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Abstract Based on the idea of maximum determinant positive definite matrix

completion, Yamashita (Math Prog 115(1):1–30, 2008) proposed a new sparse

quasi-Newton update, called MCQN, for unconstrained optimization problems with

sparse Hessian structures. In exchange of the relaxation of the secant equation, the

MCQN update avoids solving difficult subproblems and overcomes the ill-condi-

tioning of approximate Hessian matrices. However, local and superlinear conver-

gence results were only established for the MCQN update with the DFP method. In

this paper, we extend the convergence result to the MCQN update with the whole

Broyden’s convex family. Numerical results are also reported, which suggest some

efficient ways of choosing the parameter in the MCQN update the Broyden’s family.
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1 Introduction

Consider the unconstrained optimization problem

min f ðxÞ; x 2 R
n; ð1:1Þ

where f : Rn ! R is continuously differentiable and its gradient rf is available. If

the dimension n is not large, the quasi-Newton method is an ideal choice for solving

(1.1) because of its superlinear convergence and no need to calculate the function

Hessian. Assuming that xk is the current iterate and Hk is the approximation to the

inverse Hessian, the quasi-Newton method generates the next iteration by

xkþ1 ¼ xk � akHkrf ðxkÞ; ð1:2Þ

where ak [ 0 is a stepsize obtained via some line search and updates the approxi-

mation Hk to Hk?1 so that

Hkþ1yk ¼ sk; ð1:3Þ

where sk = xk?1 - xk and yk = rf(xk?1) - rf(xk). The update formula in Broy-

den’s family is

HB
kþ1 ¼ Hk �

HkykyT
k Hk

yT
k Hkyk

þ sksT
k

sT
k yk

þ /kvkvT
k ; ð1:4Þ

where /k is a parameter and

vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yT
k Hkyk

q

sk

sT
k yk

� Hkyk

yT
k Hkyk

� �

: ð1:5Þ

The choice /k: 0 is corresponding to the DFP update and /k: 1 gives rise to the

BFGS update. In addition, the restricted Broyden’s family with /k 2 ½0; 1� is called

as Broyden’s convex family.

If the dimension of the problem (1.1) is large, then the direct use of the quasi-

Newton method is not possible due to the storage of an n 9 n matrix. In order to

overcome this difficulty, several methods have been proposed. The limited-memory

BFGS (L-BFGS) method [13, 15] is to only store a few pairs (si, yi) in the

construction of the Hessian approximation. Since there is no need to know any

information about the Hessian, the L-BFGS method is now widely used in practice.

For many large-scale problems, the function f can be written into the form

f ðxÞ ¼
X

ne

i¼1

fiðxÞ;

where each of the ne element functions, fi, depends only on a few variables. In this

case, the partitioned quasi-Newton method, developed by Griewank and Toint (see

[9–11] and the references therein), performs very well in practice and is now

regarded as one of the important practical optimization algorithms. Their basic idea

is to update an approximation Bk
i to the Hessian of each element function fi and then

to assemble these matrices to define an approximation Bk to the Hessian of f. More

exactly, they determine the search direction by solving the linear system
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ð
Pne

i¼1 Bi
kÞdk ¼ �rf ðxkÞ: Their method was implemented with the trust region

strategy since the matrix Bk is not positive definite in general.

There are also many large-scale problems where the function Hessian r2f(x) is

sparse and the sparsity structure is available. Suppose that for all x 2 R
n;

½r2f ðxÞ�i;j ¼ 0; ði; jÞ 2 F; ð1:6Þ

where F is some subset of I 9 I and I ¼ f1; 2; � � � ; ng: In this case, it is possible to

establish faster optimization methods by exploiting the sparsity structure of the

Hessian. Toint [18] and Fletcher [7] studied such updates and required Hk?1 to meet

the sparsity condition, namely Hk?1(i, j) = 0 when ði; jÞ 2 F; and the secant

equation (1.3) simultaneously. As a result, their methods involve the solution of a

convex programming problem at each iteration. If some component of sk is zero, the

obtained approximate Hessians may be ill-posed (see Sorensen’s [17] example).

Inspired by the successful use of positive definite matrix completion in [9] for

semidefinite programming, Yamashita [19] proposed another type of quasi-Newton

update for problem (1.1) with sparse Hessian structure. Let w : Rn�n ! R is a

strictly convex function defined by

wðAÞ ¼ trðAÞ � ln detðAÞ ð1:7Þ

(This function is introduced in [1] as a powerful tool for the convergence analysis

of quasi-Newton methods). Yamashita determines the new approximation matrix

Hk?1 by two steps:

(i) update Hk to HQN by certain quasi-Newton formula;

(ii) obtain Hk?1 by solving the following subproblem

min wðH�1=2
k HH

�1=2
k Þ

s.t. Hij ¼ HQN
i;j ; ði; jÞ 2 F;

ðH�1Þij ¼ 0; ði; jÞ 62 F;
H 2 Sþ:

ð1:8Þ

Here S? denotes the set of symmetric positive definite matrices. As in [20], we call

the above update by MCQN. If the intermediate matrix HQN is obtained by the DFP

(BFGS) formula, we call the update by MCQN with DFP (BFGS). Similarly, we

define MCQN with Broyden’s family.

