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In this paper, we consider the projected gradient algorithms for solving the quadratic
program with bound constraints and a single linear equality constraint (SLBQP). We

establish the relationship between the Lagrangian multiplier in the projection subprob-
lem and the Lagrangian multiplier in the original optimization problem. Then we give an
improved initial estimate of the Lagrangian multiplier in the subproblem based on this
relationship. It appears that this initial estimate is very close to the optimal Lagrangian
multiplier after several iterations of the outer loop. This will reduce at most 40% of
the computing time in the projection subproblem. This initial guess can also be used in
all kinds of projected gradient methods for solving the SLBQP problem. The numerical
results show that it brings much more improvement in monotone algorithms than in
nonmonotone algorithms. We also apply the adaptive steepest descent step-size and the
Dai-Yuan step-size which are two monotone step-sizes to the projected gradient method
of this SLBQP problem. Our numerical experiments showed that their performance can
be better than some other monotone projected gradient methods.

Keywords: Monotone projected gradient algorithm; Support Vector Machine (SVM);
adaptive steepest descent step-size; Dai-Yuan step-size; projection subproblem.

1. Introduction

In this paper, we consider the following quadratic problem

min
x∈Rn

f(x) =
1
2
xT Ax − cT x,

s.t. l ≤ x ≤ u,

aT x = b.

(1.1)

Here A ∈ Rn×n is symmetric but may be indefinite, a, c, l and u (with l < u)
are vectors in Rn, and b is a scalar. There is a single linear equality constraint in
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addition to simple bounds on the variables in this problem. We refer to this as the
general SLBQP problem as abbreviated by Dai and Fletcher (2005).

The SLBQP problem appears in a wide range of applications. For example,
some problems in multicommodity network and logistics have the form of (1.1)
in which the matrix A is diagonal (Held et al., 1974; Meyer, 1984; Pardalos and
Rosen, 1987). The SLBQP problem also appears in the training methodology known
as Support Vector Machine (SVM) (see Vapnik, 1982). In support vector machine
problems, they formulate the problem as an optimization problem whose dual prob-
lem is an SLBQP problem. This dual problem is easier to solve compared to the
primal problem. The matrix A in SVM is a symmetric and semi-positive definite
matrix.

Projected gradient methods are appealing approaches for problem (1.1). In each
iteration, it needs to decide the scaled projected gradient by projecting the point
onto the feasible region (the feasible region is necessarily to be a closed convex set).
The projection can be non-expensive if the feasible region is special enough. It can
switch from one active set to another rapidly by taking a projected gradient step.

Recent projected gradient algorithms (Dai and Fletcher, 2005; Zanni, 2006) for
solving this special problem made use of some extensions of the BB step-size (see
Barzilai and Borwein, 1988). The GVPM algorithm presented by Zanni (2006) and
Serafini et al. (2005) is a monotone algorithm using the two BB step-sizes alterna-
tively to determine the scaled projected gradient dk. Dai and Fletcher’s algorithm
uses a BB-type step-size to determine the scaled projected gradient dk. They incor-
porated an adaptive non-monotone line search to allow the increase of the function
value on some iteration in order for the method to work well. It seems that BB-
type step-sizes are quite a good choice for solving the SLBQP problem by projected
gradient method. This conclusion may also base on the observation of the good
performance of a series of BB-type non-monotone projected gradient method for
solving Bound Constrained Quadratic Problem (BQP) (Birgin et al., 2000, 2003;
Dai and Fletcher, 2005). A natural thought is to construct a projected gradient
method with some other step-sizes (not necessarily to be non-monotone step-sizes)
besides BB-type step-sizes. This is our motivation of this paper. Recent years, some
monotone projected gradient methods are developed to solve the BQP problem
(Zhou et al., 2006b). Here we introduce the adaptive steepest descent (ASD) step-
size (Zhou et al., 2006a) and the Dai-Yuan (DY) step-size. The projected gradient
methods which are based on these two step-sizes perform quite well in solving the
BQP problem according to their experiment results.

