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• Penalty factor is only related to the information at the current iterate point.
• The sequence of the penalty parameter is non-monotone.
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a b s t r a c t

The exact penalty methods are very popular because of their ability to handle degenerate
problems and inconsistent constraint linearizations. This paper presents a line search exact
penalty method with bi-object strategy (LSBO) for nonlinear constrained optimization.
In the algorithm LSBO, the penalty parameter is selected at every iteration such that
the sufficient progress toward feasibility and optimality is guaranteed along the search
direction. In contrast with classical exact penalization approaches, LSBO method has two
goals to determine whether the current iteration is successful or not. One is improving
the feasibility and the other is reducing the value of the objective function. Moreover,
the penalty parameter is only related to the information at the current iterate point.
The sequence of the penalty parameter is non-monotone, which does not affect the
global convergence in theory and is seen to be advantageous in practice. It is shown
that the algorithm enjoys favorable global convergence properties under the weaker
assumptions. Numerical experiments illustrate the behavior of the algorithm on various
difficult situations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we develop a line search exact penalty method with two-object strategy for finding a local solution of the
following nonlinear programming problem

min f (x),
s.t. ci(x) ≥ 0, i ∈ I = {1, . . . ,m},

(1.1)

where we assume f : Rn
→ R and ci : Rn

→ Rm (i ∈ I) are twice continuously differentiable.
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There are many practical methods for solving problem (1.1), for example, the sequential quadratic programming (SQP)
methods [1], the trust-region SQPmethods [2], the interior point methods [3] and so on. All optimization methods generate
a sequence of trial steps, which are computed as solutions of some quadratic or linear–quadratic model. The criteria for
accepting or rejecting trial steps are the strategy for guaranteeing global convergence. One of the strategies is to use some
merit function or some penalty function to measure the quality of a trial step. The penalty function is usually a linear
combination of the objective function and somemeasure of constraint violation, where the objective functionminimization
and the constraint satisfaction are treated togetherwithin the framework of a single penalty functionminimization problem.

The main difficulty associated with the use of penalty functions is the choice of the penalty parameter. There is usually
a threshold value below which the penalty function does not have a local minimum at the solution to (1.1). This threshold
value is unknown in advance. If the initial choice of the penalty parameter is too small, the iterates may move away from
the solution which may result in an infeasible point of (1.1) or even an unbounded below in the penalty function. On the
other hand, if the penalty parameter is excessively large, the penalty function may be difficult to minimize, as emphasizing
constraint feasibility toomuchmay lead to small trial steps (or even the rejection of good trial steps) on the curved boundary
of the feasible region of (1.1).

In order to handle the selection of the penalty parameter, some researchers present the various techniques without the
penalty function, which are called the penalty-free-type methods, for example, see [4–9] and the references therein. Some
other people research the updating strategies of the penalty parameter adaptively, e.g., [10–19]. Among those penalty-type
methods which use any penalty function, the exact penalty methods are very popular because of their ability to handle
degenerate problems and inconsistent constraint linearizations [11,12]. Exact penalty methods have also been used
successfully to solve mathematical programs with complementarity constraints (MPCCs) [17], a class of problems that do
not satisfy the Mangasarian–Fromovitz constraint qualification at any feasible point.

The idea in this paper is motivated by the penalty-type methods and the penalty-free-type methods. The trial step
(the search direction) is computed by a piecewise quadratic model of the exact penalty function. The penalty parameter
is selected at every iteration so that the sufficient progress toward feasibility and optimality is guaranteed along the search
direction, which is called steering rules [11]. This requires that an auxiliary subproblem (a linear program) be solved in
certain cases. Byrd et al. [11] present a line search exact penaltymethod using steering rules, which requires that the penalty
function is descent sufficiently along the search direction at every iteration. However, the method presented here is very
different from Byrd’s method. The new method has two goals to determine whether the current iteration is successful or
not. One is improving the feasibility and the other is reducing the value of the objective function. The new method allows
for a certain amount of non-monotonicity on the objective function and on the measure of constraint violation compared to
a penalty function approach. Gould et al. [16] present a filter method for nonlinear optimization, where every trial step is
computed from subproblems that value reducing both the constraint violation and the objective function. The newmethod
does not use filter technique and its search direction is similar to Byrd et al. [11] but is different from Gould et al. [16].
Moreover, the penalty parameter is only related to the information at the current iterate point. The sequence of the penalty
parameter is non-monotone. This property does not affect the global convergence in theory and is seen to be advantageous
in practice. Byrd et al. [12] point out clearly that many of the failures caused by large values of the penalty parameter
seemed to occur because, near the feasible region, there are often small increases in infeasibility due to nonlinearities in
constraints or roundoff error in even linear constraints. Because of the large value of the penalty parameter, these increases
dominated the objective function improvement, and forced the penalty method to take very small steps, and sometimes
completely prevented further progress. To restrict using excessively large penalty parameter is valuable in practice, which
is also confirmed by the numerical examples in this paper.

This paper is divided into four sections. The next section describes the new algorithm. The well definedness of the
algorithm is analyzed in Section 3. In Section 4, we analyze the global convergence under the weaker assumptions. Finally,
numerical experiments are reported.

2. Description of algorithm

The new algorithm divides two parts. The first part will determine a search direction and the other part will provide a
strategy which judge the iteration to be successful or not. An appropriate choice of the penalty parameter will guarantee
that the search direction can improve the objective function or the measure of constraint violation. The choice of penalty
parameter and the determination of the search direction are similar to Byrd et al. [12]. For the convenience, we simply
describe it.

Consider the following unconstrained optimization with l1 exact penalty function

min
x∈Rn

P(x, σ ) = f (x) + σv(x), (2.1)

where, σ > 0 is a penalty parameter and

v(x) =


i∈I

[ci(x)]−,

where [ci(x)]− = max{0, −ci(x)}. v(x) means the measure of constraint violation.
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Define the piecewise linear model of the measure of constraint violation v(x) at an iterate xk as follows

mk(d) =


i∈I

[ci(xk) + ∇ci(xk)Td]− (2.2)

and a piecewise quadratic model of the penalty function P(x, σ ) at xk

qk(d, σ ) = fk + gT
k d +

1
2
dTBkd + σmk(d), (2.3)

where Bk is obtained through a quasi-Newton update formula or by adding (if necessary) a multiple of the identity to the
Hessian of the Lagrangian function of problem (1.1) at xk.

