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Abstract Based on the idea of maximum determinant positive definite matrix
completion, Yamashita (Math Prog 115(1):1-30, 2008) proposed a new sparse
quasi-Newton update, called MCQN, for unconstrained optimization problems with
sparse Hessian structures. In exchange of the relaxation of the secant equation, the
MCQN update avoids solving difficult subproblems and overcomes the ill-condi-
tioning of approximate Hessian matrices. However, local and superlinear conver-
gence results were only established for the MCQN update with the DFP method. In
this paper, we extend the convergence result to the MCQN update with the whole
Broyden’s convex family. Numerical results are also reported, which suggest some
efficient ways of choosing the parameter in the MCQN update the Broyden’s family.
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40 Y.-H. Dai, N. Yamashita

1 Introduction

Consider the unconstrained optimization problem
minf(x), xeR" (L.1)

where f : R" — R is continuously differentiable and its gradient Vfis available. If

the dimension # is not large, the quasi-Newton method is an ideal choice for solving
(1.1) because of its superlinear convergence and no need to calculate the function
Hessian. Assuming that x; is the current iterate and H,, is the approximation to the
inverse Hessian, the quasi-Newton method generates the next iteration by

Xiep1 = Xk — HiK VI (xi), (1.2)

where oy, > 0 is a stepsize obtained via some line search and updates the approxi-
mation H; to Hy,, so that

Hiy1yk = s, (1.3)

where s, = x4 — X and y, = Vf(xiy 1) — Vfixy). The update formula in Broy-
den’s family is
Hyiyg He | sisg

HE = H — TRk K g T 1.4
kel ViHok Stk Tk (14)

where ¢, is a parameter and

/ Sk Hyyy
Vi = yszyk <S;£yk — yszyk> . (1 5)

The choice ¢ = 0 is corresponding to the DFP update and ¢, = 1 gives rise to the

BFGS update. In addition, the restricted Broyden’s family with ¢, € [0, 1] is called
as Broyden’s convex family.

If the dimension of the problem (1.1) is large, then the direct use of the quasi-
Newton method is not possible due to the storage of an n x n matrix. In order to
overcome this difficulty, several methods have been proposed. The limited-memory
BFGS (L-BFGS) method [13, 15] is to only store a few pairs (s;, y;) in the
construction of the Hessian approximation. Since there is no need to know any
information about the Hessian, the L-BFGS method is now widely used in practice.
For many large-scale problems, the function f can be written into the form

Flx) = Zﬁ(X),

where each of the n, element functions, f;, depends only on a few variables. In this
case, the partitioned quasi-Newton method, developed by Griewank and Toint (see
[9-11] and the references therein), performs very well in practice and is now
regarded as one of the important practical optimization algorithms. Their basic idea
is to update an approximation Bj to the Hessian of each element function f; and then
to assemble these matrices to define an approximation By to the Hessian of f. More
exactly, they determine the search direction by solving the linear system
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Analysis of Sparse Quasi-Newton Updates 41

(>, Bi)dy = —Vf(xx). Their method was implemented with the trust region
strategy since the matrix By is not positive definite in general.
There are also many large-scale problems where the function Hessian V>f(x) is

sparse and the sparsity structure is available. Suppose that for all x € R”",
[vzf(x)}ij = 07 (ivj) € Fa (16)

where F is some subset of / x [and I = {1,2,---,n}. In this case, it is possible to
establish faster optimization methods by exploiting the sparsity structure of the
Hessian. Toint [18] and Fletcher [7] studied such updates and required Hj_ | to meet
the sparsity condition, namely H;, (i, j) =0 when (i, j) € F, and the secant
equation (1.3) simultaneously. As a result, their methods involve the solution of a
convex programming problem at each iteration. If some component of sy, is zero, the
obtained approximate Hessians may be ill-posed (see Sorensen’s [17] example).