Another consideration is the projection sub-problem. It appears that the frame-
work of the sub-problem put forward by Dai and Fletcher is quite efficient and
widely-used. They consider the Lagrange function with regard to the single linear
equality constraint as the objective function and establish the delicate relationship
between the Karush-Kuhn-Tucker condition of the original sub-problem and the
modified one. Finally, this sub-problem was formulated as a problem of finding the
zero point of a piecewise linear non-decrease continuous function with scalar variable
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λ which is the lagrangian multiplier in the modified problem. In this paper we give
a trustful initialization of λ0. This initialization can also be used in other similar
projection sub-problems. The numerical results showed that this adaptive initial
guess of λ0 is very close to the optimal Lagrangian multiplier after several itera-
tions. Our numerical experiments demonstrate that this modification saves quite a
lot of the computational cost compared to the original algorithm.

This paper is outlined as follows. In Sec. 2, we give an improved initial guess of
λ0 in projection sub-problem and its theoretical property. In Sec. 3, we introduce
the adaptive steepest descent (ASD) step-size and the projected gradient method
induced by it. In Sec. 4, we show the numerical experiments and the results. The
paper is concluded in Sec. 5.

2. The Projection Subproblem

2.1. The projection subproblem

We denote P as the projection operator onto Ω,

P (x) = argmin
y∈Ω

‖x − y‖2. (2.1)

Here Ω = {x : l ≤ x ≤ u, aT x = b} is the feasible region of this problem. To project
a point x̄ onto the feasible set Ω is equivalent to solve the optimization sub-problem:

min
x

1
2
‖x − x̄‖2

2,

s.t. l ≤ x ≤ u,

aT x = b.

(2.2)

This is also an SLBQP problem in which A is an identity matrix. Helgason et al.
(1980) proposed an O(n log n) algorithm for solving the special problem based on
appropriate manipulation of the corresponding Kuhn-Tucker conditions. Brucker
(1984), Calamai and Moré (1987) proposed algorithms based on binary search.
Pardalos and Kovoor (1990) proposed a randomized algorithm that runs in expected
linear time. A more efficient algorithm based on the secant approximation is pro-
posed by Dai and Fletcher (2005). We use their framework in this paper.

They first construct the Lagrange penalty function,

Φ(x, λ) :=
1
2
xT x − x̄T x − λ(aT x − b), (2.3)

Fixing the Lagrangian multiplier λ, we can easily get the optimal solution of the
problem

min
x

Φ(x, λ),

s.t. l ≤ x ≤ u.
(2.4)
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We use x(x̄, λ) to denote the optimal solution of (2.4)

x(x̄, λ) = arg min
l≤x≤u

Φ(x, λ), (2.5)

and r(x̄, λ) to denote the residue of the equality constraint

r(x̄, λ) = aT x(x̄, λ) − b. (2.6)

If some λ∗ satisfies r(x̄, λ∗) = 0, then this λ∗ is the optimal Lagrangian multiplier
of the Karush-Kuhn-Tucker system of problem (2.1) and x(x̄, λ∗) is the projection
point of x̄. We denote the set of Lagrangian multiplier in the projection subproblem
as Λ(x̄).

The function r(x̄, λ) in (2.6) is a piecewise linear non-decrease continuous func-
tion of λ with breaking points (li − ci)/ai and (ui − ci)/ai. Dai and Fletcher con-
structed the algorithm based on this property of r(x̄, λ) (Calamai and Moré, 1987).

Their algorithm comprises two phases — Bracketing Phase and Secant Phase.
The Bracketing Phase is to determine an interval [λl, λu] which can contain a solu-
tion of the equation r(x̄, λ) = 0. Since r(x̄, λ) is a non-decrease continuous function
of λ, we set λl := λ and search for the interval in the positive λ direction in the
step-size of �λ if r(x̄, λ) < 0 ; we set λu := λ and search for the interval in the
negative λ direction in the step-size of ∆λ if r(x̄, λ) > 0. The Bracketing Phase
terminates when we find the λl and λu that satisfies r(x̄, λl) < 0 and r(x̄, λu) > 0
or find a λ satisfies that |r(x̄, λ)| is sufficient small.

Once the interval is determined, the algorithm turns to the Secant Phase. The
Secant phase is to find the solution of the equation r(x̄, λ) = 0 by the repeated use
of the secant method. If a value of r(λ) is sufficiently close to zero, then the process
terminates.