At the current iterate point xk with the corresponding to the penalty factor σk, we compute the search direction dk by
solving the subproblem

min qk(d, σk). (2.4)

In practice, we recast (2.4) as the smooth quadratic programming by introducing the slack variables ti(i ∈ I),

min fk + gT
k d +

1
2
dTBkd + σk


i∈I

ti,

s.t. ci(xk) + ∇ci(xk)Td ≥ −ti, i ∈ I, (2.5)
t ≥ 0.

Denote the solution as dk(σk). If mk(dk(σk)) = 0, then the linearized constraints are satisfied. Let σ+ = σk and the current
search direction dk = dk(σ+). In fact, dk coincides with the classical SQP search direction in this case. If mk(dk(σk)) > 0,
then we need to assess the adequacy of the current penalty parameter by computing the lowest possible violation of the
linearized constraints in a neighborhood of the current iterate. This is done by solving the problem

min mk(d),
s.t. ∥d∥∞ ≤ ∆k,

(2.6)

where ∆k > 0 is given. The problem (2.6) is equivalent to the following linear programming

min

i∈I

ti,

s.t. ci(xk) + ∇ci(xk)Td ≥ −ti, i ∈ I, (2.7)
t ≥ 0, ∥d∥∞ ≤ ∆k.

Denote its solution as dk(σ∞). If necessary, we choose a new penalty parameter σ+ > σk such that the solution dk(σ+) of
(2.5) yields a sufficient improvement in linearized feasibility, that is, dk(σ+) satisfies the following condition

mk(0) − mk(dk(σ+)) ≥ δ1[mk(0) − mk(dk(σ∞))], δ1 ∈ (0, 1). (2.8)

Specifically,mk(dk(σ∞)) = 0 when mk(dk(σ+)) = 0, which implies that (2.8) holds.
Moreover, we should choose a sufficiently large penalty parameter σ+ such that the solution dk(σ+) of (2.5) yields

a sufficient improvement in the quadratic model qk(d, σ ) of the penalty function, that is, dk(σ+) satisfies the following
condition

qk(0, σ+) − qk(dk(σ+), σ+) ≥ δ2σ+[mk(0) − mk(dk(σ∞))], δ2 ∈ (0, 1). (2.9)

If dk(σ+) satisfies (2.8) and (2.9), then set the search direction dk = dk(σ+). Byrd’s method [11] execute line search along
the search direction dk bymeans of the l1 exact penalty function P(x, σ ). In other words, let 0 < αk ≤ 1 be the first member
of the sequence {1, β, β2, . . .} (0 < β < 1) such that

P(xk, σ+) − P(xk + αkdk, σ+) ≥ ηαk(qk(0, σ+) − qk(dk, σ+)), η ∈ (0, 1).

Then set xk+1 = xk + αkdk.
The strategy of themethod presented here is very different from Byrd’s one. The newmethod has two goals to determine

whether the current iteration is successful or not. One is improving the feasibility and the other is reducing the value of the
objective function. In other words, if

gT
k dk < 0 and − αgT

k dk > δ[vk]
sv , (δ > 0, sv > 1, α ∈ (0, 1]) (2.10)

hold, then, when

f (xk + αdk) ≤ f (xk) + ηf αgT
k dk, ηf ∈ (0, 1), (2.11)

v(xk + αdk) ≤ vmax
k (2.12)

all hold, xk(α) = xk + αdk is acceptable, where vmax
k is the current upper bound on the measure of constraint violation. The

current iteration corresponding to the step length α is successful. Let xk+1 = xk + αdk. The current iteration is also called
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as f-type iteration. At the f-type iteration, the main purpose is to reduce the value of the objective function while keeping
the measure of constraint violation within a reasonable bound vmax

k .
If (2.10) does not hold, then, when

v(xk) − v(xk + αdk) ≥ αηv(mk(0) − mk(dk)), ηv ∈ (0, 1) (2.13)

holds, xk(α) is also acceptable. The current iteration corresponding to the step length α is successful. Let xk+1 = xk + αdk.
The current iteration is called as c-type iteration. At the c-type iteration, the main purpose is to improve the feasibility.
Therefore, the value of the objective function may increase.

If (2.10) does not hold, the upper bound vmax
k on the measure of constraint violation should be updated. The algorithm

does it in the following way

vmax
k+1 := max{β1v

max
k , vk+1 + β2(vk − vk+1)}, (2.14)

where, β1, β2 ∈ (0, 1).
Now the detailed algorithm is described as follows.

Line Search method with Bi-Object strategy (LSBO)
Step 0. Given x0 ∈ Rn, B0 ∈ Rn×n, δ1, δ2 ∈ (0, 1), δ > 0, sv > 1, ηf , ηv , ϵ, β , β1, β2 ∈ (0, 1), σmax ≥ σ0 ≥ σmin > 0,
∆max ≥ ∆0 ≥ ∆min > 0, k := 0.
Step 1. Solve (2.5) to get its solution dk(σk). If ∥dk(σk)∥ ≤ ϵ and vk ≤ ϵ, then xk is an approximate solution. Stop.
Step 2. If mk(dk(σk)) = 0 and

qk(0, σk) − qk(dk(σk), σk) ≥ δ2σkmk(0),

then set σ+ = σk. Go to Step 6.
Step 3. If mk(dk(σk)) > 0, then solve (2.7) to get its solution dk(σ∞). If mk(0) = mk(dk(σ∞)) > 0, then xk is an infeasible
stationary point. Stop.
Step 4. If mk(dk(σ∞)) = 0, then choose σ+ > σk such that mk(dk(σ+)) = 0.
Step 5. If (2.8) does not hold, then choose a new σ+ > σk such that (2.8) holds.
Step 6. Execute line search along dk := dk(σ+).

