHICH. The complex conjugate

pairs are kept together and the associated Ritz estimates are located in
WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... , WORKL(IPNTR(8)+NCV-1).

aaoooaaaao

C.3 ZNAUPD

c\BeginDoc
c
c\Name: znaupd

c
c\Description:

Reverse communication interface for the Implicitly Restarted Arnoldi
iteration. This is intended to be used to find a few eigenpairs of a
complex linear operator OP with respect to a semi-inner product defined

by a hermitian positive semi-definite real matrix B. B may be the identity
matrix. NOTE: if both OP and B are real, then dsaupd or dnaupd should

be used.

The computed approximate eigenvalues are called Ritz values and
the corresponding approximate eigenvectors are called Ritz vectors.
znaupd is usually called iteratively to solve one of the

following problems:

Mode 1: Axx = lambda*x.
===> 0P = A and B =1I.

Mode 2: Asx = lambda*M*x, M symmetric positive definite
===> 0P = inv[M]#A and B = M.
===> (If M can be factored see remark 3 below)

Mode 3: A#x = lambda*M#x, M symmetric semi-definite
===> (0P = inv[A - sigma*M]#M and B = M.
===> shift-and-invert mode
If OP*x = amu#x, then lambda = sigma + 1/amu.

NOTE: The action of w <- inv[A - sigma*Ml*v or w <- inv[Ml#v
should be accomplished either by a direct method
using a sparse matrix factorization and solving

SR I e R e N e I s ST B o N o N T o W o W o N o o B N o N s B s B s B S B o B s B e B o W S W 2}

AdNVNZ €0

8¢l

\Usage:
call znaupd

\Arguments

ID0
ID0

ID0

ID0

ID0

ID0
ID0

BMAT
BMAT

Ao aO0O000O0O000000O0O000000000000000000000000000000000a0

[A - sigma*Ml*w = v or M#w = v,
or through an iterative method for solving these
systems.
convergence test must be more stringent than
the accuracy requirements for the eigenvalue
approximations.

If an iterative method is used, the

(IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
IPNTR, WORKD, WORKL, LWORKL, RWORK, INFO)

IDO0 Integer. (INPUT/OUTPUT)
Reverse communication flag. IDO must be zero on the first
call to znaupd. IDO will be set internally to
indicate the type of operation to be performed. Control is
then given back to the calling routine which has the
responsibility to carry out the requested operation and call
znaupd with the result. The operand is given in
WORKD (IPNTR(1)), the result must be put in WORKD(IPNTR(2)).

0: first call to the reverse communication interface

-1: compute Y = 0P % X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y.
This is for the initialization phase to force the
starting vector into the range of OP.

1: compute Y = 0P # Z and Z = B % X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y,
IPNTR(3) is the pointer into WORKD for Z.

2: compute Y =M * X where
IPNTR(1) is the pointer into WORKD for X,
IPNTR(2) is the pointer into WORKD for Y.

3: compute and return the shifts in the first
NP locations of WORKL.

4: compute Z = 0P * X

99: done

After the initialization phase, when the routine is used in
the '"shift-and-invert' mode, the vector M * X is already
available and does not need to be recomputed in forming OP#X.

BMAT Character*1. (INPUT)
BMAT specifies the type of the matrix B that defines the
semi-inner product for the operator OP.

’I’ -> standard eigenvalue problem A*x = lambda*x
’G’ -> generalized eigenvalue problem A*x = lambda*Mx

Ao n0o000O0O0O0O0O0O0OOOOOOOOOOOOOOODO

noo0o00o0a000O0O0O000O0O0O00O0O0OA0

WHICH

NEV

TOL

RESID

NCV

LDV

IPARAM

Integer. (INPUT)
Dimension of the eigenproblem.

Character*2. (INPUT)

LM’ -> want the NEV eigenvalues of largest magnitude.

’SM’ -> want the NEV eigenvalues of smallest magnitude.

’LR’ -> want the NEV eigenvalues of largest real part.

’SR’ -> want the NEV eigenvalues of smallest real part.

’LI’ -> want the NEV eigenvalues of largest imaginary part.
’SI’ -> want the NEV eigenvalues of smallest imaginary part.

Integer. (INPUT)
Number of eigenvalues of OP to be computed. O < NEV < N-1.