Initially values of λl and λu are available with r(λl) < 0 and r(λu) > 0, and a
secant step to a new point λ is taken. Set s = If r(λ) > 0 then the iteration proceeds
as follows. If λ lies in the left half of the interval [λl, λu], then a secant step based
on λl and λ is taken on the next iteration. If λ lies in the right half of the interval,
then either a secant step based on λ and λu, or a step to the point 3

4λl + 1
4λ is taken,

whichever is the smaller step. This ensures that the interval length is reduced by a
factor of 3

4 or less. In both cases λu is replaced by λ to give a new bracket. Similar
decisions are taken if r(λ) < 0 at the start of the iteration.We terminate the secant
phase if preset tolerances on either r(λ) or the length of the interval �λ are met.
The more detailed pseudo-code is shown in their paper (Dai and Fletcher, 2005).

2.2. An improved subproblem initialization

For deriving our improved initial estimate of λ, we first give the following proposi-
tion. Proposition 2.1 is an obvious deduction.

Proposition 2.1. x̂ is the projection point of x̄ onto the feasible set of problem
(1.1) if and only if there exists a λ̄ ∈ R such that

x̂ = mid(l, u, x̄ + λ̄a) and aT x̂ = b, (2.7)
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where mid(l, u, h) is the componentwise operation that supplies the median of its
three arguments.

Now we write the Karush-Kuhn-Tucker system of problem (1.1)

Ax − c − α + β − λa = 0,

αi(xi − li) = 0, i = 1, . . . , n

βi(ui − xi) = 0, i = 1, . . . , n

αi, βi ≥ 0, i = 1, . . . , n

li ≤ xi ≤ ui, i = 1, . . . , n

aT x = b.

(2.8)

Proposition 2.2. If the feasible set Ω is a nonempty, closed and convex set and
the first-order constraint qualification holds at x∗, then x∗ is a first-order critical
point of the problem if and only if there exist x∗, α∗, β∗ and λ∗ such that the
Karush-Kuhn-Tucker system (2.8) is satisfied.

Proposition 2.3. If the feasible set Ω is a nonempty, closed and convex set and
the first-order constraint qualification holds at x∗, then x∗ is a first-order critical
point of the problem if and only if

P (x∗ − tg(x∗)) = x∗ for any t ≥ 0, (2.9)

where g(x) is the gradient of f at x.

Then we can get Proposition 2.4 based on the above statements.

Proposition 2.4. Suppose that x∗ is the first-order critical point of problem (1.1),
λ̄ ∈ Λ(x∗− tg(x∗)) and t > 0, then λ̄/t is the lagrange multiplier of the KKT system
of problem (1.1).

On the other hand, suppose that (x∗, λ∗) satisfies the KKT system of problem
(1.1) and t > 0, then we have that tλ∗ ∈ Λ(x∗ − tg(x∗)).

Proof. If x∗ is the first-order critical point of the problem, then there exist x∗, α∗,
β∗ and λ∗ such that the Karush-Kuhn-Tucker system (2.8) is satisfied, then

g(x∗) = λ∗a + α∗ − β∗, (2.10)

x∗ − tg(x∗) = x∗ − tλ∗a + tα∗ − tβ∗. (2.11)

According to the complementary condition in the Karush-Kuhn-Tucker system
and Proposition 2.1, we have

tλ∗ ∈ Λ(x∗ − tg(x∗)). (2.12)

On the other hand, if x∗ is the first-order critical point of the problem λ̄ ∈
Λ(x∗ − tg(x∗)), then x∗ must satisfy (2.9). We obtain that

x∗ = mid(l, u, x∗ − tg(x∗) + λ̄a), (2.13)
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for any t > 0. Thus if x∗
i = li, we have

− tgi(x∗) + λ̄ai ≤ 0; (2.14)

if li < x∗
i < ui, we have

− tgi(x∗) + λ̄ai = 0; (2.15)

if x∗
i = ui, we have

− tgi(x∗) + λ̄ai ≥ 0. (2.16)

Consequently, if x∗
i = li, we can set

α∗
i = gi(x∗) − λ̄

t
ai ≥ 0, β∗

i = 0; (2.17)

if li < x∗
i < ui, we can set

α∗
i = 0, β∗

i = 0; (2.18)

if x∗
i = ui, we can set

α∗
i = 0, β∗

i = −gi(x∗) +
λ̄

t
ai ≥ 0. (2.19)

Therefore λ̄/t is the lagrange multiplier of the KKT system of problem (1.1), which
completes the proof.