Inspired by the successful use of positive definite matrix completion in [9] for
semidefinite programming, Yamashita [19] proposed another type of quasi-Newton
update for problem (1.1) with sparse Hessian structure. Let i : R"" — R is a
strictly convex function defined by

W(A) = tr(A) — Indet(A) (1.7)

(This function is introduced in [1] as a powerful tool for the convergence analysis
of quasi-Newton methods). Yamashita determines the new approximation matrix
H, ., by two steps:

(i) update H, to H® by certain quasi-Newton formula;
(i) obtain H;, | by solving the following subproblem

min  y(H,"*HH, ')

_ QN .o
st Hj - Hiy, (hj) €F, (1.8)
(H7 )ij = 07 (17]) g F7
HeS,.

Here S, denotes the set of symmetric positive definite matrices. As in [20], we call
the above update by MCQN. If the intermediate matrix HN is obtained by the DFP
(BFGS) formula, we call the update by MCQN with DFP (BFGS). Similarly, we
define MCQN with Broyden’s family.

Further, Yamashita showed that, if the sparsity of the Hessian is of such pattern
that there is no fill-in in its Cholesky factorization, or equivalently, the graph
induced by the Hessian is chordal (see [19] for details), the problem (1.8) is
equivalent to finding a maximum-determinant positive definite matrix completion of

ON . . '
H:",(i,j) € F:

max det(H)
st. Hy=HZN, (i,j) € F, (1.9)
Hes,.

The above problem can then be easily solved by analyzing the clique tree of the
graph induced by the Hessian (see [19] for details). In addition, it is shown in [19]
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42 Y.-H. Dai, N. Yamashita

that the update does not suffer from Sorensen’s example. Therefore, by relaxing the
secant equation, the MCQN update is easy to be implemented and is well posed.

Numerical experiments in [19] show that the MCQN update with BFGS
obviously performs better than that with DFP. However, local and superlinear
convergence results are only established for the latter. The purpose of this paper is
to analyze and investigate the MCQN update with Broyden’s family, in which the
intermediate matrix H°" is given by (1.4). After giving some preliminaries in the
next section, we will show in Sect. 3 that the MCQN update with Broyden’s convex
family is locally and superlinearly convergent under appropriate conditions.
Numerical results are reported in Sect. 4 for MCQN with Broyden’s positive
family and some discussions are made in the last section.

2 Properties of the MCQN Update

We consider the MCQN update with Broyden’s convex family, namely, H" is
given by (1.4) with ¢, € [0,1]. To facilitate our analysis, we introduce some
notations at first. For any fixed invertible matrix P with its inverse having the same
sparsity pattern with the function Hessian, namely,

(P71),; =0, forall (i,j) € F, (2.1)
we denote
S =P s, 5= PPy, He =P '\PHP'? HP = P PHPPTI,
where H? = H’,fH is given by (1.4). Then, it follows (1.4) that
s 5 HOWLHE | §iS)

HE =g, — =22 Tk v 2.2
ysz}N]k + g’l'gyvk + (kaka, ( )

- T~ - [ Sk H,
Pk = \/ I Hiy <—§T)7k — > (2.3)
k

where

yrHiy

Further, assume the Euclidean norm in default and write

_ SH, AR _ SH, A
=T < k=5 M= —x=, Mk= g,
19kl [ Hi e (17l Sk Vi Vi Yk
&P AR _ ViH,
My="5—, bh="5+" "="m-"-
S Yk Sk Yk Sk Yk
Similar to [2], we can get from (2.2), the following relations
7B - i dk
tr(H”) = tr(H;) — (1 — (,bk)r—2 —2¢une + <1 + ¢ mk>Mk (2.4)
k
and
det(H") = det(Hy)[1 + by (B — D]/ e (2.5)
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Analysis of Sparse Quasi-Newton Updates 43

For the MCQN update with Broyden’s family, we now establish the following
relations between I:IkH and H5:

tr(ﬁk+1) = tl‘([:IB), det([:]k+1) > det(I:IB). (26)
In fact, it follows from (1.8) that (H;; — HB),»J = 0 for (i,j) € F. This and (2.1)

indicate that for any (i,j) € I x I, at least one of the elements (H;,, — H®); ; and
P, ; is equal to zero. Consequently, we have that

tr(Hpsy — H?) = (P72 (Hyy — HP)P1/?)
trn(P ;(Hkﬂ — H")) 2.7)
:Z j(Hepy —HP), . = 0.