Double precision scalar. (INPUT)
Stopping criteria: the relative accuracy of the Ritz value
is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))
where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
DEFAULT = dlamch(’EPS’) (machine precision as computed

by the LAPACK auxiliary subroutine dlamch).

Complex#16 array of lengthN. (INPUT/OUTPUT)
On INPUT:
If INFO .EQ. O, a random initial residual vector is used.
If INFO .NE. O, RESID contains the initial residual vector,
possibly from a previous run.
On OUTPUT:
RESID contains the final residual vector.

Integer. (INPUT)

Number of columns of the matrix V. NCV must satisfy the two
inequalities 2 <= NCV-NEV and NCV <= N.

This will indicate how many Arnoldi vectors are generated

at each iteration. After the startup phase in which NEV

Arnoldi vectors are generated, the algorithm generates
approximately NCV-NEV Arnoldi vectors at each subsequent update
iteration. Most of the cost in generating each Arnoldi vector is
in the matrix-vector operation OP*x.

NOTE: 2 <= NCV-NEV in order that complex conjugate pairs of Ritz
values are kept together. (See remark 4 below)

Complex*16 array N by NCV. (OUTPUT)
Contains the final set of Arnoldi basis vectors.

Integer. (INPUT)
Leading dimension of V exactly as declared in the calling program.

Integer array of length 11. (INPUT/OUTPUT)
IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
The shifts selected at each iteration are used to filter out
the components of the unwanted eigenvector.

SHNLLOOY MOVdUHY AddAVAX HHL "D XIANHddVY

6¢l

anoooaaoooo

a
noo0o0O0O0O0O0O0O0OOO0O0O0O00000000000O000000000O0O0O-

IPNTR

ISHIFT = 0: the shifts are to be provided by the user via
reverse communication. The NCV eigenvalues of
the Hessenberg matrix H are returned in the part
of WORKL array corresponding to RITZ.

exact shifts with respect to the current
Hessenberg matrix H. This is equivalent to
restarting the iteration from the beginning
after updating the starting vector with a linear
combination of Ritz vectors associated with the
"wanted" eigenvalues.

other choice of internal shift to be defined.

ISHIFT = 1:

ISHIFT

IPARAM(2) = No longer referenced

IPARAM(3) = MXITER
On INPUT:
On OUTPUT: actual number of Arnoldi update iterations taken.

IPARAM(4) = NB: blocksize to be used in the recurrence.
The code currently works only for NB = 1.

IPARAM(5) = NCONV: number of 'converged'" Ritz values.
This represents the number of Ritz values that satisfy
the convergence criterion.

IPARAM(6) = IUPD
No longer referenced. Implicit restarting is ALWAYS used.

IPARAM(7) = MODE

On INPUT determines what type of eigenproblem is being solved.
Must be 1,2,3,4; See under \Description of znaupd for the
four modes available.

IPARAM(8) = NP

When ido = 3 and the user provides shifts through reverse
communication (IPARAM(1)=0), _naupd returns R, the number
of shifts the user is to provide. 0 < NP < NCV-NEV.

IPARAM(9) = NUMOP, IPARAM(10) = NUMOB, IPARAM(11) = NUMREO,
OUTPUT: NUMOP = total number of OP#x operations,
NUMOPB = total number of B#x operations if BMAT=’G’,
NUMREO = total number of steps of re-orthogonalization.

Integer array of length 14. (OUTPUT)

Pointer to mark the starting locations in the WORKD and WORKL
arrays for matrices/vectors used by the Arnoldi iteration.
IPNTR(1): pointer to the current operand vector X in WORKD.
IPNTR(2): pointer to the current result vector Y in WORKD.

maximum number of Arnoldi update iterations allowed.

N0 O0O0O0O0O0O0O0O0O0O0O0O0000O000000O0O00000000000000000000O0O0O0O

WORKD

WORKL

LWORKL

RWORK

INFO

IPNTR(3): pointer to the vector B * X in WORKD when used in
the shift-and-invert mode.

IPNTR(4): pointer to the next available location in WORKL
that is untouched by the program.

IPNTR(5) : pointer to the NCV by NCV upper Hessenberg
matrix H in WORKL.

IPNTR(6): pointer to the ritz value array RITZ

IPNTR(7): pointer to the (projected) ritz vector array Q

IPNTR(8): pointer to the error BOUNDS array in WORKL.