Further, Yamashita showed that, if the sparsity of the Hessian is of such pattern

that there is no fill-in in its Cholesky factorization, or equivalently, the graph

induced by the Hessian is chordal (see [19] for details), the problem (1.8) is

equivalent to finding a maximum-determinant positive definite matrix completion of

HQN
ij ; ði; jÞ 2 F:

max detðHÞ
s.t. Hij ¼ HQN

ij ; ði; jÞ 2 F;
H 2 Sþ:

ð1:9Þ

The above problem can then be easily solved by analyzing the clique tree of the

graph induced by the Hessian (see [19] for details). In addition, it is shown in [19]
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that the update does not suffer from Sorensen’s example. Therefore, by relaxing the

secant equation, the MCQN update is easy to be implemented and is well posed.

Numerical experiments in [19] show that the MCQN update with BFGS

obviously performs better than that with DFP. However, local and superlinear

convergence results are only established for the latter. The purpose of this paper is

to analyze and investigate the MCQN update with Broyden’s family, in which the

intermediate matrix HQN is given by (1.4). After giving some preliminaries in the

next section, we will show in Sect. 3 that the MCQN update with Broyden’s convex

family is locally and superlinearly convergent under appropriate conditions.

Numerical results are reported in Sect. 4 for MCQN with Broyden’s positive

family and some discussions are made in the last section.

2 Properties of the MCQN Update

We consider the MCQN update with Broyden’s convex family, namely, HQN is

given by (1.4) with /k 2 ½0; 1�: To facilitate our analysis, we introduce some

notations at first. For any fixed invertible matrix P with its inverse having the same

sparsity pattern with the function Hessian, namely,

ðP�1Þi;j ¼ 0; forall ði; jÞ 2 F; ð2:1Þ

we denote

~sk ¼ P�1=2sk; ~yk ¼ P1=2yk; ~Hk ¼ P�1=2HkP�1=2; ~HB ¼ P�1=2HBP�1=2;

where HB = Hk?1
B is given by (1.4). Then, it follows (1.4) that

~HB ¼ ~Hk �
~Hk ~yk ~yT

k
~Hk

~yT
k

~Hk ~yk

þ ~sk~sT
k

~sT
k ~yk

þ /k ~vk ~vT
k ; ð2:2Þ

where

~vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~yT
k

~Hk ~yk

q

~sk

~sT
k ~yk

�
~Hk ~yk

~yT
k

~Hk ~yk

 !

: ð2:3Þ

Further, assume the Euclidean norm in default and write

sk ¼
~yT

k
~Hk ~yk

k~ykkk ~Hk ~ykk
; qk ¼

~yT
k

~Hk ~yk

k~ykk
2
; gk ¼

~sT
k

~Hk ~yk

~sT
k ~yk

; mk ¼
~sT

k ~yk

~yT
k ~yk

;

Mk ¼
k~skk2

~sT
k ~yk

; bk ¼
~sT

k ð ~HkÞ�1~sk

~sT
k ~yk

; ck ¼
~yT

k
~Hk ~yk

~sT
k ~yk

:

Similar to [2], we can get from (2.2), the following relations

trð ~HBÞ ¼ trð ~HkÞ � ð1� /kÞ
qk

s2
k

� 2/kgk þ 1þ /k

qk

mk

� �

Mk ð2:4Þ

and

detð ~HBÞ ¼ detð ~HkÞ½1þ /kðbkck � 1Þ�=ck: ð2:5Þ
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For the MCQN update with Broyden’s family, we now establish the following

relations between ~Hkþ1 and ~HB:

trð ~Hkþ1Þ ¼ trð ~HBÞ; detð ~Hkþ1Þ > detð ~HBÞ: ð2:6Þ

In fact, it follows from (1.8) that (Hk?1 - HB)i,j = 0 for ði; jÞ 2 F: This and (2.1)

indicate that for any ði; jÞ 2 I � I; at least one of the elements (Hk?1 - HB)i,j and

(P-1)i,j is equal to zero. Consequently, we have that

trð ~Hkþ1 � ~HBÞ ¼ trðP�1=2ðHkþ1 � HBÞP�1=2Þ
¼ trðP�1ðHkþ1 � HBÞÞ

¼
X

n

i¼1

X

n

j¼1

ðP�1ÞijððHkþ1 � HBÞi;j ¼ 0:

ð2:7Þ

On the other hand, since the matrix HB itself satisfies the constraints in (1.9), we

must have that detðHkþ1Þ > detðHBÞ: It follows:

detð ~Hkþ1Þ ¼ detðP�1=2Þ detðHkþ1Þ detðP�1=2Þ
> detðP�1=2Þ detðHBÞ detðP�1=2Þ
¼ detð ~HBÞ:

ð2:8Þ

Thus, the relations in (2.6) hold. Furthermore, we know by (1.7) and (2.6) that

wð ~Hkþ1Þ 6 wð ~HBÞ: ð2:9Þ

Substituting (2.4) and (2.5) into (2.9), we establish the relation between wð ~Hkþ1Þ
and wð ~HkÞ:

wð ~Hkþ1Þ 6 wð ~HkÞ � ð1� /kÞ
qk

s2
k

� 2/kgk þ 1þ /k

qk

mk

� �

Mk

� ln½1þ /kðbkck � 1Þ� þ lnck:

ð2:10Þ

Although the above relation does not hold as an equality unlike the ordinary

Broyden’s family of methods, it suffices us to analyze the local and superlinear

convergence of the MCQN update with Broyden’s convex family.

The introduction of the matrix P plays an auxiliary role in establishing the relation

(2.10). We will choose P = (r2f(x*))-1 in our superlinear convergence analysis of

the next section, where x* is the solution point. In the superlinear convergence

analysis of the ordinary quasi-Newton method, we can assume that r2f(x*) is the

identity matrix due to the invariance property under affine transformations. However,

we can show by an example that the MCQN update does not possess the invariance

property. Thus, we cannot assume that r2f(x*) is the identity matrix and hence the

introduction of P is necessary in the superlinear convergence analysis of the MCQN

update. We can only prove that the MCQN update is invariant under those affine

transformations which keep the sparsity structure.

Assume that Hk is the following 3 9 3 matrix
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Hk ¼
2 �1 0

�1 2 �1

0 �1 2

0

@

1

A

and A = Hk. Obviously, the matrices A and Hk have the same sparsity pattern. In

this case, we can directly calculate the matrix AHkA
T and its corresponding maxi-

mum determinant positive definite matrix completion, which is denoted by

MD(AHkA
T) and only changes the (1, 3) and (3, 1) entries of AHkA

T:

AHkAT ¼
14 �14 6

�14 20 �14

6 �14 14

0

@

1

A;

MDðAHkATÞ ¼
14 �14 9:8
�14 20 �14

9:8 �14 14

0

@

1

A:

On the other side, we have that

MDðHkÞ ¼
2 �1 0:5
�1 2 �1

0:5 �1 2

0

@

1

A;

A½MDðHkÞ�AT ¼
14 15 8

�15 21 �15

8 �15 14

0

@

1

A:

The inconsistency of the matrices MD(AHkA
T) and A[MD(Hk)]A

T indicates that the

procedure of the maximum determinant positive definite matrix completion does not

have the invariance property and neither does the MCQN update.

3 Local and Superlinear Convergence

In this section, we analyze the MCQN update with Broyden’s convex family under

the sparse structure (1.6) and Assumption 3.1.

Assumption 3.1 Let x* be a solution of (1.1) and let B ¼ fx 2 Rnjkx� x�k 6 bg
with a positive constant b.

(i) The objective function f is twice continuously differentiable on B.

(ii) There exist positive constants m and M such that

mkzk2
6 zTðr2f ðxÞÞ�1

z 6 Mkzk2; for all z 2 R
n and x 2 B: ð3:1Þ

If the second-order sufficient optimality condition holds at the solution x*, then

the (ii) in Assumption 3.1 holds. From the (i) in Assumption 3.1, rf and r2f(x) are

Lipschitz continuous on B; namely, there exist some constants L̂; L [ 0 such that

krf ðxÞ � rf ðzÞk 6 L̂kx� zk; for all x; z 2 B; ð3:2Þ
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kr2f ðxÞ � r2f ðzÞk 6 Lkx� zk; for all x; z 2 B: ð3:3Þ

Let us define

ek ¼ maxfkxk � x�k; kxkþ1 � x�kg: ð3:4Þ

Noting that yk ¼
R 1

0
r2f ðxk þ tskÞdt; we can obtain from this and (3.3) that

kyk �r2f ðx�Þskk ¼
Z

1

0

½r2f ðxk þ tskÞ � r2f ðx�Þ�skdt

�

�

�

�

�

�

�

�

�

�

�

�

6

Z

1

0

kr2f ðxk þ tskÞ � r2f ðx�Þkkskkdt

6

Z

1

0

Lkð1� tÞðxk � x�Þ þ tðxkþ1 � x�Þkkskkdt

6

Z

1

0

Lekkskkdt ¼ Lekkskk:

ð3:5Þ

Denote G* = r2f(x*), H* = (G*)-1 and take P = H* which satisfies (2.1). Define

~sk; ~yk; sk; etc., as before. Then, we know by (3.5) that

k~yk � ~skk 6 kH1=2
� kkyk � skk 6 LkH1=2

� kekkskk 6 LkH1=2
� k

2ekk~skk: ð3:6Þ

Further, we can prove without difficulty that, there must exist positive constants

c1 [ 0 and c2 2 ð0; bÞ such that all the quantities

Mk � 1; lk,
2�Mk � mk

mk

; �lk,
ð~yk � ~skÞT ~Hk ~yk

trð ~HkÞ~sT
k ~yk

; ln mk 6
1

2
c1ek ð3:7Þ

whenever ek\c2: Now let us denote

qk ¼ qk � 1� ln qk; fk ¼ ð1� /kÞqkðs�2
k � 1Þ; nk ¼ ln½1þ /kðbkck � 1Þ�:

ð3:8Þ

The inequality (2.10) can be written as

wð ~Hkþ1Þ 6 wð ~HkÞ � qk � fk � nk þ ðMk � 1Þ þ /kqklk þ /ktrð ~HkÞ�lk þ ln mk:

ð3:9Þ

Since /k 2 ½0; 1�; ck ¼ qk=mk and 0 6 qk 6 trð ~HkÞ; we know from the above rela-

tion and (3.7) that

wð ~Hkþ1Þ 6 wð ~HkÞ � qk � fk � nk þ c1ð1þ trð ~HkÞÞek: ð3:10Þ

Using the fact that

k� ln k > max 1� 1

e

� �

k; 1

� �

; for any k[ 0; ð3:11Þ
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we can show that (see [20])

wðAÞ > max 1� 1

e

� �

trðAÞ; n
� �

; ð3:12Þ

for any symmetric positive definite matrix A. Denoting c3 ¼ c1½1nþ e
e�1
�, it follows

from (3.10) that

wð ~Hkþ1Þ 6 ð1þ c3ekÞwð ~HkÞ � qk � fk � nk: ð3:13Þ

Since sk
2
6 1 and bkck > 1, we see that the quantities qk; fk; and nk are all non-

negative. Then, we obtain

wð ~Hkþ1Þ 6 ð1þ c3ekÞwð ~HkÞ: ð3:14Þ
In the following, we establish the local linear convergence of the MCQN update

with Broyden’s convex family with the help of (3.14).

Theorem 3.2 Suppose that Assumption 3.1 holds. Consider the method (1.2)

where ak : 1, and Hk is obtained by the MCQN update with HQN = Hk?1
B

ð/k 2 ½0; 1�Þ. Then, for any a 2 ð0; 1Þ, there exists s such that kx0 � x�k 6 s and

kH0 � H�k 6 s imply

kxkþ1 � x�k 6 akxk � x�k; for all k: ð3:15Þ

Proof Suppose that a 2 ð0; 1Þ: From Lemma 4 in [19], there must exist constants

�s 2 ð0; bÞ and d[ 0 such that, if kx0 � x�k 6 �s; then

wð ~H0Þ � n 6
d
2
; ð3:16Þ

wð ~HÞ � n 6 d ¼) kH � H�k 6
a

2L̂
; ð3:17Þ

where H is any symmetric positive definite matrix and ~H ¼ H
�1

2� HH
�1

2� . Choose

s ¼ min �s; c2;
a

L̂
;

a
LM

;
1� a

c3

ln
2ðnþ dÞ
2nþ d

� �� 	

: ð3:18Þ

We will show by induction that the following inequalities hold for all k:

kxkþ1 � x�k 6 akxk � x�k; ð3:19Þ

kHk � H�k 6
a

2L̂
: ð3:20Þ

To begin with, similar to (1.7), we can show by (3.3) and (3.1) that for any x 2 B;
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kx� x� � H�rf ðxÞk 6 kH�kkðrf ðxÞ � rf ðx�ÞÞ � G�ðx� x�Þk

6 kH�k
Z

1

0

kr2f ðxþ tðx� x�ÞÞ � G�kkðx� x�Þkdt

6
1

2
LMkx� x�k2:

ð3:21Þ

Now, when k = 0, we see that (3.19) holds due to (3.16) and (3.17). Moreover, by

(1.2), ak: 1, (3.21) with x = x0, and the choice of s, we can get that

kx1 � x�k ¼ kx0 � H0rf ðx0Þ � x�k
6 kx0 � x� � H�rf ðx0Þk þ kðH0 � H�Þðrf ðx0Þ � rf ðx�ÞÞk

6
1

2
LMkx� x�k2 þ kH0 � H�kkrf ðx0Þ � rf ðx�Þk

6
1

2
LMkx0 � x�k þ

a
2

� �

kx0 � x�k

6
1

2
LMsþ a

2

� �

kx0 � x�k 6 akx0 � x�k:

ð3:22Þ

So (3.19) and (3.20) hold for k = 0. Suppose that (3.19) and (3.20) are true for

k ¼ 0; 1; � � � ; l: Then, we have that ek ¼ kxk � x�k and ek 6 ake0 6 aks for k ¼
0; 1; � � � ; l: Similar to (3.22), we get

kxlþ1 � x�k ¼ kxl � Hlrf ðxlÞ � x�k
6 kxl � x� � H�rf ðxlÞk þ kðHl � H�Þðrf ðxlÞ � rf ðx�ÞÞk