The numerical results show that the value of Λ(xk−ᾱkg(xk))/ᾱk becomes a con-
stant after several iterations and keeps unchanged until the algorithm terminates.
We have a numerical example which is shown in Fig. 1. This is a problem of 1000
dimension and the condition number of matrix A is 100. The X-axis is the number
of iteration and the Y -axis is the value of the ratio. We can observe that the ratio
is in the neighborhood of the optimal lagrangian multiplier after several iterations
and stays unchange until the algorithm terminates.

Since the algorithm can always converge to a first-order critical point of the
problem (which will be discussed later), this constant must be the value of the
optimal Lagrangian multiplier of problem (1.1).

Furthermore, after several iterations, the value of Λ(xk−ᾱkg(xk))
ᾱk

can be equal

to the value of Λ(xk+1−ᾱk+1g(xk+1))
ᾱk+1

with quite a high probability. Based on the
observation of the numerical results and Proposition 2.4, we can improve the initial
estimate of the Lagrangian multiplier in the projection subproblem. Here we have
a good initial guess of Λ(xk+1 − ᾱk+1g(xk+1)):

Λ(xk − ᾱkg(xk))ᾱk+1/ᾱk.

This improved initial guess can also be used in other similar projected gradient
methods subproblems. The numerical results showed that when using this initial-
ization in GVPM and Dai-Fletcher methods, the computing time on projection
subproblem can also be reduced quite a lot.

In Sec. 4, we will give the numerical results and show that how much computing
time can be actually saved.
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Fig. 1. An example.

3. Two Monotone Projected Gradient Methods

3.1. Projected adaptive steepest descent method

Here we introduce Adaptive Steepest Descent (ASD) step-size which is first pre-
sented by Zhou et al. (2006b). This method is a combination of steepest descent
(SD) step-size and minimal gradient (MG) step-size. This step-size also is a mono-
tone step-size. Let xk be the current iterate point, and gk = g(xk) = ∇f(xk) be the
gradient at xk.

αASD
k =




αMG
k , if

αMG
k

αSD
k

> κ.

αSD
k − δαMG

k , if
αMG

k

αSD
k

≤ κ.

(3.1)

Here

αMG
k =

gT
k Agk

gT
k A2gk

, αSD
k =

gT
k gk

gT
k Agk

. (3.2)

It adaptively chooses either the MG step-size or the shortened SD step-size at
each iteration. The MG step-size is used when the descent direction for the next
iteration might be bad. The shortened SD step-size is used to guarantee a sufficient
reduction.
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They proved that the steepest descent method reaches its lowest convergent rate
when αMG

k

αSD
k

> 0.5. In this instance, using the MG step-size can obtain a gk+1 which

is more inclined to some eigenvector than the choice of αSD
k . On the other hand,

the ratio αMG
k

αSD
k

reaches its minimal value in the event that MG step-size reaches
its lowest convergent rate. This adaptive strategy may avoid the worst numerical
performance of both of the step-sizes.

This method can get a very good performance when combined to the frame of the
projected gradient method for solving Bound-constrained Quadratic Programming
problem (BQP). In another paper (Zhou et al., 2006b), they use this step-size in
projected gradient method and name this method as the PASD method.

Algorithm 3.1.
Step 0. Initialization.

Step 1. If ‖ P (xk − gk) − xk ‖< ε, then stop, else go to Step 2.

Step 2. Set uk = P (xk − gk) − xk, then compute ᾱMG′
k = uT

k Auk

uT
k

A2uk
and ᾱSD′

k =

− gT
k uk

uT
k Auk

Step 3. Set

ᾱASD′
k =




ᾱMG′
k , if

ᾱMG′
k

ᾱSD′
k

> κ.

ᾱSD′
k − δᾱMG′

k , if
ᾱMG′

k

ᾱSD′
k

≤ κ.

(3.3)

ᾱk = max{αmin, min{αmax, ᾱ
ASD′
k }}, (3.4)

dk = P (xk − ᾱkgk) − xk. (3.5)

Step 4. Do line search by quadratic iterpolation along the direction dk and deter-
mine αk such that

f(xk + αkdk) ≤ f(xk) + σαkgT
k dk, (3.6)

then set xk+1 = xk + αkdk , k = k + 1 , go to Step 1.