i=1 j:1

On the other hand, since the matrix H? itself satisfies the constraints in (1.9), we
must have that det(Hy, 1) > det(H?). It follows:

det(Hii1) = det(P~'/?) det(Hy) det(P~'/?)
> det(P~'/?) det(H?) det(P~'/?) (2.8)
= det(H?).
Thus, the relations in (2.6) hold. Furthermore, we know by (1.7) and (2.6) that

Y(He) < y(HP). (2.9)

Substituting (2.4) and (2.5) into (2.9), we establish the relation between xp(ﬁkﬂ)
and (H,;):

Y(Hisr) < Y(H) — (1 - d’k)%_ 2¢um + ( + ¢ )Mk

k
—In[1 + ¢4 (Brvr — 1)] + Iny,.

Although the above relation does not hold as an equality unlike the ordinary
Broyden’s family of methods, it suffices us to analyze the local and superlinear
convergence of the MCQN update with Broyden’s convex family.

The introduction of the matrix P plays an auxiliary role in establishing the relation
(2.10). We will choose P = (sz(x*))” in our superlinear convergence analysis of
the next section, where x« is the solution point. In the superlinear convergence
analysis of the ordinary quasi-Newton method, we can assume that V2f(x) is the
identity matrix due to the invariance property under affine transformations. However,
we can show by an example that the MCQN update does not possess the invariance
property. Thus, we cannot assume that V>f(x-) is the identity matrix and hence the
introduction of P is necessary in the superlinear convergence analysis of the MCQN
update. We can only prove that the MCQN update is invariant under those affine
transformations which keep the sparsity structure.

Assume that H, is the following 3 x 3 matrix

(2.10)
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2 -1 0
H = -1 2 -1
0 ~1 2

and A = H,. Obviously, the matrices A and H; have the same sparsity pattern. In
this case, we can directly calculate the matrix AHA™ and its corresponding maxi-
mum determinant positive definite matrix completion, which is denoted by
MD(AH,A") and only changes the (1, 3) and (3, 1) entries of AHAT:

14 —14 6
AHAT = | —14 20 —14 |,
6 —14 14
14 —14 938
MD(AHAT) = | —14 20 —14
9.8 —14 14

On the other side, we have that

2 -1 05
MD(Hy) = | —1 2 -1,
05 -1 2
14 15 8
AMD(H,)JAT = | —15 21 —15
8 ~15 14

The inconsistency of the matrices MD(AHA") and AIMD(H,)]A" indicates that the
procedure of the maximum determinant positive definite matrix completion does not
have the invariance property and neither does the MCQN update.

3 Local and Superlinear Convergence
In this section, we analyze the MCQN update with Broyden’s convex family under
the sparse structure (1.6) and Assumption 3.1.

Assumption 3.1 Let x« be a solution of (1.1) and let B = {x € R"|||x — x.|| < b}
with a positive constant b.

(i) The objective function f is twice continuously differentiable on B.
(ii) There exist positive constants m and M such that

m|)z||* < ZN(V3(x) 'z < M||z]>, forallz € R and x € B. (3.1)

If the second-order sufficient optimality condition holds at the solution x:, then
the (ii) in Assumption 3.1 holds. From the (i) in Assumption 3.1, Vf and sz(x) are
Lipschitz continuous on 3, namely, there exist some constants L, L > 0 such that

IVf(x) = VF(z)|| < L||x —z||, forall x,z€ B, (3.2)
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Analysis of Sparse Quasi-Newton Updates 45

|V?f(x) — V*f(z)|| < L|jx —z||, forallx,z€B. (3.3)
Let us define

b1 = max || — x| [oesr —x. ]I} (3.4)

Noting that y; = fol V2f (x; + ts;)dt, we can obtain from this and (3.3) that

1
lye — V2 (x)s]| = / V2 (xx + tsi) — V2 (x,)]sedr
0

1
/ IV2F (x4 56) — V2F () ||| se | de
0 (3.5)