6
1

2
LMkxl � x�k þ

a
2

� �

kxl � x�k

6
1

2
LMalsþ a

2

� �

kxl � x�k 6 akxl � x�k:

ð3:23Þ

On the other hand, by the choice of s, we have that

c3

X

l

k¼0

ek 6 c3s
X

l

k¼0

ak ¼ c3s
1� alþ1

1� a
6

c3s
1� a

6 ln
2ðnþ dÞ
2nþ d

: ð3:24Þ

It follows from this, (3.16) and (3.14) that

wð ~Hlþ1Þ � n 6 ðwð ~H0Þ � nÞ þ
Y

l

k¼0

ð1þ c3ekÞ � 1

 !

wð ~H0Þ

6
d
2
þ nþ d

2

� �

Y

l

k¼0

ec3ek � 1

 !

6
d
2
þ nþ d

2

� �

ec3

Pl

k¼0
ek � 1

� �

6
d
2
þ nþ d

2

� �

2ðnþ dÞ
2nþ d

� 1

� �

¼ d:

ð3:25Þ
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Thus, by (3.17), relation (3.20) holds for k = l ? 1. Therefore, by induction, (3.19)

and (3.20) are true for all k > 0. This completes the proof. h

Now, we are ready to establish the superlinear convergence for the MCQN

update with Broyden’s convex family. The proof is based on the local linear

convergence of the update and the relation (3.14).

Theorem 3.3 Suppose that Assumption 3.1 holds. Consider the method (1.2)

where ak: 1, and Hk is obtained by the MCQN update with HQN = Hk?1
B ð/k 2

½0; 1�Þ: Then, there exists a positive constant s such that, if kx0 � x�k 6 s and

kH0 � H�k 6 s; then

lim
k!1

kðHk � H�Þykk
kykk

¼ 0: ð3:26Þ

Thus, the sequence {xk} generated by the method converges to x* superlinearly.

Proof For any a 2 ð0; 1Þ; we choose s as in the proof of Theorem 3.2. Then, (3.19)

and (3.20) hold for all k. At the same time, we have that

wð ~HkÞ � n 6 d for all k: ð3:27Þ

Note that (3.13) implies that

qk þ fk þ nk 6 ðwð ~Hkþ1Þ � wð ~HkÞÞ þ c3ekwð ~HkÞ: ð3:28Þ

Summing the above relation and using (3.24) and (3.27), we obtain

X

k>1

ðqk þ fk þ nkÞ 6 c3

X

k>1

ekwð ~HkÞ 6 c3ðnþ dÞ ln 2ðnþ dÞ
2nþ d

\1: ð3:29Þ

Since the quantities qk; fk; and nk are all nonnegative, the relation (3.29) indicates

that they are all tend to zero as k!1: Further, by their definitions in (3.8), we

know that (i) qk ! 1; (ii) if /k 6
1
2
; sk ! 1; and (iii) if /k [ 1

2
; bkck ! 1:

Now, we consider the quantity kðHk � H�Þykk=kykk: On one side, we have that

kH�1=2
� ðHk � H�Þykk2

kH
1
2�ykk2

¼ k
~Hk ~yk � ~ykk2

k~ykk
2

¼ k
~Hk ~ykk2 � 2~yT

k
~Hk ~yk þ k~ykk2

k~ykk
2

¼ qk

s2
k

� 2qk þ 1: ð3:30Þ

On the other side, we have that

k ~Hk ~yk � ~skk2

k~ykk
2

6
k ~Hk

1=2k2k ~Hk
1=2

~yk � ð ~HkÞ�1=2~skk2

k~ykk
2

¼ k
~Hk

1=2k2ð~yT
k

~Hk ~yk � 2~sT
k ~yk þ ~sT

k ð ~HkÞ�1~skÞ
k~ykk2

¼ k ~Hk
1=2k2

qk � 2mk þ
bkck

qk

� �

:

ð3:31Þ

In addition, note that
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k ~Hk ~yk � ~ykk
k~ykk

� k
~Hk ~yk � ~skk
k~ykk

























6
k~yk � ~skk
k~ykk

! 0: ð3:32Þ

For the subsequence fki : /ki
6

1
2
g; we know from qk ! 1; ski

! 1 and (3.30) that

the limit relation (3.26) holds for the subsequence {ki}. For the subsequence fki :

/ki
[ 1

2
g; we know from qk ! 1; bki

cki
! 1;mk ! 1; the first equality in (3.30),

(3.31), and (3.32) that the limit relation (3.26) holds for the subsequence {ki}. Thus,

combining the two cases, (3.26) is true. As addressed in [19], (3.26) implies the

following relation

lim
k!1

kððHkÞ�1 � G�Þskk
kskk

¼ 0: ð3:33Þ

Therefore, by [6], we know that {xk} is superlinearly convergent. h

4 Numerical Studies

In the previous section, we analyzed the convergence properties of the MCQN

update with Broyden’s convex family. In this section, we will investigate the

numerical performance of the MCQN update with Broyden’s positive family, in

which case the /k in (1.4) is restricted to be nonnegative.