Here they use the direction uk to calculate the step-size in the steepest descent
direction −gk. The reason why not to use −gk to compute the step-size is that
the numerical performance can be quite bad in practice when using the step-size
calculated by −gk. And the performance improves quite a lot when using uk to
calculate ᾱASD′

k . A reasonable explanation is that the angle between −gk and the
generated dk can be almost a right angle in most of the iterations, and the angle
between uk and dk is closed to zero.

In their paper (Zhou et al., 2006b), they compared the numerical results of
PASD, projected Barzilai-Borwein (PBB) method without line search and projected
Dai-Yuan (PDY) method (which will be discussed later). The numerical results
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showed that the numerical performance of PASD method is comparable when solv-
ing the BQP problem. That is why we choose to solve SLBQP problem with this
Adaptive Steepest Descent method.

3.2. Projected Dai-Yuan method

Projected Dai-Yuan method (PDY) is a projected gradient method with Dai-Yuan
step-size.

αDY
k =

{
αSD

k , if mod(k, 4) = 1 or 2.

αY V
k , if mod(k, 4) = 3 or 4.

(3.7)

Here

αSD
k =

gT
k gk

gT
k Agk

, αY V
k =

2

(( 1
αSD

k−1
− 1

αSD
k

)2 + 4‖gk‖2
2

(αSD
k−1‖gk−1‖2)2

)
1
2 + 1

αSD
k−1

+ 1
αSD

k

. (3.8)

Here the Dai-Yuan step-size is a modified version of the step-size which is first
presented by Yuan (2006). The original method takes αSD

k when k is odd and takes
αY V

k when k is even. It can find the exact solution within 3 iterations for two
dimension convex problems.

Many modifications of this algorithm are discussed in Dai and Yuan (2005).
They are all the different combinations of αSD

k , αY V
k and a modified step-size of

αY V
k . It is found that the choice above produces better numerical results than BB

method. The algorithm that uses this modified version for solving BQP problem is
first considered in Zhou et al. (2006b). The original method and its modified version
are all monotone gradient methods.

Algorithm 3.2.
Step 0. Initialization.
Step 1. If ‖ P (xk − gk) − xk ‖< ε, then stop, else go to Step 2.
Step 2. Set uk = P (xk − gk) − xk, then compute αSD′

k = −gT
k uk

gT
k

Agk
and αY V ′

k =
2

(( 1
αSD′

k−1
− 1

αSD′
k

)2+
4‖gk‖2

2
(αSD′

k−1‖gk−1‖2)2
)
1
2 + 1

αSD′
k−1

+ 1
αSD′

k

.

Step 3. Set

ᾱDY ′
k =

{
αSD′

k , if mod(k, 4) = 1 or 2.

αY V ′
k , if mod(k, 4) = 3 or 4.

(3.9)

ᾱk = max{αmin, min{αmax, ᾱ
DY ′
k }}, (3.10)

dk = P (xk − ᾱkgk) − xk. (3.11)

Step 4. Do a line search by quadratic iterpolation along the direction dk and
determine αk such that

f(xk + αkdk) ≤ f(xk) + σαkgT
k dk, (3.12)

then set xk+1 = xk + αkdk, k = k + 1, go to Step 1.
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3.3. Convergence analysis

In this subsection, we give the convergence analysis of the PASD method and the
PDY method. Denote the scaled projected gradient

gt(x) = P (x − tg(x)) − x, (3.13)

where x ∈ Ω, g(x) = Ax − b and t > 0. Here we have that dk = gᾱk
(x).

For deriving the convergence result of Algorithm 3.1, we have the following
lemma about the property of the scaled projected gradient.

Lemma 3.1. For all x ∈ Ω and t ∈ (0, αmax], it holds that

〈g(x), gt(x)〉 ≤ −‖gt(x)‖2
2

t
≤ −‖gt(x)‖2

2

αmax
. (3.14)

Theorem 3.1. Algorithm 3.1 and Algorithm 3.2 are well defined for the SLBQP
problem, and any accumulation point of the sequence {xk} generated by it is a first-
order critical point of the problem.