6.1. αk,0 := 1, l := 0;
6.2. If v(xk + αk,ldk) > vmax

k , then go to Step 6.5;
6.3. If (2.10) holds but (2.11) does not hold, then go to Step 6.5; If (2.10) and (2.11) hold, then go to Step 7;
6.4. If (2.10) and (2.13) do not hold, then go to Step 6.5; If (2.10) does not hold but (2.13) holds, then go to Step 7;
6.5. αk,l+1 := βαk,l, l := l + 1. Go to Step 6.2.

Step 7. αk := αk,l, xk+1 := xk + αkdk, σk+1 = σ+.
Step 8. Update the trust region radius ∆k to ∆k+1 ∈ [∆min, ∆max] and σk+1 ∈ [σmin, σmax].
Step 9. If (2.10) does not hold, then update vmax

k by (2.14).
Step 10. Update Bk to Bk+1. Set k := k + 1. Go to Step 1.

Remark. At the beginning of each iteration, the penalty parameter σ lies in the interval [σmin, σmax], σk is a penalty factor
which corresponds to the successful f-type or c-type iteration. In other words, the search direction dk(σk) satisfies (2.8) and
(2.9). Therefore, the penalty parameter is only related to the information at the current iterate point. The sequence of the
penalty parameter {σk} is non-monotone, which will avoid some faults resulted from excessively large penalty parameter
generated because of unappropriate evaluate at some iterate. Moreover, the sequence of the objective function {f (xk)} and
the sequence of the measure of constraint violation {vk} all may be non-monotone. But, the upper bound of the measure of
constraint violation {vmax

k } is nonincreased monotonely (see Lemma 3.1).

3. Well definedness

From now on, we study the global convergence properties of the algorithm LSBO. We make the following assumptions
about the sequence of iterates {xk} and the matrices {Bk} generated by the algorithm.

Assumption A. A1 f (x), ci(x)(i ∈ I) are twice continuously differentiable.
A2 There exists a bounded convex closed set Ω ⊆ Rn such that xk ∈ Ω for all k.
A3 Thematrices Bk are uniformly positive definite and bounded above, i.e., there exist two constants 0 < µmin < µmax such

that

µmin∥p∥2
≤ pTBkp ≤ µmax∥p∥2, p ∈ Rn. (3.1)



Z. Chen, Y.-H. Dai / Journal of Computational and Applied Mathematics 300 (2016) 245–258 249

The following lemma shows the property on the sequence {vmax
k } (see [7]).

Lemma 3.1. The sequence {vmax
k } is nonincreased monotonely and for any k, vmax

k > 0, 0 ≤ vk ≤ vmax
k .

The next two results are very important whose proof can be found in [11].

Lemma 3.2. The following three statements are true.

(a) dk(σ ) = 0 if and only if xk is a stationary point of P(x, σ );
(b) vk = 0 and xk is a stationary point of P(x, σ ), then xk is a stationary point of (1.1);
(c) xk is a stationary point of v(x) if and only if mk(0) = mk(dk(σ∞)).

Lemma 3.3. Suppose that the algorithm LSBO does not terminate at xk, then there exists σ+ ≥ σ such that (2.8) and (2.9) hold.

Now we prove that the algorithm LSBO is well defined.

Lemma 3.4. Under Assumption A, the algorithm LSBO is well defined, that is, if the algorithm does not terminate at xk, then after
reducing the step length finite times, the algorithm can find a successful iterate point.

Proof. Consider two cases.
(I)mk(dk(σ∞)) = 0.
(i)mk(0) = mk(dk(σ∞)) = 0.
Then it follows from the algorithm LSBO thatmk(dk(σ+)) = 0. Thus, xk is a feasible point and is a stationary point of v(x).

Since the algorithm does not stop, dk(σ+) ≠ 0. Therefore,

qk(0, σ+) > qk(dk(σ+), σ+),

which follows that

gT
k dk(σ+) < −

1
2
dk(σ+)TBkdk(σ+) ≤ −

1
2
µmin∥dk(σ+)∥2 < 0.

Therefore, (2.10) always holds. Moreover,

f (xk + αdk(σ+)) = f (xk) + αgT
k dk(σ+) +

α2

2
dk(σ+)T∇2f (ξ)dk(σ+)

= f (xk) + αηf gT
k dk(σ+) + α(1 − ηf )gT

k dk(σ+) +
α2

2
dk(σ+)T∇2f (ξ)dk(σ+)

≤ f (xk) + αηf gT
k dk(σ+) −

1
2
α(1 − ηf )µmin∥dk(σ+)∥2

+
α2

2
Mf ∥dk(σ+)∥2,

where, ξ lies between xk and xk + αdk(σ+),Mf = supx∈Ω ∥∇
2f (x)∥. (2.11) holds as long as α ≤ (1 − ηf )µmin/Mf . It follows

from vk = 0 and vmax
k > 0 that (2.12) always holds for all sufficiently small α > 0. In a word, the algorithm can generate a

successful f-type iteration in this case.
(ii)mk(0) > mk(dk(σ∞)) = 0.
By the algorithm LSBO, mk(dk(σ+)) = 0 and (2.8), (2.9) hold. Suppose, without loss of generality, that α is small enough

and (2.10) does not hold. Thus, we only check the condition (2.13). Noting that

aredck(α) = v(xk) − v(xk + αdk(σ+)).

predck(α) = mk(0) − mk(αdk(σ+)).

|aredck(α) − predck(α)| ≤
α2

2


i∈I

|dk(σ+)T∇2ci(ξki)dk(σ+)|

≤
α2

2
mMc∥dk(σ+)∥2, (3.2)

where ξki lies between xk and xk + αdk(σ+), Mc = maxi∈I supx∈Ω ∥∇
2ci(x)∥. It follows from the convexity of the function

mk(d) that

|aredck(α) − predck(α)|

|predck(α)|
≤

0.5α2mMc∥dk(σ+)∥2

mk(0) − mk(αdk(σ+))

≤
0.5α2mMc∥dk(σ+)∥2

α[mk(0) − mk(dk(σ+))]

=
0.5αmMc∥dk(σ+)∥2

mk(0)
. (3.3)
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If α is small enough, then

v(xk) − v(xk + αdk(σ+)) ≥ ηv(mk(0) − mk(αdk(σ+)))

≥ αηv(mk(0) − mk(dk(σ+))),

which implies that the algorithm can generate a successful c-type iteration in this case.
(II) mk(dk(σ∞)) > 0.
Since the algorithm does not stop, then mk(0) > mk(dk(σ∞)) > 0. Suppose, without loss of generality, that α is small

enough and (2.10) does not hold. Thus, we only check the condition (2.13). Note that (2.8) and (2.9) hold. Similar to (3.3),

|aredck(α) − predck(α)|

|predck(α)|
≤

0.5α2mMc∥dk(σ+)∥2

mk(0) − mk(αdk(σ+))

≤
0.5αmMc∥dk(σ+)∥2

δ1[mk(0) − mk(dk(σ∞))]
.