/Hl—tm—&%Hmﬂ—Mwmwt
0

< /LSkHSkHdt:LEkHSk”.
0

Denote G« = V>f(x«), H« = (G+)~' and take P = H. which satisfies (2.1). Define
Sks Yk, Tk, €tc., as before. Then, we know by (3.5) that

1% = Sell < IHY v = sell < LU leellsell < LI PecliSll.— (3.6)
Further, we can prove without difficulty that, there must exist positive constants
¢1 > 0 and ¢, € (0,b) such that all the quantities
a2=My—m 4 G — Si) Hiy

1
2 P iy < e (347)

Mk - la H ’
‘ My ‘ tr(Hy)S; yi

whenever ¢, <c,. Now let us denote
pe=agx—1—Inge, G=(1=¢)a(ry>—1), & =In[l+ ¢ (Bye — 1))

(3.8)
The inequality (2.10) can be written as
W(Hirr) < Y(He) = pe— Go— &+ (M — 1) + drquiy, + dptr(Hi) iy, + Inmy.
(3.9)

Since ¢, € [0,1], 7 = qx/m and 0 < g; < tr(Hy), we know from the above rela-
tion and (3.7) that

W(Hir) < W(He) = pr = G — &+ er (1 + w(Hy) )er. (3.10)
Using the fact that

A—Ini> max[(l—l>l,l], for any 4 > 0, (3.11)
€
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we can show that (see [20])

1
Y(A) > max [(1 - —) tr(A), n} , (3.12)
e
for any symmetric positive definite matrix A. Denoting ¢3 = ¢; [} + g%, it follows
from (3.10) that
Y(He) < (14 cse)y(He) — p — G — & (3.13)

Since 17 < 1 and Pyyx > 1, we see that the quantities py, (;, and & are all non-
negative. Then, we obtain

Y(Hi1) < (14 caa)y(H). (3.14)

In the following, we establish the local linear convergence of the MCQN update
with Broyden’s convex family with the help of (3.14).

Theorem 3.2 Suppose that Assumption 3.1 holds. Consider the method (1.2)
where o = 1, and Hj is obtained by the MCQN update with HQN_HEH
(¢ € [0,1]). Then, for any o € (0,1), there exists T such that ||xo — x.|| < © and
[Ho — H.|| < © imply

k1 — xi|| < aofjx — xi]|,  for all k. (3.15)

Proof Suppose that o € (0,1). From Lemma 4 in [19], there must exist constants
7 € (0,b) and & > 0 such that, if ||xg — x.|| < 7, then

Y(Ho) —n <g, (3.16)

wmww<azﬂw—mw<§, (3.17)

1
2

~ 1 —
where H is any symmetric positive definite matrix and H = H, *HH, *. Choose

o o l1—a (2(n+0
r—mm{r ' Tp = ln( 2(n—|—5)>} (3.18)

We will show by induction that the following inequalities hold for all &:

eer = x| < alle — .l (3.19)

o
e — HLJ| < 7 (3.20)

To begin with, similar to (1.7), we can show by (3.3) and (3.1) that for any x € 55,
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=%, — HVF] < L7700 — 9F(5) = G — )]
1

<M [ IV o= ) = Gl =l 3.
0

1
< S LM|jx - x|

Now, when k£ = 0, we see that (3.19) holds due to (3.16) and (3.17). Moreover, by
(1.2), o= 1, (3.21) with x = xo, and the choice of 1, we can get that

[[x1 = x| = []x0 — HoVif (x0) — x|
< jxo — x — HVf (x0) || + || (Ho — Hy) (Vf(x0) — VI (xs))]]

1
< LM|lx x|* + [|Ho — H.||||Vf (x0) — Vi (x.)]]