Note: IPNTR(9:13) is only referenced by zneupd. See Remark 2 below.

IPNTR(9): pointer to the NCV RITZ values of the
original system.
IPNTR(10): Not Used
IPNTR(11): pointer to the NCV corresponding error bounds.
IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below.

Complex*16 work array of length 3#*N. (REVERSE COMMUNICATION)
Distributed array to be used in the basic Arnoldi iteration
for reverse communication. The user should not use WORKD

See Data Distribution Note below.

Complex#16 work array of length LWORKL. (OUTPUT/WORKSPACE)
Private (replicated) array on each PE or array allocated on
the front end. See Data Distribution Note below.

Integer. (INPUT)
LWORKL must be at least 3*NCV#%2 + S5xNCV.

Double precision work array of length NCV (WORKSPACE)
Private (replicated) array on each PE or array allocated on
the front end.

Integer. (INPUT/OUTPUT)
If INFO .EQ. O, a randomly initial residual vector is used.
If INFO .NE. O, RESID contains the initial residual vector,
possibly from a previous run.
Error flag on output.
0: Normal exit.
1: Maximum number of iterations taken.
All possible eigenvalues of OP has been found. IPARAM(S)
returns the number of wanted converged Ritz values.
= 2: No longer an informational error. Deprecated starting
with release 2 of ARPACK.
= 3: No shifts could be applied during a cycle of the
Implicitly restarted Arnoldi iteration. One possibility
is to increase the size of NCV relative to NEV.
See remark 4 below.
-1: N must be positive.

AdNVNZ €0

0€1

nooo0o0o0O0O0O0O0O0O0O0O0OOOOOOOOOOAOOOOOO

-2: NEV must be positive.
-3: NCV-NEV >= 2 and less than or equal to N.
-4: The maximum number of Arnoldi update iteration
must be greater than zero.
-5: WHICH must be one of ’LM’, ’SM’, ’LR’, ’SR’, ’LI’, ’SI’
-6: BMAT must be one of ’I’ or ’G’.
-7: Length of private work array is not sufficient.
-8: Error return from LAPACK eigenvalue calculation;
-9: Starting vector is zero.
-10: IPARAM(7) must be 1,2,3.
-11: IPARAM(7) = 1 and BMAT = ’G’ are incompatable.
-12: IPARAM(1) must be equal to O or 1.
-9999: Could not build an Arnoldi factorization.
User input error highly likely. Please
check actual array dimensions and layout.
IPARAM(5) returns the size of the current Arnoldi
factorization.

\Remarks
1.

The computed Ritz values are approximate eigenvalues of OP. The
selection of WHICH should be made with this in mind when using

Mode = 3. When operating in Mode = 3 setting WHICH = ’LM’ will

compute the NEV eigenvalues of the original problem that are

closest to the shift SIGMA . After convergence, approximate eigenvalues

of the original problem may be obtained with the ARPACK subroutine zneupd.

If a basis for the invariant subspace corresponding to the converged Ritz
values is needed, the user must call zneupd immediately following
completion of znaupd. This is new starting with release 2 of ARPACK.

noo0oO0O0O0O0O0O0O0O0O0O0O0O0OO0O0O0O0OO0OO0O0O0OA

If M can be factored into a Cholesky factorization M = LL’
then Mode = 2 should not be selected. Instead one should use
Mode = 1 with 0P = inv(L)#A*inv(L’). Appropriate triangular
linear systems should be solved with L and L’ rather

than computing inverses. After convergence, an approximate
eigenvector z of the original problem is recovered by solving
L’z = x where x is a Ritz vector of OP.

. At present there is no a-priori analysis to guide the selection of NCV

relative to NEV. The only formal requirement is that NCV > NEV + 2.
However, it is recommended that NCV .ge. 2#NEV+1. If many problems of
the same type are to be solved, one should experiment with increasing
NCV while keeping NEV fixed for a given test problem. This will
usually decrease the required number of OP#x operations but it

also increases the work and storage required to maintain the orthogonal
basis vectors. The optimal 'cross-over' with respect to CPU time

is problem dependent and must be determined empirically.

See Chapter 8 of Reference 2 for further information.

. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the

NP = IPARAM(8) complex shifts in locations

WORKL (IPNTR(14)), WORKL(IPNTR(14)+1), , WORKL(IPNTR(14)+NP).
Eigenvalues of the current upper Hessenberg matrix are located in
WORKL (IPNTR(6)) through WORKL(IPNTR(6)+NCV-1). They are ordered
according to the order defined by WHICH. The associated Ritz estimates
are located in WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... ,

WORKL (IPNTR(8)+NCV-1).

SHNLLOOY MOVdUHY AddAVAX HHL "D XIANHddVY

1€T

C.3. ZNAUPD 132

Bibliography

[1]

E. Anderson, 7. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide. STAM, Philadelphia, second edition,
1995.

J. J. Dongarra, J. DuCroz, 1. S. Duff, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical
Software, 16(1):1-17, 1990.

J.J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson. An extended
set of Fortran Basic Linear Algebra Subprograms. ACM Trans. on Math.
Software, 14(1):1-17, 1988.

R. G. Grimes, J. G. Lewis, and H. D. Simon. A shifted block Lanczos
algorithm for solving sparse symmetric generalized eigenproblems. STAM
J. Matriz Analysis and Applications, 15(1):228-272, January 1994.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Transactions on Mathemat-
ical Software, 5(3):308-323, 1979.

R. B. Lehoucq. Analysis and Implementation of an Implicitly Restarted
Tteration. PhD thesis, Rice University, Houston, Texas, May 1995. Also
available as Technical Report TR95-13, Dept. of Computational and Ap-
plied Mathematics.

R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly
restarted Arnoldi iteration. STAM J. Matriz Analysis and Applications,
17(4):789-821, October 1996.

K. J. Maschhoff and D. C. Sorensen. P_ARPACK: An efficient portable
large scale eigenvalue package for distributed memory parallel architec-
tures. In Jerzy Wasniewski, Jack Dongarra, Kaj Madsen, and Dorte
Olesen, editors, Applied Parallel Computing in Industrial Problems and
Optimization, volume 1184 of Lecture Notes in Computer Science, Berlin,
1996. Springer—Verlag.

K. Meerbergen and D. Roose. Matrix transformations for computing right-
most eigenvalues of large sparse non-symmetric eigenvalue problems, 1996.

133

BIBLIOGRAPHY 134

[10] K. Meerbergen, A. Spence, and D. Roose. Shift-invert and Cayley trans-
forms for the detection of rightmost eigenvalues of nonsymmetric matrices.
BIT, 34:409-423, 1994.

[11] Y. Saad. Chebyshev acceleration techniques for solving nonsymmetric
eigenvalue problems. Mathematics of Computation, 42:567-588, 1984.

[12] Y. Saad. Numerical Methods for Large FEigenvalue Problems. Halsted
Press, 1992.

[13] D. C. Sorensen. Implicit application of polynomial filters in a k-step
Arnoldi method. STAM .J. Matriz Analysis and Applications, 13(1):357—
385, January 1992.

Index

Q,, 68, 71
Q.,, 68, 69, 71
ear, 17, 25, 66, 73

M-inner product, 24

Xneigh, 72
[s,d]Yconv, 73
[s,d]seigt, 72
COMMON, 3

0P, 26

XYaitr, 68, 70, 71
XYapps, 68, 70, 73

XYaup2, 68--70
XYaupd, 69, 70
XYconv, 68

XYeupd, 68, 70, 73

XYgets, 68, 70
Xaxpy, 77
Xcopy, 77
Xgemv, 77
Xgeqr2, 76
Xgetv0O, 70, 72
Xhseqr, 75
Xlacpy, 76
Xlahqr, 75, 76
Xlamch, 76
Xlanhs, 76
Xlartg, 76
Xlascl, 76
Xlaset, 76
Xneigh, 68, 70
Xortc, 70
Xscal, 77
XsdrvY, 80
Xswap, 77
Xtrevc, 75
Xtrmm, 75
Xtrsen, 74, 76

135

[c,z]dotc, 77
[c,z]lgeru, 77
[c,z]lahqr, 72
[c,z]lnaup2, 73
[c,z]neigh, 72
[c,z]ltrevc, 72
[cs,zd]scal, 77
[s,d]Yconv, 70, 73
[s,d]dot, 77
[s,d]lger, 77
[s,d]labad, 76
[s,d]lahqr, 72
[s,d]lapy2, 76
[s,d]laqrb, 70, 72
[s,d]larfg, 76
[s,d]larf, 76
[s,d]neigh, 72
[s,dlnrm2, 77
[s,d]ortr, 70
[s,d]lseigt, 70, 72
[s,d]lsteqr, 76
[s,d]lstqrb, 70, 72
[s,d]lstqr, 72
[sc,dz]lnrm2, 77
__aupd, 21