Ifα is small enough, then aredck(α) ≥ ηvpredck(α), which implies that the algorithm can generate a successful c-type iteration
in this case.

Therefore, the result is proved. �

4. Global convergence

Denote the index set

C = {k| vmax
k+1 ≠ vmax

k }.

Definition 4.1. A point x∗ satisfies the MFCQ condition if x∗ is feasible for (1.1) and there is a unit direction s such that

∇ci(x∗)T s > 0, i ∈ A(x∗),

where A(x∗) = {i ∈ I|ci(x∗) = 0}.

Lemma 4.2. If |C| < +∞, then limk v(xk) = 0, which implies that any accumulation point of {xk} is feasible.

Proof. By |C| < +∞, there exists an index k0 such that vmax
k = vmax

k0
> 0 for all k ≥ k0, which implies that all iterations

are f-type iteration for k ≥ k0. By (2.10) and (2.11),

fk − fk+1 ≥ ηf (−αkgT
k dk) > ηf δv

sv
k ,

which follows that

fk0 − fk+1 > ηf δ

k
i=k0

v
sv
i .

So limk→∞ vk = 0. �

Lemma 4.3. Let x∗ be a feasible point that satisfies MFCQ. If x∗ is not a KKT point, then there exist a neighborhood N (x∗) of x∗

and constants b1(x∗) > 0, ᾱ ∈ (0, 1] such that

g(xk)Tdk ≤ −0.5ᾱb1(x∗)

holds for all xk ∈ N (x∗).

Proof. By the assumption, there exist a neighborhood N (x∗) of x∗, a constant b1(x∗) > 0 and a unit vector s such that, for
all xk ∈ N (x∗),

g(xk)T s ≤ −b1(x∗),

∇ci(xk)T s ≥ b1(x∗), i ∈ A(x∗).

If i ∈ A(x∗), then

ci(xk) + ∇ci(xk)T (αs) ≥ 0

as long as α ≥ vk/b1(x∗). If i ∉ A(x∗), then there exists a constant b′

1(x
∗) > 0 such that

ci(xk) ≥ b′

1(x
∗), ∀xk ∈ N (x∗).
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It follows from

ci(xk) + ∇ci(xk)T (αs) ≥ b′

1(x
∗) − α∥∇ci(xk)∥ ≥ b′

1(x
∗) − αMc

that ci(xk) + ∇ci(xk)T (αs) ≥ 0 as long as α ≤ b′

1(x
∗)/Mc . Let

ᾱ = min

1,

b′

1(x
∗)

Mc
,
b1(x∗)

µmax


.

If the neighborhood N (x∗) is sufficiently small, then vk/b1(x∗) < ᾱ. Therefore,

gT
k dk ≤ gT

k dk +
1
2
dTkBkdk + σkmk(dk)

≤
1
2
gT
k (ᾱs) +

1
2
gT
k (ᾱs) +

ᾱ2

2
sTBks + σkmk(ᾱs)

≤ −
ᾱ

2
b1(x∗) −

ᾱ

2
[b1(x∗) − ᾱµmax]

≤ −
ᾱ

2
b1(x∗).

The proof is completed. �

Lemma 4.4. Suppose that |C| < +∞. Then any limit point of {xk} is either a KKT point of (1.1) or is a feasible limit point where
MFCQ fails.

Proof. Let x∗ be any limit point of {xk}. Then there exists an infinite subsequence {xki} such that limi→∞ xki = x∗. By
Lemma 4.2, v(x∗) = 0. Suppose that x∗ is not a KKT point and MFCQ holds at x∗. By Lemma 4.3, there is a neighborhood
N (x∗) of x∗ and constants b1(x∗) > 0, ᾱ ∈ (0, 1] such that

g(xki)
Tdki ≤ −0.5ᾱb1(x∗)

holds for all xki ∈ N (x∗). By |C| < +∞, there exists an index k0 such that vmax
k = vmax

k0
> 0 for all k ≥ k0, which implies

that all iterations are f-type iteration for k ≥ k0. Suppose, without loss of generality, that k1 ≥ k0. Therefore,

f (xki+1) − f (xki) ≤ f (xki+1) − f (xki)

≤ ηf αkig(xki)
Tdki ≤ −0.5ηf b1(x∗)ᾱαki ,

which implies that limi→+∞ αki = 0. Since limki→∞ v(xki) = 0 and ∥dk∥ is bounded above,

v(xki + αkidki) ≤ vmax
k0

holds for all sufficiently large ki. Moreover,

f (xki + αdki) = f (xki) + αgT
kidki +

α2

2
dTki∇

2f (ξ)dki

≤ f (xki) + αηf gT
kidki + α(1 − ηf )gT

kidki +
α2

2
MfM2

d

≤ f (xki) + αηf gT
kidki − 0.5α(1 − ηf )ᾱb1(x∗) +

α2

2
MfM2

d

≤ f (xki) + αηf gT
kidki

as long as α ≤ (1 − ηf )ᾱb1(x∗)/(MfM2
d ), where ξ is between xki and xki + αdki , ∥dk∥ ≤ Md for all k.