Proof. By contradiction. If the conclusion does not hold, we denote x̂ an accumu-
lation point of {xk}, then there must be a sub-sequence of {xk} converge to x̂ . For
any α ∈ (0, αmax] we have

‖gα(x̂)‖2 > 0. (3.15)

On the other hand, if αk = 1 can not satisfy the Armijo Condition (3.6), it follows
that

αk = − 〈gk, dk〉
〈dk, Adk〉 ≥ ‖dk‖2

2

αmax〈dk, Adk〉 ≥ 1
αmax ‖ A ‖2

. (3.16)

Set

τ = min
{

1,
1

αmax ‖ A ‖2

}
. (3.17)

Then for any k ≥ 1, we have

αk ≥ τ. (3.18)

From the continuity of ‖gα(x̂)‖2, there must be some γ > 0 such that for any
α ∈ [τ, αmax], we have

‖gα(x̂)‖2 > γ. (3.19)

Consequently, if k is big enough we have

‖gαk
(xk)‖2 > γ/2. (3.20)

Combining (3.6) and Lemma 3.1 we have

f(xk+1) ≤ f(xk) − σαk‖gαmax(x)‖2
2

αmax
. (3.21)

Set k → ∞ , then f(xk) → −∞ which contradicts that f(x) is bounded below,
which completes the proof.

A
si

a 
Pa

c.
 J

. O
pe

r.
 R

es
. 2

01
0.

27
:7

1-
84

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
E

K
IN

G
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 31, 2010 14:53 WSPC/S0217-5959 APJOR S0217595910002594.tex

Improved Projected Gradient Algorithms for Singly Linearly Constrained Quadratic Programs 81

4. Numerical Experiments

In this section, the numerical experiments were done by using Matlab v 7.6 on Dell
OptiPlex 755 (2.66GHz, 1.96GB of RAM), Windows XP.

Here we consider the Random SPD test problems. The generation of these prob-
lems is based on the generation of random SPD BQP test problems in Moré and
Toraldo (1989) and Dai and Fletcher (2005a, 2005b). Here we generate the problem
using five parameters – n, ncond, ndeg, na(x̄), and na(x̄1).

The generated A is a dense matrix. n is the size of the problem. 10ncond is the
condition number of matrix A. ndeg, na(x̄), and na(x̄1) determine the degenerate
degree, the active set of the optimal point and the active set of the starting point
respectively. The starting point can be generated by the generation of the problem.
The tolerance ε in outer iteration is 10−5 as used in Calamai and Moré (1987). In
projection subproblem, the accuracy required at the k-th iteration is |r(x̄, λ)| ≤ 10−5

when k = 1 and |r(x̄, λ)| ≤ 10−10 when k ≥ 2.
First, we compare the numerical performance of projection subproblem algo-

rithm with the improved initial guess of λ and the subproblem algorithm with
the default initial guess of λ. The main calculation of the projection subprob-
lem is to compute the residue r(x, λ). We compute a r(x, λ) when we change to
a new λ.

Table 1 is the average number of how many λ is computed in 20 different ran-
dom SLBQP problems when using three different projected gradient algorithms.
After using the improved initial λ, the computational cost decreased at most 40%
compared to the original projection sub-problem algorithm. It makes much more
improvement when using this initialization in monotone algorithms. One possible
reason is that the monotonicity of the step-sizes restricts the length of the step-sizes.
This will cause fewer changes of the active set, hence make it easy to predict the
new initial Lagrangian multiplier.

Table 1. Comparison in subproblem.

n κ(A) Default λ0 Improved λ0 Saved (%)

Algorithm 3.1 1000 10 456.2 367.7 19.40
100 1921.5 1617.7 15.81

3000 10 469.9 374.6 20.28
100 1810.9 1500.4 17.15

GVPM 1000 10 465.2 265.8 42.9
100 1611.8 960.3 40.4

3000 10 477.6 266.4 44.2
100 1571.4 962.6 38.7

Dai-Fletcher 1000 10 427.9 382.2 10.7
100 1639.6 1563.5 4.6

3000 10 504.7 467.8 7.3
100 1471.0 1387.2 5.7
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Table 2. Comparison of iteration (computing time (s)).