__eupd, 21

_gemv, 67
arpack_state, 117
ctrevc, 76

cunm2r, 76
debug.h, 114
dndrvi, 91

dndrv2, 92

dndrv3, 92

dndrv4, 93

dndrv5, 93

dndrvé, 93

INDEX

136

dneupd, 36
dsaupd, 31
dsdrvi, 80
dsdrv2, 81
dsdrv3, 82
dsdrv4, 82
dsdrv5, 83
dsdrvé, 83
dseupd, 33
ex-sym.doc, 12
ido, 3
logfil, 19, 113
msaitr, 19, 113
msaupd, 114
ndigit, 19, 113
sorm2r, 76
strevc, 76
Znaupd, 38
zndrvl, 100
zndrv2, 100
zneupd, 40
LI, 93, 101
LM, 101
LR, 93
SI, 93, 101
SR, 93, 101
dssimp, 10, 11
accuracy
checking, 90, 99, 106, 110
Arnoldi
block, 58

compressed factorization, 53
factorization, 49

orthogonal vectors, 50
relation, 49

vectors, 49

ARPACK, 1

Amount of disk storage, 5
Availability by ftp, 3
Availability by URL, 3
Availability in ScaLAPACK,
4
Compliance with ANSI standard
Fortran, 6

Contributions to, 6
Expected performance, 6
installation, 4

IRAM implementation, 68
IRLM implementation, 68

library, 10
makefile, 5
Parallel, 6

subroutines, 69
availability, 3

B-orthogonal, 67
backward error, 66
basis

standard, 44
BLACS, 6
BLAS, 5, 67

used by ARPACK, 75
block Arnoldi, 58
bulge chases of QR, 47

characteristic polynomial, 45
Chebyshev

polynomial, 71
check pointing, 113, 116
choice of shifts, 54

exact ones, 58
Cholesky factorization of M, 25
classical Gram-Schmidt, 71
complex

Hermitian, 106
computing eigenvectors

dneupd, 36
dseupd, 33
zZneupd, 40
computing interior eigenvalues,
30
computing Schur vectors
dneupd, 36
Zneupd, 40

condition number
2-norm condition estimator,
112
of a matrix, 112
Contents of ARPACK, 9

INDEX

137

contribution, 6
Contributions to ARPACK, 6
convention

naming, 69
convergence of IRAM, 71
convex hull, 25
cost

computational, 67

of implicit restart, 31

data

type, 22, 69
data structure, 93
Data types, 21
debugging, 113
Debugging capability, 19
defective, 45
deflation, 56
departure from normality, 66
DGKS, 50

correction, 50, 71
direct methods

factoring shift-invert, 24
direct residual, 64
directories of ARPACK

ARMAKES, 9
BAND, 10
BLAS, 9
COMPLEX, 10

DOCUMENTS, 9
EXAMPLES, 10
LAPACK, 9
NONSYM, 10
SRC, 10
SvD, 10
SYM, 10
UTIL, 10
dominant eigenvalue, 47
driver routines
example, 79
simple, 3
drivers
band, 106
complex, 99
non-symmetric, 90

selection, 80
SVD, 112
symmetric, 80

eigenpair, 45
eigenvalue problems
generalized, 82, 92, 101
standard, 15
eigenvalues, 44
accuracy, 65
clustered, 24
conjugate pair, 36
distinct, 45
dominant, 47
extremal, 25
infinite, 24, 62
interior, 24
largest
imaginary part, 92
magnitude, 92
real part, 92

multiple, 18, 51, 58, 89, 98,

105, 109
non-clustered, 25
sensitivity, 65
smallest

magnitude, 92
imaginary part, 92
real part, 92
spurious, 51
wanted, 58
well separated, 25
eigenvector, 45
accuracy, 65
left, 45
normalization, 15, 34, 38,