By the algorithm LSBO,

f (xki + αkidki) ≤ f (xki) + ηf αkig
T
kidki

and

f (xki + β−1αkidki) > f (xki) + ηf β
−1αkig

T
kidki ,

which contradicts with limi→∞ β−1αki = 0. So the result is true. �

Lemma 4.5. Suppose that |C| = +∞ and limk→∞ vmax
k = ṽ. If x∗ is any limit point of {xk}k∈C , then v(x∗) = ṽ.
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Proof. Since x∗ is a limit point of {xk}k∈C , there exists an infinite index subset K ⊆ C such that limk∈K xk = x∗. It follows
from limk→∞ vmax

k = ṽ that there exists a positive integer k1 such that, for all k ∈ C, k ≥ k1,

vmax
k+1 = β2vk + (1 − β2)vk+1

≤ β2vk + (1 − β2)vk − (1 − β2)αkηv[mk(0) − mk(dk)]
≤ vk − αk(1 − β2)ηvδ1[mk(0) − mk(dk(σ∞))],

which follows that

0 ≤ αk(1 − β2)ηvδ1[mk(0) − mk(dk(σ∞))] ≤ vk − vmax
k+1, k ∈ C, k ≥ k1. (4.1)

Let k ∈ K, k → ∞, then

0 ≤ v(x∗) − ṽ.

On the other hand, v(xk) ≤ vmax
k for all k. So v(x∗) ≤ ṽ. Thus, the result is true. �

Lemma 4.6. Suppose that |C| = +∞ and limk→∞ vmax
k = ṽ > 0. Then any limit point of {xk}k∈C is an infeasible stationary

point.

Proof. Let x∗ be a limit point of {xk}k∈C , then there exists an infinite index subset K ⊆ C such that limk∈K xk = x∗. By
Lemma 4.5, v(x∗) = ṽ > 0. If x∗ is not an infeasible stationary point, thenm∗(0)−m∗(d∗) > 0, where d∗ is a solution of the
following subproblem

min m∗(d) =


i∈I

[ci(x∗) + ∇ci(x∗)Td]−,

s.t. ∥d∥∞ ≤ ∆min.

Obviously, d∗ is a feasible solution of (2.6). So, for all sufficiently large k ∈ K ,

mk(0) − mk(dk(σ∞)) ≥ mk(0) − mk(d∗) ≥
1
2
(m∗(0) − m∗(d∗)) > 0,

which implies from (4.1) that limk∈K αk = 0. According to the algorithm LSBO, for all sufficiently large k ∈ K ⊆ C,

v(xk) − v(xk + αkdk) ≥ αkηv[mk(0) − mk(dk)]

and

v(xk) − v(xk + β−1αkdk) < β−1αkηv[mk(0) − mk(dk)]. (4.2)

Moreover,

predck(β
−1αk) = mk(0) − mk(β

−1αkdk)

≥ β−1αk(mk(0) − mk(dk))

≥ δ1β
−1αk(mk(0) − mk(dk(σ∞))). (4.3)

Since x∗ is not a stationary point of v(x), then,

m∗(0) > m∗(d∗(∆min)) ≥ 0,

wherem∗(d) =


i∈I[ci(x
∗) + ∇ci(x∗)Td]−. Similar to (3.2), we have that

|aredck(β
−1αk) − predck(β

−1αk)|

|predck(β−1αk)|
≤

0.5β−2α2
kmMc∥dk∥2

β−1αkδ1[mk(0) − mk(dk(σ∞))]

≤
β−1αkmMcM2

d

δ1[m∗(0) − m∗(d∗(∆min))]
,

which follows that

aredck(β
−1αk) ≥ ηvpredck(β

−1αk)

holds for all sufficiently large k ∈ K , which is a contradiction with (4.2). So m∗(0) = m∗(d∗(∆min)) > 0, i.e., x∗ is an
infeasible stationary point of v(x). �

Lemma 4.7. Suppose that |C| = +∞ and limk→∞ vmax
k = 0. Then any limit point of {xk}k∈C is either a KKT point of (1.1) or is

a feasible limit point where MFCQ fails.
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Proof. Let K ⊆ C be an infinite index subset and limk∈K xk = x∗. By Lemma 4.5, v(x∗) = 0. Suppose, by contradiction, that
x∗ is not a KKT point and MFCQ holds at x∗. By Lemma 4.3, there is a neighborhood N (x∗) of x∗ and constants b1(x∗) > 0,
ᾱ ∈ (0, 1] such that

g(xk)Tdk ≤ −0.5ᾱb1(x∗) (4.4)

holds for all xk ∈ N (x∗).
For xk ∈ N (x∗) and k ∈ K , if v(xk) = 0, then, by (4.4),

−αg(xk)Tdk > δv
δv
k = 0, ∀α ∈ (0, 1],

which implies that the current iteration is f-type iteration. This contradicts k ∈ C. Therefore, v(xk) > 0.
By the proof of Lemma 4.3, there exists a unit vector s such that, for all xk ∈ N (x∗),

g(xk)T s ≤ −b1(x∗),

∇ci(xk)T s ≥ b1(x∗), i ∈ A(x∗).

If i ∈ A(x∗), then

ci(xk) + ∇ci(xk)T (αs) ≥ 0

as long as α ≥ vk/b1(x∗). If i ∉ A(x∗), then there exists a constant b′

1(x
∗) > 0 such that

ci(xk) ≥ b′

1(x
∗), ∀xk ∈ N (x∗), k ∈ K.

It follows from

ci(xk) + ∇ci(xk)T (αs) ≥ b′

1(x
∗) − α∥∇ci(xk)∥ ≥ b′

1(x
∗) − αMc

that ci(xk) + ∇ci(xk)T (αs) ≥ 0 as long as α ≤ b′

1(x
∗)/Mc . Therefore, if

vk/b1(x∗) ≤ α ≤ min{b′

1(x
∗)/Mc, ∆min},

then 0 ≤ mk(dk(σ∞)) ≤ mk(αs) = 0, i.e.,mk(dk(σ∞)) = 0, which implies thatmk(dk) = 0. By (3.2), it follows that

v(xk + αdk) ≤ mk(αdk) + 0.5α2mMc∥dk∥2

≤ (1 − α)vk + 0.5α2mMcM2
d .