1 (3.22)
o
< (30—l +3) b v

1 o
< 5LMT+§ lxo — x|l < oflxo — x|l

So (3.19) and (3.20) hold for k = 0. Suppose that (3.19) and (3.20) are true for
k=0,1,---,1. Then, we have that & = [x; — x.|| and & < ofep < oft for k =
0,1,---,1 Similar to (3.22), we get

1 = x| =l = HiVF () — x|
< bt = xe = H V()| + [[(Hy = Ha) (VF (a) = Vi ()|

1 o

< (ZLM|x] — x| +2)|x1 — x| (3.23)
1 I

< ELMom—f—E [l — x| < afjar — x|

On the other hand, by the choice of t, we have that

I i I+1
1 —o 3T 2(n+ 0
c3;8k§6ﬂ;ock:qr - gliagln 2(n+5)' (3.24)

It follows from this, (3.16) and (3.14) that
i

Y(Hi1) = n < (W(Ho) —n) + (H(l + cagr) — 1>W(ﬁo)

k=0
()
S+ |\n+5 e —1
2 2 g (3.25)
< g+ (n +§> <ec3 2o — 1)
p S\ (2(n+ )
< — — — =
\2+(”+2><2n+5 1) 0
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Thus, by (3.17), relation (3.20) holds for k = [ + 1. Therefore, by induction, (3.19)
and (3.20) are true for all k > 0. This completes the proof. Ul

Now, we are ready to establish the superlinear convergence for the MCQN
update with Broyden’s convex family. The proof is based on the local linear
convergence of the update and the relation (3.14).

Theorem 3.3 Suppose that Assumption 3.1 holds. Consider the method (1.2)
where o= 1, and Hy is obtained by the MCON update with HZ" = HEH (¢ €
[0,1]). Then, there exists a positive constant T such that, if ||xo — x.|| <t and
|Ho — H.|| < 1, then

H, — H,
o 1= H )

=0. 3.26
L T (326)
Thus, the sequence {x;} generated by the method converges to x« superlinearly.

Proof Forany o € (0, 1), we choose 7 as in the proof of Theorem 3.2. Then, (3.19)
and (3.20) hold for all £. At the same time, we have that

W(H) —n <6 for allk. (3.27)
Note that (3.13) implies that
P+ G+ & < (W(Hir) — W(Hy)) + caeip (). (3.28)
Summing the above relation and using (3.24) and (3.27), we obtain
(n +9)
H 0)1 3.29
;(pk+ck+ék ngéklﬁ 0 < esn ) IS (3.29)

Since the quantities p;, {;, and &, are all nonnegative, the relation (3.29) indicates
that they are all tend to zero as k — o0. Further, by their definitions in (3.8), we
know that (i) gx — 1; (i) if ¢, <35, © — 1; and (iii) if ¢, > %, Beve — 1.

Now, we consider the quantity |[(Hy — H.)yk||/||vk||- On one side, we have that

1/2 2 e a2 o~ 2 TEr <2
2y — Hoyl? _ (1B = 5l _ AP — 25 i+ (19
T = 2 - — 2
| H2ye]| [Vl [l

=% g1 (3.30)
Tk

On the other side, we have that

o~ -2 5 120204 1/2~ /2
e 2 P ) A T e A I
~ 112 < ~ 112
(19l (17l
~ 1/2,12 /77 ~ T ~ T n—1 ~
N HCT N G — 2555 + St (Hi)~ Se) (3.31)

~ 2
(15
~ 1/2
_ ||Hk/ |2< 2mk+ﬁk:k>

In addition, note that
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|55, — il B |55, — < 17 — Sl
~ ~ ~ ~
(7%l (1%l [l

—0. (3.32)

For the subsequence {k; : ¢;, < %}, we know from gy — 1,7, — 1 and (3.30) that
the limit relation (3.26) holds for the subsequence {k;}. For the subsequence {k; :
oy, > %}, we know from g — 1, By, — 1,my — 1, the first equality in (3.30),
(3.31), and (3.32) that the limit relation (3.26) holds for the subsequence {k;}. Thus,
combining the two cases, (3.26) is true. As addressed in [19], (3.26) implies the
following relation

|((H) ™ = Gsill _

lim 0. (3.33)
k=00 sl
Therefore, by [6], we know that {x;} is superlinearly convergent. O

4 Numerical Studies

In the previous section, we analyzed the convergence properties of the MCQN
update with Broyden’s convex family. In this section, we will investigate the
numerical performance of the MCQN update with Broyden’s positive family, in
which case the ¢y in (1.4) is restricted to be nonnegative.