Five test problems in CUTEr [13] and [14] were used in our numerical studies,

where xini is the standard initial point for each problem. For each problem, we tried

four initial points xini, 4 xini, 7 xini, and 10 xini.

Problem 1 (TRIDIA)

f ðxÞ ¼ ðx1 � 1Þ2 þ
X

n

i¼2

iðxi�1 � 2xiÞ2;

xini ¼ ð1; � � � ; 1ÞT:

Problem 2 (Extended Rosenbrock function)

f ðxÞ ¼
X

n�1

i¼1

100ðxiþ1 � x2
i Þ

2 þ ð1� xiÞ2;

xini ¼ ð�1:2; 1;�1:2; 1; � � � ;�1:2; 1ÞT:

Problem 3 (Extended Powell singular function)

f ðxÞ ¼
X

n=4

i¼1

10ðx4i�3 � x4iÞ4 þ ðx4i�2 � 2x4i�1Þ4
h

þ 5ðx4i�1 � x4iÞ2 þ ðx4i�3 þ 10x4i�2Þ2
i

;

xini ¼ ð3;�1; 0:1; � � � ; 3;�1; 0; 1ÞT:
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Problem 4 (Broyden tridiagonal function)

f ðxÞ ¼ ð3x1 � 2x2
1 � 2x2 þ 1Þ2 þ ð3xn � 2x2

n � xn�1 þ 1Þ2

þ
X

n�1

i¼2

ð3xi � 2x2
i � xi�1 � 2xiþ1 þ 1Þ2;

xini ¼ ð�1; � � � ;�1ÞT:

Problem 5 (Broyden banded function)

f ðxÞ ¼
X

n

i¼1

5x3
i þ 2xi þ 1�

X

j2Ji

xjð1þ xjÞ
 !2

;

where

Ji ¼ j j 6¼ i;maxf1; i� 5g 6 j 6 minfn; iþ 1gjf g:
xini ¼ ð�1; � � � ;�1ÞT:

All the Hessians of the above problems are band matrices. Therefore, we can

obtain the chordal extensions of their sparsity pattern without difficulty. The

dimensions n of all problems are set to 1 000. In our tests, we are satisfied with an

approximate stationary point with

krf ðxÞk1 6 10�5:

Table 1 lists the iteration numbers required for each fixed value of /k. In each

row of the table, we write the least iteration number(s) in the bold style. From

Table 1, we can see that if /k is restricted to the interval [0, 1], the choice of /k = 1

provides the best results. This indicates that, in the MCQN update, the BFGS

formula is the best choice in Broyden’s convex family. This conclusion is the same

as in the ordinary quasi-Newton method (see [2, 16]). On the other hand, we can

also see from the table that the numerical performance of the MCQN update can be

improved by increasing the value of /k. It can be seen in (1.4) that the positive

definiteness of the quasi-Newton matrix Hk is kept, if /k > 0. Consequently, the

MCQN update is well defined for all /k > 0. Surely, if /k [ 1, the superlinear

convergence analysis in Sect. 3 does not apply because the quantity fk is not

nonnegative any more, as is necessary for the deduction of the relation (3.14).

Despite the lack of a strict superlinear convergence proof, we see from Table 1 that

/k = 4, 5 provide quite good numerical results, which are significantly superior to

those of /k = 1.

Although the MCQN update with BFGS can still be improved by increasing the

value of /k, the best choice of /k varies from test problems. For example, for

Problem 2 with the standard initial point xini, /k = 4 is an ideal choice. If 10xini is

used as the initial point, /k = 5 is a better choice. Based on these observations, we

feel that it might be worthwhile to dynamical choices of /k. We considered the

following three ways:

50 Y.-H. Dai, N. Yamashita

123



T
ab

le
1

T
es

ti
n

g
M

C
Q

N
w

it
h

B
ro

y
d

en
’s

fa
m

il
y

w
it

h
fi

x
ed

/
k
’s

P
In

ti
al

p
o

in
t

/
k

0
0

.2
0

.4
0

.6
0

.8
1

2
3

4
5

7
1

0

1
x i

n
i

1
7

2
7

3
5

9
2

7
2

2
4

3
2

1
7

2
1

9
1

8
8

1
7

0
1

5
6

1
4

2
1

3
1

1
4

6

4
x i

n
i

1
7

5
0

3
7

3
2

8
1

2
6

0
2

4
1

2
2

5
1

9
6

1
7

7
1

6
1

1
4

1
1

3
6

1
5

6

7
x i

n
i

1
7

7
4

3
7

6
2

8
9

2
5

2
2

3
2

2
2

5
1

9
1

1
8

1
1

6
6

1
5

6
1

4
1

1
5

8

1
0

x i
n
i

1
7

8
3

3
7

7
2

9
4

2
6

4
2

3
6

2
2

7
1

8
9

1
8

0
1

6
7

1
5

2
1

3
9

1
6

7

2
x i

n
i

6
5

8
9

4
9

0
9

4
0

0
5

3
6

0
8

3
3

4
2

3
2

7
9

2
9

0
9

2
7

4
4

2
6

2
6

2
6

5
2

2
7

0
9

3
9

1
6

4
x i

n
i

6
6

1
1

4
9

1
5

4
0

7
0

3
5

7
6

3
3

6
0

3
2

0
0

2
8

5
7

2
7

4
7

2
6

8
8

2
6

5
3

2
6

8
3

4
0

1
5

7
x i

n
i

1
0

9
6

1
6

5
1

4
2

1
2

2
1

1
6

1
0

9
9

3
8

8
8

3
8

3
8

6
7

9

1
0

x i
n
i

6
6

5
4

4
9

6
9

4
0

5
6

3
6

1
4

3
4

0
0

2
6

3
5

2
8

8
6

2
8

6
4

2
6

5
8

2
5

8
4

2
7

2
4

3
6

2
3

3
x i

n
i

1
9

1
9

1
1

7
8

7
0

2
1

2
9

7
1

0
2

5
9

7
1

6
5

3
6

0
8

5
6

0
4

8
3

5
0

2
5

2
2

4
x i

n
i

1
9

2
1

1
1

7
8

7
0

1
1

3
4

3
1

1
6

8
9

8
5

7
3

1
6

3
8

5
8

3
4

9
2

4
9

0
4

6
8

7
x i

n
i

1
9

2
3

1
2

0
6

9
2

7
1

2
9

0
1

0
7

1
9

8
7

6
9

9
6

1
7

5
6

4
4

9
8

4
9

5
5

6
2

1
0

x i
n
i

1
9

0
6

1
2

0
8

9
3

6
1

3
6

0
1

0
4

1
1

0
0

9
6

9
2

6
5

7
6

1
4

6
1

0
5

3
1

4
7

1

4
x i

n
i

2
8

3
1

2
8

7
8

6
5

6
2

5
9

4
7

4
9

4
7

5
8

5
3

8
5

4
x i

n
i

1
3

4
7

4
7

2
7

2
6

9
5

3
4

4
4

8
5

2
8

3
4

9
1

0
2

7
x i

n
i

5
6

3
2

1
3

4
0

4
1

4
6

1
3

2
1

8
2

9
5

6
2

8
6

1
3

1
7

7
6

8

1
0

x i
n
i

6
3

7
4

1
8

3
2

0
2

0
7

1
4

5
1

3
4

7
9

7
8

9
4

8
6

9
2

1
0

3

5
x i

n
i

3
1

6
9

6
5

6
3

6
4

5
7

8
1

4
7

1
2

3
1

4
3

1
3

8
7

7
8

7
1

2
2

1
6

9

4
x i

n
i

1
0

7
6

0
5

2
4

9
4

6
4

6
4

6
4

6
4

7
3

8
3

8
3

9

7
x i

n
i

4
9

3
1

3
6

9
9

8
5

1
0

9
9

0
7

6
7

6
6

2
4

9
5

5
1

0
4

1
0

x i
n
i

7
1

3
1

9
1

1
5

8
1

2
1

1
0

3
1

1
1

1
1

0
1

0
3

1
1

1
1

4
6

1
6

0
6

4

Analysis of Sparse Quasi-Newton Updates 51

123



(I) The first way is to pick an interval [L, U] with L > 0 and solve the one-

dimensional problem

min kHQNyk�1 � sk�1k
s:t: L 6 / 6 U:

ð4:1Þ

In other words, we want HQN to satisfy the secant condition HQNyk-1 = sk-1 as

possible as it can while it satisfies the one that HQNyk = sk exactly. Since such /k

sometimes becomes negative, we force /k to remain on [L, U]. Numerical results

with three choices, [1, 5], [1, 10], and [1,50], of [L, U] are taken down in columns

3–5 of Table 2. Again, in each row of Table 2, we write the least iteration num-

ber(s) in the bold style.

(II) The second way comes from another observation of superlinear convergence

proof and aims to restrict /k so that a relation similar to (3.14) can be

achieved. Pick some constants c1; c2 2 ð0; 1Þ. If the choice of /k is such that

�fk ¼ ð/k � 1Þqkðs�2
k � 1Þ 6 c1qk þ c2nk; ð4:2Þ

we can still obtain

wð ~Hkþ1Þ 6 ð1þ cekÞwð ~HkÞ � ð1� c1Þqk � ð1� c2Þnk: ð4:3Þ

If the above choice of /k is possible, we can prove that both qk and nk tend to zero

and achieve the superlinear convergence. However, the relation (4.2) is related to ~yk,

~sk , and ~Hk; which depend on r2f(x*). Since we do not know r2f(x*) in general, we

cannot directly exploit the inequality (4.2). Nevertheless, we consider to use yk, sk,

and Hk to replace ~yk; ~sk; and ~Hk; respectively, in (4.2). In this case, since

Hk
-1sk = - ak gk, the value of bk and hence the value of nk can be easily obtained.