GVPM Algorithm 3.1 Algorithm 3.2 Dai-Fletcher

n κ(A) It. Time It. Time It. Time It. Time

1000 10 19.9 0.086 22.5 0.164 20.6 0.127 18.1 0.061
100 74.1 0.278 97.6 0.484 146.2 0.645 71.1 0.178

1000 307.0 0.800 379.3 2.692 1203.1 4.708 276.0 0.627

3000 10 20.7 0.453 23.9 0.811 22.0 0.748 16.7 0.336
100 75.4 1.466 108.9 3.869 178.8 6.342 70.9 1.331

1000 304.6 5.255 874.5 29.077 1457.7 48.053 269.7 4.688

5000 10 20.6 1.116 24.1 2.228 25.4 2.348 16.0 0.828
100 71.3 3.350 105.1 9.295 178.9 15.758 70.4 3.234

1000 292.9 14.119 941.5 89.903 1562.8 148.808 265.4 12.902

Second, we compare the numerical performance of GVPM, Algorithm 3.1 and
Algorithm 3.2 and Dai-Flether algorithm. Only the last algorithm is a non-monotone
algorithm among the four. The tolerance ε in outer iteration is 10−3.

The main computational cost in these four methods is the multiplication between
matrix and vector. The matrix-vector multiplication appears at the calculation
of the step-size, line-search and function evaluation. GVPM, Algorithm 3.1 and
Algorithm 3.2 computes 1, 2 and 2 matrix-vector multiplications at each iteration
respectively. Dai-Fletcher algorithm computes 1 matrix-vector multiplications at
each iteration no matter whether the line search is done at the iteration. Table 2
compares the average value of iteration and computing time computed in 10 differ-
ent random SLBQP problems.

Our numerical experiments demonstrate that the computing time is almost pro-
portional to the product of the number of matrix-vector multiplication computed at
each iteration and the number of iterations. GVPM and Dai-Fletcher algorithm have
almost the same computational cost at each iteration. The numerical performance
of Dai-Fletcher algorithm defeats the numerical performance of GVPM at all the
experiment cases especially when the condition number is quite large. Algorithms
3.1 and Algorithms 3.2 have almost the same computational cost at each iteration.
The numerical performance of Algorithms 3.1 defeats the numerical performance of
Algorithms 3.2 at all the experiment cases except for the cases when the condition
number is 10. Basically, Dai-Fletcher algorithm has the best numerical performance
among the four algorithms. GVPM has the best numerical performance among the
three monotone projected gradient algorithms. Both of Algorithm 3.1 and Algo-
rithm 3.2 do not use BB-type step-size. They has more computational cost at each
iterations than the BB-type methods. Another disadvantage maybe the number of
iterations when the condition number is large.

5. Conclusion

In this paper, we present two monotone projected gradient algorithms for SLBQP
problem and give their convergence analysis. We establish the relationship between
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the Lagrangian multiplier in the projection subproblem and the Lagrangian multi-
plier in the original optimization problem at the first-order critical point. Numerical
results showed that λ in the sub-problem converges to a constant after several iter-
ations. Therefore we introduced a new estimate of the initial guess of λ0 in the
projection subproblem by this observation. The improvement can save at most 40%
of the computing cost according to our numerical results. But we have not given
the convergence result of the multiplier in the projection subproblem in theory yet.

We compare the numerical results of four projected gradient methods for solving
random SPD SLBQP problems. The non-monotone algorithm Dai-Fletcher algo-
rithm has the best numerical performance. Between the two new algorithms, Algo-
rithm 3.1 has better numerical performance than Algorithm 3.2.
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Calamai, PH and JJ Moré (1987). Quasi-Newton updates with bounds. SIAM J. Numer.
Anal., 24, 1434–1441.

Dai, YH and R Fletcher (2005a). New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Math. Prog., 103(3), 403–421.

Dai, YH and R Fletcher (2005b). Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming. Numerische Mathematik A, 100(1), 21–47.

Dai, YH and YX Yuan (2005). Analysis of monotone methods. Journay of Industy and
Management Optimization, 1(2), 181–192.

Held, M, P Wolfe and H Crowder (1974). Validation of subgradient algorithms, Math.
Prog., 6, 62–88.

Helgason, R, J Kennington and H Lall (1980). A polynomially bound algorithms for a
singly constrained quadratic program. Math. Prog. 18, 338–343.
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