Five test problems in CUTEr [13] and [14] were used in our numerical studies,
where x;,,; is the standard initial point for each problem. For each problem, we tried
four initial points Xj,, 4 Xini, 7 Xini> and 10 x;p;.

Problem 1 (TRIDIA)
F) = o =17+ )i = 20,
i=2
Xini = (1, ) 1)T~

Problem 2 (Extended Rosenbrock function)

n—1

fx) = 100(xi11 —x7) + (1 —x:)%,

i=1
X = (—1.2,1,-12,1,---, =12, 1)".

Problem 3 (Extended Powell singular function)

n/4

flx) = Z {10()541'73 — x4i)" + (g2 — 2x41)"

=1
+5(x4i-1 — x4i)2 + (a3 + 10x4i—2)2 )
Xini = (3,—1,0.1,---,3,—1,0,1)".
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Problem 4 (Broyden tridiagonal function)

flx) = (3x; — 2x7 — 2xy + 1)? + (3x, — 20 — X1 + 1)?

1
+ (3xi — 2)(1-2 — Xi—1 — ZXH_] + 1)2,
=2

i=

Xini = (—=1,--, =)

Problem 5 (Broyden banded function)

2
flx) = Z(Sx? +2x+1-— ij(l erj)) ,

i=1 T
where
Ji={j|j#imax{l,i —5} <j < min{n,i+ 1}}.
Xini = (=1,---, =T

All the Hessians of the above problems are band matrices. Therefore, we can
obtain the chordal extensions of their sparsity pattern without difficulty. The
dimensions n of all problems are set to 1 000. In our tests, we are satisfied with an
approximate stationary point with

IV ()]l <1072

Table 1 lists the iteration numbers required for each fixed value of ¢;. In each
row of the table, we write the least iteration number(s) in the bold style. From
Table 1, we can see that if ¢y is restricted to the interval [0, 1], the choice of ¢; = 1
provides the best results. This indicates that, in the MCQN update, the BFGS
formula is the best choice in Broyden’s convex family. This conclusion is the same
as in the ordinary quasi-Newton method (see [2, 16]). On the other hand, we can
also see from the table that the numerical performance of the MCQN update can be
improved by increasing the value of ¢;. It can be seen in (1.4) that the positive
definiteness of the quasi-Newton matrix H; is kept, if ¢, > 0. Consequently, the
MCQN update is well defined for all ¢, > 0. Surely, if ¢, > 1, the superlinear
convergence analysis in Sect. 3 does not apply because the quantity {; is not
nonnegative any more, as is necessary for the deduction of the relation (3.14).
Despite the lack of a strict superlinear convergence proof, we see from Table 1 that
¢r = 4, 5 provide quite good numerical results, which are significantly superior to
those of ¢, = 1.

Although the MCQN update with BFGS can still be improved by increasing the
value of ¢, the best choice of ¢, varies from test problems. For example, for
Problem 2 with the standard initial point x;,;, ¢, = 4 is an ideal choice. If 10x;,; is
used as the initial point, ¢, = 5 is a better choice. Based on these observations, we
feel that it might be worthwhile to dynamical choices of ¢;. We considered the
following three ways:
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(I) The first way is to pick an interval [L, U] with L > 0 and solve the one-
dimensional problem

min  |H®y 1 — si1 (4.1)
s.t. L<¢<U. '
In other words, we want H® to satisfy the secant condition H™Ny, | = s, as

possible as it can while it satisfies the one that H®y, = s exactly. Since such ¢y

sometimes becomes negative, we force ¢, to remain on [L, U]. Numerical results

with three choices, [1, 5], [1, 10], and [1,50], of [L, U] are taken down in columns

3-5 of Table 2. Again, in each row of Table 2, we write the least iteration num-

ber(s) in the bold style.