If α ≤ vk/(mMcM2
d ), then

v(xk + αdk) ≤ (1 − 0.5α)vk − 0.5α(vk − αmMcM2
d )

≤ (1 − 0.5α)vk ≤ v(xk) ≤ vmax
k ,

i.e., (2.12) holds. It follows from (4.4) that

−αg(xk)Tdk ≥ 0.5ᾱαb1(x∗) > δv
sv
k

holds as long as α > 2δvsv
k /(ᾱb1(x∗)). By limk v(xk) = 0 and sv > 1,

2δvsv
k

ᾱb1(x∗)
< α <

vk

mMcM2
d

< ᾱ (4.5)

holds for sufficiently large k ∈ K , which shows that (2.10) holds if α satisfies (4.5). Moreover,

f (xk + αdk) ≤ f (xk) + αηf gT
k dk − 0.5α(1 − ηf )ᾱb1(x∗) +

α2

2
MfM2

d

≤ f (xk) + αηf gT
k dk

holds if α ≤ (1 − ηf )ᾱb1(x∗)/(MfM2
d ). Let

α̂ = min{ᾱ, (1 − ηf )ᾱb1(x∗)/(MfM2
d )}.

If k ∈ K is sufficiently large such that

2δvsv
k

ᾱb1(x∗)
< α <

vk

mMcM2
d

< α̂,

then αdk satisfies (2.10)–(2.12). Hence, the current iteration is f-type iteration. This contradicts k ∈ C. Thus the lemma is
proved. �
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Table 5.1
Summary of results.

Name Alg. it nf ng Qps Feas KKT f (xk)

Degenerate2 LSBO 9 10 10 12 0.00e+00 8.67e−07 0.0260
x0 = (1, 1) LSEP 9 10 10 13 0.00e+00 8.67e−07 0.0260

Degenerate3 LSBO 9 10 10 22 1.19e−16 8.67e−07 0.0006
x0 = (1, 1) LSEP 9 10 10 12 1.19e−16 8.67e−07 0.0006

Infeasible1 LSBO 2 3 3 3 1.00e+00 1.00e+00 0.0000
x0 = 10 LSEP 2 3 3 3 1.00e+00 1.00e+00 0.0000

Infeasible2 LSBO 6 7 7 17 0.00e+00 6.54e−06 1.0000
x0 = (0, −1) LSEP 6 7 7 10 0.00e+00 6.54e−06 1.0000

Infeasible3 LSBO 3 4 4 5 1.50e+00 2.13e−14 5.0000
x0 = (0, 0) LSEP 4 8 5 6 1.50e+00 3.55e−15 5.0000

Mpcc1 LSBO 3 4 4 6 1.87e−16 1.53e−09 1.0000
x0 = (0.1, 0.9) LSEP 3 4 4 6 1.87e−16 1.53e−09 1.0000

Mpcc3 LSBO 8 9 9 15 6.88e−33 4.44e−16 −2.0000
x0 =

(−0.1, 0.5)
LSEP 8 9 9 11 7.19e−33 1.48e−14 −2.0000

Mpcc5 LSBO 7 8 8 16 1.37e−20 7.79e−07 0.5000
x0 = (0.1, 0.1) LSEP 8 9 9 12 5.66e−24 5.06e−07 0.5000

Mpcc6 LSBO 10 11 11 12 9.53e−07 4.76e−07 −0.0000
x0 = (1, 1) LSEP 10 11 11 12 9.53e−07 4.76e−07 −0.0000

NLP1 LSBO 5 6 6 6 4.51e−12 1.12e−12 −1.4142
x0 = (0, 0) LSEP 5 6 6 6 4.51e−12 1.12e−12 −1.4142

NLP2 LSBO 1 2 2 3 5.55e−17 2.22e−16 0.3125
x0 = (0, 0) LSEP 1 2 2 3 5.55e−17 2.22e−16 0.3125

Switch-off1 LSBO 1 3 2 4 0.00e+00 1.77e−15 1.0000
x0 = (0, 0) LSEP 1 3 2 3 0.00e+00 1.77e−15 1.0000

Switch-off2 LSBO 3 4 4 8 0.00e+00 1.96e−07 6.0039
x0 = (0, 5) LSEP 3 4 4 8 0.00e+00 1.96e−07 6.0039

Switch-off3 LSBO 11 12 12 13 4.62e−09 4.66e−17 −1.0000
x0 = (0, 0) LSEP 38 213 39 45 8.51e−12 2.27e−07 −0.0019

Switch-off4 LSBO 9 10 10 13 9.80e−13 4.61e−12 −29.3137
x0 = (0, 0) LSEP 10 16 11 12 4.89e−12 7.24e−12 −29.3137

Unbounded1 LSBO 1 2 2 4 0.00e+00 2.22e−16 2.0000
x0 = 0 LSEP 1 2 2 3 0.00e+00 2.22e−16 2.0000

Unbounded2 LSBO 2 3 3 4 0.00e+00 4.44e−16 −1.0000
x0 = 0 LSEP 2 3 3 4 0.00e+00 4.44e−16 −1.0000

Wächter1 LSBO 3 4 4 5 0.00e+00 1.11e−16 1.0000
x0 = −3 LSEP 3 4 4 5 0.00e+00 7.77e−16 1.0000

Wächter2 LSBO 4 5 5 6 0.00e+00 1.11e−16 1.0000
x0 = −3 LSEP 4 5 5 6 3.33e−16 7.77e−16 1.0000

We can now give the main convergence result.

Theorem 4.8. Suppose that the algorithm LSBO generates an infinite sequence of iterates {xk} and Assumption A holds. Then,

(a) If |C| < +∞, any limit point of {xk} is either a KKT point of (1.1) or is a feasible limit point where MFCQ fails.
(b) If |C| = +∞ and limk→∞ vmax

k > 0, any limit point of {xk}k∈C is an infeasible stationary point.
(c) If |C| = +∞ and limk→∞ vmax

k = 0, any limit point of {xk}k∈C is either a KKT point of (1.1) or is a feasible limit point where
MFCQ fails.