41, 75
purification, 33, 36, 40
right, 45, 48
sensitivity, 65
simple, 45

eigenvectors

complex eigenvectors in real

arithmetic, 36
purification, 62

INDEX

138

error
backward, 66
residual, 63

exact shifts, 58

example driver for using dsaupd,

11

execution
rate of, 67

extremal eigenvalues, 25

filter, 54
Fortran77, 1

Galerkin condition, 48
GMRES, 49

Hessenberg decomposition, 49
Hessenberg matrix, 46

ill-conditioned, 24
mass matrix, 59
implicit restart, 53
implicit shifts
exact, 18
Improving convergence
with spectral transformatiomns,
22
include, 114
include files, 6
indefinite linear systems, 25
Initial parameter settings
for dsaupd, 18
initial vector
generating of, 72
inner product, 24, 59
weighted, 24
invariant subspace, 45
sensitivity, 45, 66
IRAM, 1, 43
ARPACK implementation, 68
convergence rate, 71
IRLM, 1
ARPACK implementation, 68
Iterative methods
shift-invert, 24

Krylov, 48

block subspace, 58
invariant subspace, 49
projection methods, 48
subspace, 48

Krylov methods
link with power method, 48

Lanczos, 1
block method, 64
factorization, 49
orthogonal vectors, 50
vectors, 49
LAPACK, 5, 67
used by ARPACK, 75
loss of orthogonality, 51

M-Arnoldi process, 60, 62
M-inner product, 24, 83
machine precision, 17, 25, 66,
73
matrix
Hessenberg, 46
Jordan form, 45
mass, 59
normal, 46
overlap, 59
Schur form, 45
stiffness, 59
tridiagonal, 46
matrix factorization
direct, 9
message passing, 6
mode
Buckling, 83
Cayley, 83
regular-inverse, 82, 92, 101
shift-invert, 82, 101
standard, 100
modes, computational
Buckling, 31
Cayley, 31
complex, 39
non-symmetric, 34
regular, 31
regular-inverse, 31

INDEX

139

shift-invert, 31
symmetric, 31
MPI, 6
multiplicity
algebraic, 45
geometric, 45
missed, 18, 89, 98, 105, 109

Naming conventions, 21
Netlib, 4

non-clustered eigenvalues, 25
notation, 44

orthogonality
Arnoldi vectors, 50
Lanczos vectors, 50

parallel ARPACK, 6
polynomial
acceleration, 52
characteristic, 45
Chebyshev, 71
filter, 54
implicitly applied, 53
polynomial restarting, 54
post-processing, 90, 99, 106
power method, 47
precision, 22
Precision of data, 21
Problems with ARPACK, 7
projection methods
Krylov, 48
purging, 56
purification of eigenvectors, 62

QR
algorithm, 47
as subspace iteration, 56
factorization, 47
iteration, 47, 73
truncated iteration, 53, 56

range, 72

Rayleigh quotient, 50
residual, 50

README, 4

Research Funding of ARPACK, 7
restarting, 53
exact shifts, 58
filtering, 54
implicitly, 53
polynomial, 54
reverse communication, 2, 3, 84,
102
flag, 18
shift-invert transformation,
26
Ritz
estimate, 50
value, 48
vector, 48
routines
computational, 67

Schur decomposition, 45

partial, 46, 49
self-adjoint, 59
semi-inner product, 24
sep, 65
Setting nev and ncv, 15, 30
shift-invert, 22
shifts

exact, 58

implicit, 70
similar, 45
similarity transformation, 45
SIMPLE, 10
simple driver

symmetric eigenvalue problem,

11

simple driver dssimp, 11
singular, 24
singular mass matrix, 62
singular value decomposition, 110
singular vectors

left, 111

right, 110
spectral enhancement, 22
spectral transformation, 22, 60,

93
deciding, 25

INDEX

140

enhance convergence, 60
factorization with a direct
method, 24
linear systems, 24
matrix factorization, 24
spectrum, 44
standard eigenvalue problem, 25
starting vector, 18
stopping criterion, 64
Ritz estimate, 64
symmetric eigenvalue problems,
17
subroutines of ARPACK
auxiliary, 69
subspace
invariant, 45
subspace iteration, 56
as QR iteration, 56
SvD, 110

templates

simple, 3
three term recurrence, 51
tridiagonal matrix, 46
Trouble shooting ARPACK, 7

unitary
matrix, 46

variable
problem dependent, 97
variables
other, 89, 98, 105, 109
problem dependent, 88, 104,
109

well separated eigenvalues, 25