(II) The second way comes from another observation of superlinear convergence
proof and aims to restrict ¢, so that a relation similar to (3.14) can be
achieved. Pick some constants ¢y, c; € (0, 1). If the choice of ¢ is such that

—lo= (e = Dar(re® = 1) S cupe + 2y, (4.2)

we can still obtain

V(Hir) < (1+ cey(He) — (1 —c)pp — (1 = 2)&. (4.3)

If the above choice of ¢, is possible, we can prove that both p; and &, tend to zero
and achieve the superlinear convergence. However, the relation (4.2) is related to y,,
Sk , and Flk, which depend on sz(x*). Since we do not know sz(x*) in general, we
cannot directly exploit the inequality (4.2). Nevertheless, we consider to use y, S,
and H, to replace y,s, and H,, respectively, in (4.2). In this case, since

Hilsy = — oy g1, the value of f; and hence the value of &, can be easily obtained.
For different values of ¢; and ¢,, we then choose ¢, such that
(b = Dar(ti” = 1) = crpy + 28 (4.4)

The quantity ¢, is involved in the calculations of &;. We solve the equality (4.4) by
Newton’s method starting from

bo = c1pi/[a(te” = 1))

For numerical stability, we used a projection of a solution ¢; onto some interval
[L, U]l. We tested different choices of (c¢;, ¢;) and [L, U] and found that the
numerical results are not sensitive to the choices of the parameters. The recom-
mended intervals for ¢; and ¢, are both [0.7, 0.95]. Numerical results with fixed
choice (cy, ¢o) = (0.9, 0.9) and three choices, [1, 5], [1, 10], and [1,50], of
[L, U] are taken down in columns 6-8 of Table 2.

(II) The third way comes from the proposal in [21] and aims to choose ¢, such
that the search direction is close to the steepest descent direction. Denote

T T
it 15k ( Vi Higk )
Dk = — Se, Qe = — | Higr — Hyy
Vi Sk Vi Hiy

and
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d(p) = p + pax.
Let p; be a solution of
: d(p)Tng
e Tl
st pr < p <Py,
where pf and py are the upper and lower bounds of p. Note that py is easily obtained
by [(4.5)—(4.6), 21]. Then ¢, is given by
pr—1
b=
‘ e — 1
with
_ s H sy Hivi

(stk)2

Here, the definition of t is different from the one in (3.7). The suggested interval
[pé, p,ﬁ’ ]in [21] is [p, S we]. We tested four different intervals and took down the
corresponding numerical results into columns 9—12 of Table 2.

e

Comparing with the MCQN update with BFGS (see the column ¢; =1 in
Table 1), we see that all the three dynamical ways of choosing ¢; can lead to almost
uniformly better numerical results. Among the three dynamical ways, way (II)
seems to be the most efficient one.

5 Conclusions and discussions

In this paper, we have established the local and superlinear convergence of the
MCQN update with Broyden’s convex family under suitable assumptions. A global
convergence analysis has been given for the MCQN update with Broyden’s convex
family assuming that the objective function is uniformly convex and its dimension is
only two. Numerical results have been reported for the MCQN update with
Broyden’s positive family. They show that, to obtain the intermediate matrix HZ",
the BFGS formula is the best choice among Broyden’s convex family. On the other
hand, there are several ways to beat the BFGS formula if one considers Broyden’s
positive family with ¢, larger than or equal to 1.

It still remains to study whether the MCQN update with Broyden’s convex family
is globally convergent or not for uniformly convex functions of any dimension. As
discussed with Professor Ya-xiang Yuan, this problem is much related to the global
convergence problem of the ordinary DFP method with inexact line search for
uniformly convex functions and hence may be very difficult. For general objective
functions, it is easy to know that the MCQN update with BFGS or Broyden’s
convex family need not converge because that the MCQN update with BFGS
corresponds with the ordinary BFGS method in case of full Hessian and that by [4]
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even the ordinary BFGS method is not necessarily globally convergent. Neverthe-
less, Ref. [5] established the global convergence of MCQN update with Broyden’s
convex family in the case when the objective function f(x) is uniformly convex and
there are only two variables.

By dynamically choosing ¢ in Broyden’s positive family, we can obtain MCQN
updates better than the MCQN update with BFGS. From Tables 1 and 2, however,
we see that some fixed choices of ¢ give quite good numerical results and they are
even better than those of dynamical ways. Therefore, we wonder whether there exist
more efficient dynamical ways of choosing ¢; or not. In addition, it is also
worthwhile how to order the two steps in the MCQN upate. See [3] for a useful try
along this way.
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