5. Numerical experiments

In this section, we developed a matlab implementation of the algorithm LSBO and tested its performance on several
difficult situations in [17]. We report the numerical results on all examples with only inequality constraints in [17]. The test
set is divided into five groups of problems: (1) the problems that give rise to inconsistent linearization of the constraints;
(2) the problems that MFCQ is violated at the solution; (3) the problems that is infeasible; (4) the problems where the l1
exact penalty function is unbounded for small penalty parameters; (5) some regular and simple problems. For comparison,
we also run Algorithm I in [11]—a line search exact penalty (LSEP) method.

To solve the subproblems (2.5) and (2.7), we employed the codes provided by thematlab optimization toolbox. The linear
program (2.7)was solved using linprog and the quadratic program (2.5), using quadprog. Thematrix Bk is symmetric positive
definite which is obtained similarly to [11], i.e., by adding (if necessary) a multiple of the identity to the Hessian matrix of
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Table 5.2
Results of Mpcc1 for x0 = (0.1, 0.9).

σ0 Alg. it nf ng Qps Feas KKT f (xk)

1 LSBO 3 4 4 6 1.87e−16 1.53e−09 1.0000
LSEP 3 4 4 6 1.87e−16 1.53e−09 1.0000

10 LSBO 2 3 3 3 0.00e+00 8.45e−07 1.0000
LSEP 3 4 4 4 0.00e+00 1.05e−09 1.0000

102 LSBO 3 4 4 4 0.00e+00 1.16e−14 1.0000
LSEP 3 4 4 4 0.00e+00 1.16e−08 1.0000

103 LSBO 3 4 4 4 0.00e+00 4.49e−08 1.0000
LSEP 8 9 9 9 0.00e+00 6.65e−12 1.0000

104 LSBO 3 4 4 4 0.00e+00 7.98e−08 1.0000
LSEP 58 59 59 59 0.00e+00 1.81e−12 1.0000

105 LSBO 3 4 4 4 0.00e+00 8.40e−08 1.0000
LSEP 556 557 557 557 0.00e+00 1.45e−11 1.0000

106 LSBO 3 4 4 4 0.00e+00 8.45e−08 1.0000
LSEP F F F F 0.00e+00 1.00 1.0000

107 LSBO 3 4 4 4 0.00e+00 8.45e−08 1.0046
LSEP F F F F 0.00e+00 1.00 1.0000

108 LSBO 3 4 4 4 0.00e+00 8.45e−08 1.0055
LSEP F F F F 0.00e+00 1.00 1.0055

the Lagrangian function of the problem (1.1) at xk. The initial penalty σ0 is set to 1 in all tests. We multiply σ by 10 every
time it has to be increased. We trigger the solution of the linear programming ifmk(dk) > 1.0e−6. For the algorithm LSBO,
we have used the following parameter settings

δ1 = δ2 = 0.1, δ = 10, sv = 2.1, ηf = ηv = 1.0e−4,
β = 0.5, β1 = 0.9, β2 = 0.75, σmin = 1, σmax = 1.0e+8.

For LSEP in [11], we have used the following parameter settings which are the same as [11].

δ1 = δ2 = 0.1, β = 0.5, η = 1.0e−4, η1 = 0.25, η2 = 0.75.

Set ∆min, ∆0, ∆max to 10−3, 1, 103, respectively.
The numerical results are summarized in Table 5.1, which report the number of iterations (it), the number of the objective

function estimations (nf), the number of the gradient estimations (ng), the number of quadratic programs solved (Qps), the
KKT error (KKT, infinity norm) and feasibility errors (Feas, l1 norm), as well as the value of the objective function f (xk) when
the algorithm stops. The algorithms LSBO and LSEP stop if

max{Feas, KKT } ≤ ϵ = 10−6 or it > 1000.

‘‘F’’ means that the algorithm fails, i.e., it > 1000.
In Table 5.1, LSBO can find the solutions of all problems although the number of quadratic programs solved (Qps) by LSBO

is slightly more than it by LSEP. LSEP does not obtain the solution of problem Switch-off 3. In order to test the performance
of the algorithm LSBO further, we run two algorithms LSBO and LSEP from other initial point and the various initial penalty
settings σ0 = 100, 101, . . . , 108. LSEP is very sensitive to the initial point and the choice of parameters for some test
problems such asMpcc1, Switch-off 2, Switch-off 3 and Switch-off 4. Tables 5.2–5.5 report their numerical results. The results
in Tables 5.2–5.5 suggest that setting large values for the penalty parameter, a strategy that has no theoretical drawbacks
and that is sometimes to consider a ‘‘safe’’ approach in practice, may harm the performance of an exact penalty method.

For the problemMpcc1 (see Table 5.2), LSBO and LSEP all can find the solution of Mpcc1 but the number of iterations for
LSEP ismore andmore as the enlargement of σ0 even over 1000 iterations. For the problem Switch-off 2 (see Table 5.3), LSEP
all cannot find the solution of Switch-off 2 when it runs from the initial point x0 = (0.001, 5.001) and the various initial
penalty settings σ0 = 100, 101, . . . , 108 although they stop because of max{Feas, KKT } ≤ 10−6. In fact, the iterate sequence
{xk} generated by LSEP all goes around the point (0, 5). However, the algorithm LSBO all can get the solution normally in
the various cases. For the problem Switch-off 3 (see Tables 5.4a–5.4f), LSBO all can find the solution easily for the different
initial points and the various initial penalty settings. LSEP cannot find the solution from x0 = (0, 0) and can find the solution
from x0 = (0.1, −0.1), (−0.1, 0.1) only for the smaller initial penalty settings. For the problem Switch-off 4 (see Table 5.5),
LSEP fails for the larger initial penalty settings while LSBO always succeeds.

6. Conclusion

In this paper, we have proposed a line search exact penalty method with bi-object strategy (LSBO) for nonlinear
constrained optimization. The search direction is computed by a piecewise quadratic model of the exact penalty function.
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Table 5.3
Results of Switch-off 2 for x0 = (0.001, 5.001).