For different values of c1 and c2, we then choose /k such that

ð/k � 1Þqkðs�2
k � 1Þ ¼ c1qk þ c2nk: ð4:4Þ

The quantity /k is involved in the calculations of nk. We solve the equality (4.4) by

Newton’s method starting from

/0 ¼ c1qk=½qkðs�2
k � 1Þ�:

For numerical stability, we used a projection of a solution /k onto some interval

[L, U]. We tested different choices of (c1, c2) and [L, U] and found that the

numerical results are not sensitive to the choices of the parameters. The recom-

mended intervals for c1 and c2 are both [0.7, 0.95]. Numerical results with fixed

choice (c1, c2) = (0.9, 0.9) and three choices, [1, 5], [1, 10], and [1,50], of

[L, U] are taken down in columns 6–8 of Table 2.

(III) The third way comes from the proposal in [21] and aims to choose /k such

that the search direction is close to the steepest descent direction. Denote

pk ¼ �
gT

kþ1sk

yT
k sk

sk; qk ¼ � Hkgk �
yT

k Hkgk

yT
k Hkyk

Hkyk

� �

and
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dðqÞ ¼ pk þ qqk:

Let qk
* be a solution of

min
dðqÞTgkþ1

kdðqÞkkgkþ1k
s:t: qL

k 6 q 6 qU
k ;

where qk
L and qk

U are the upper and lower bounds of q. Note that qk
* is easily obtained

by [(4.5)–(4.6), 21]. Then /k is given by

/k ¼
q�k � 1

lk � 1

with

lk ¼
sT

k H�1
k skyT

k Hkyk

ðyT
k skÞ2

:

Here, the definition of lk is different from the one in (3.7). The suggested interval

[qk
L, qk

U] in [21] is [lk, 5 lk]. We tested four different intervals and took down the

corresponding numerical results into columns 9–12 of Table 2.

Comparing with the MCQN update with BFGS (see the column /k = 1 in

Table 1), we see that all the three dynamical ways of choosing /k can lead to almost

uniformly better numerical results. Among the three dynamical ways, way (II)

seems to be the most efficient one.

5 Conclusions and discussions

In this paper, we have established the local and superlinear convergence of the

MCQN update with Broyden’s convex family under suitable assumptions. A global

convergence analysis has been given for the MCQN update with Broyden’s convex

family assuming that the objective function is uniformly convex and its dimension is

only two. Numerical results have been reported for the MCQN update with

Broyden’s positive family. They show that, to obtain the intermediate matrix Hk
QN,

the BFGS formula is the best choice among Broyden’s convex family. On the other

hand, there are several ways to beat the BFGS formula if one considers Broyden’s

positive family with /k larger than or equal to 1.

It still remains to study whether the MCQN update with Broyden’s convex family

is globally convergent or not for uniformly convex functions of any dimension. As

discussed with Professor Ya-xiang Yuan, this problem is much related to the global

convergence problem of the ordinary DFP method with inexact line search for

uniformly convex functions and hence may be very difficult. For general objective

functions, it is easy to know that the MCQN update with BFGS or Broyden’s

convex family need not converge because that the MCQN update with BFGS

corresponds with the ordinary BFGS method in case of full Hessian and that by [4]
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even the ordinary BFGS method is not necessarily globally convergent. Neverthe-

less, Ref. [5] established the global convergence of MCQN update with Broyden’s

convex family in the case when the objective function f(x) is uniformly convex and

there are only two variables.

By dynamically choosing /k in Broyden’s positive family, we can obtain MCQN

updates better than the MCQN update with BFGS. From Tables 1 and 2, however,

we see that some fixed choices of /k give quite good numerical results and they are

even better than those of dynamical ways. Therefore, we wonder whether there exist

more efficient dynamical ways of choosing /k or not. In addition, it is also

worthwhile how to order the two steps in the MCQN upate. See [3] for a useful try

along this way.

Acknowledgments The authors are grateful to Professors Masao Fukushima and Ya-xiang Yuan for

their warm encouragement and valuable suggestions. They also thank the two anonymous referees very

much for their useful comments on an early version of this paper.

References

[1] Byrd, R., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to

unconstrained optimization. SIAM J. Numer. Anal. 26, 727–739 (1989)

[2] Byrd, R., Nocedal, J., Yuan, Y.: Global convergence of a class of quasi-Newton methods on convex

problems. SIAM J. Numer. Anal. 24, 1171–1189 (1987)

[3] Cheng, M., Dai, Y.H., Diao, R.: A new sparse quasi-Newton update method. Sultan Qaboos Univ.

J. Sci. 17(1), 30–43 (2012)

[4] Dai, Y.H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701 (2003)

[5] Dai, Y.H., Yamashita, N.: Convergence analysis of sparse quasi-Newton updates with positive

definite matrix completion for two-dimensional functions. Numer. Algebra Control Optim. 1(1),

61–69 (2011)
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