σ0 Alg. it nf ng Qps Feas KKT f (xk)

1 LSBO 5 6 6 14 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 6 0.00e+00 1.77e−07 10.0044

10 LSBO 5 6 6 13 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 5 0.00e+00 1.77e−07 10.0044

102 LSBO 5 6 6 12 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 4 0.00e+00 1.77e−07 10.0044

103 LSBO 5 6 6 11 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 3 0.00e+00 1.77e−07 10.0044

104 LSBO 5 6 6 10 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 2 0.00e+00 1.77e−07 10.0044

105 LSBO 5 6 6 10 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 2 0.00e+00 1.77e−07 10.0044

106 LSBO 5 6 6 10 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 2 0.00e+00 1.77e−07 10.0044

107 LSBO 5 6 6 10 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 2 0.00e+00 1.77e−07 10.0044

108 LSBO 5 6 6 10 0.00e+00 6.45e−08 6.0012
LSEP 1 10 2 2 0.00e+00 1.77e−07 10.0044

Table 5.4a
Results of Switch-off 3 for LSBO. x0 = (0, 0), σ0 = 1, 10, . . . , 108 .

it nf ng Qps Feas KKT f (xk)

11 12 12 13 4.62e−09 4.66e−17 −1.0000

Table 5.4b
Results of Switch-off 3 for LSEP. x0 = (0, 0).

σ0 it nf ng Qps Feas KKT f (xk)

1 38 213 39 45 8.51e−12 2.27e−07 −0.0019
10 38 213 39 44 8.51e−12 2.27e−07 −0.0019
102 38 213 39 43 8.51e−12 2.27e−07 −0.0019
103 38 213 39 42 8.51e−12 2.27e−07 −0.0019
104 38 213 39 41 8.51e−12 2.27e−07 −0.0019
105 38 213 39 40 8.51e−12 2.27e−07 −0.0019
106 38 213 39 39 8.51e−12 2.27e−07 −0.0019
107 43 281 44 44 3.13e−15 1.48e−08 −0.0004
108 46 283 47 47 5.79e−15 1.80e−09 −0.0001

Table 5.4c
Results of Switch-off 3 for LSBO. x0 = (0.1, −0.1), σ0 = 1, 10, . . . , 108 .

it nf ng Qps Feas KKT f (xk)

11 12 12 14 1.58e−09 0.00e+00 −1.0000

Table 5.4d
Results of Switch-off 3 for LSEP. x0 = (0.1, −0.1).

σ0 it nf ng Qps Feas KKT f (xk)

1 20 48 21 22 6.29e−11 4.44e−16 −1.0000
10 20 48 21 21 3.37e−10 3.73e−16 −1.0000
102 39 268 40 44 2.14e−12 9.22e−08 −0.0012
103 39 268 40 43 2.14e−12 9.22e−08 −0.0012
104 39 268 40 42 2.13e−12 9.22e−08 −0.0012
105 39 268 40 41 2.14e−12 9.22e−08 −0.0012
106 39 268 40 40 2.12e−12 9.22e−08 −0.0012
107 43 284 44 44 1.27e−18 2.10e−08 −0.0005
108 42 223 43 43 2.22e−18 2.44e−09 −0.0001
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Table 5.4e
Results of Switch-off 3 for LSBO. x0 = (−0.1, 0.1), σ0 = 1, 10, . . . , 108 .

it nf ng Qps Feas KKT f (xk)

12 13 13 16 8.40e−09 2.22e−16 −1.0000

Table 5.4f
Results of Switch-off 3 for LSEP. x0 = (−0.1, 0.1).

σ0 it nf ng Qps Feas KKT f (xk)

1 21 49 22 23 5.51e−10 1.71e−14 −1.0000
10 12 20 13 13 1.10e−09 0.00e+00 −1.0000
102 103 633 104 104 2.78e−07 2.98e−15 −1.0000
103 32 157 33 36 8.70e−12 4.50e−08 −0.0008
104 32 157 33 35 8.70e−12 4.50e−08 −0.0008
105 32 157 33 34 8.69e−12 4.50e−08 −0.0008
106 32 157 33 33 8.69e−12 4.50e−08 −0.0008
107 42 274 43 43 2.01e−14 1.73e−08 −0.0005
108 42 255 43 43 6.62e−18 1.90e−09 −0.0001

Table 5.5
Results of Switch-off 4 for x0 = (0, 0).

σ0 Alg. it nf ng Qps Feas KKT f (xk)

1 LSBO 9 10 10 13 9.80e−13 4.61e−12 −29.3137
LSEP 10 16 11 12 4.89e−12 7.24e−12 −29.3137

10 LSBO 8 9 9 12 3.80e−09 5.62e−09 −29.3137
LSEP 9 14 10 10 6.83e−12 1.01e−11 −29.3137

102 LSBO 6 7 7 9 8.79e−10 1.29e−09 −29.3137
LSEP 116 119 117 117 1.12e−11 1.65e−11 −29.3137

103 LSBO 6 7 7 9 1.26e−07 1.86e−07 −29.3137
LSEP F F F F 0.00e+00 8.97e+00 −28.9602

104 LSBO 6 7 7 9 7.71e−08 3.67e−07 −29.3137
LSEP F F F F 0.00e+00 7.75e+00 −25.6806

105 LSBO 6 7 7 9 7.33e−08 1.08e−07 −29.3137
LSEP F F F F 0.00e+00 7.35e+00 −25.0755

106 LSBO 6 7 7 9 7.29e−08 1.07e−07 −29.3137
LSEP F F F F 0.00e+00 7.30e+00 −25.0076

107 LSBO 6 7 7 9 7.29e−08 1.07e−07 −29.3137
LSEP F F F F 0.00e+00 7.29e+00 −25.0007

108 LSBO 6 7 7 9 7.29e−08 1.07e−07 −29.3137
LSEP F F F F 0.00e+00 7.29e+00 −25.0000

The penalty parameter is selected at every iteration whose function is only to guarantee the sufficient progress toward
feasibility and optimality along the search direction. The new method has two goals to determine whether the current
iteration is successful or not whose strategy is independent of the penalty parameter. Therefore, the penalty parameter can
be any optional positive numbers at the beginning of each iteration. The analysis in this paper indicates that the algorithm
should be very robust, and some examples are done to test that robustness in cases where the theory applies and in cases
that go beyond the theory. However, it may be necessary to unravel further the more exact behavior of such methods and
all their characteristics.
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