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SUMMARY

Z-eigenvalues of tensors, especially extreme ones, are quite useful and are related to many problems, such
as automatic control, quantum physics, and independent component analysis. For supersymmetric tensors,
calculating the smallest/largest Z-eigenvalue is equivalent to solving a global minimization/maximization
problem of a homogenous polynomial over the unit sphere. In this paper, we utilize the sequential subspace
projection method (SSPM) to find extreme Z-eigenvalues and the corresponding Z-eigenvectors. The main
idea of SSPM is to form a 2-dimensional subspace at the current point and then solve the original optimiza-
tion problem in the subspace. SSPM benefits from the fact that the 2-dimensional subproblem can be solved
by a direct method. Global convergence and linear convergence are established for supersymmetric tensors
under certain assumptions. Preliminary numerical results over several testing problems show that SSPM is
very promising. Besides, the globalization strategy of random phase can be easily incorporated into SSPM,
which promotes the ability to find extreme Z-eigenvalues. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Eigenvalues and eigenvectors of supersymmetric tensors were introduced by Qi [1] and Lim [2],
independently. They form an important part in multilinear algebra and have found wide applica-
tions in magnetic resonance imaging [3], signal processing [4], quantum physics [5], independent
component analysis [6, 7], etc.

This paper focuses on calculating Z-eigenvalues and Z-eigenvectors. Their properties were
researched in [1, 2, 8, 9], and the number of E-eigenvalues of supersymmetric tensors was studied
in [1, 9, 10]. Refer to [4, 11, 12] for more details.

There are many applications of Z-eigenvalues, especially the largest and smallest ones. As
shown in [1], the largest magnitude Z-eigenvalue � and its Z-eigenvector x form the best rank one
approximation �xm of A. The best rank one approximation of a supersymmetric tensor has many
applications and has been studied in [13–17]. The smallest Z-eigenvalues have practical applica-
tions in determining positive definiteness of an even order supersymmetric tensor, which plays an
important role in the diffusion tensor imaging [3] and the stability study of nonlinear autonomous
system via Lyapunov’s direct method in automatic control [18].
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Consider an m-order n-dimensional real supersymmetric tensor A

A D .ai1;:::;im/; ai1;:::;im 2 R; 1 6 i1; : : : ; im 6 n;
which defines an m degree homogenous polynomial

Axm WD
nX

i1;:::;imD1

ai1;i2;:::;imxi1xi2 � � � xim

where x D .x1; x2; : : : ; xn/T 2 Rn. The n-dimensional column vector Axm�1 is defined as

�
Axm�1

�
i
WD

0
@ nX
i2;:::;imD1

ai;i2;:::;imxi2 � � � xim

1
A :

We say A is supersymmetric if its entries ai1;:::;im are invariant under any permutation of their
indices i1; : : : ; im [12]. A is said to be diagonal if all entries are zero except the ones with i1 D i2 D
� � � D im. All tensors, considered in this paper, are supersymmetric. A is called positive definite
(positive semidefinite) if Axm > .>/0, for all x 2 Rnn¹0º.

For a tensor A, � 2 R is called a Z-eigenvalue of A [1], if there exists a vector x 2 Rn satisfying

Axm�1 D � x;

xT x D 1;
(1.1)

and x is called a Z-eigenvector of A associated with the Z-eigenvalue �.
By the variational principle, any vector x satisfying (1.1) is a critical point of the polynomial

optimization problem

max Axm

s:t: xT x D 1;

with � being the corresponding multiplier.
From the geometrical point of view, a Z-eigenvalue of a tensor has similar properties with an

eigenvalue of a matrix. For a symmetric positive definite matrix A, its largest eigenvalue is exactly
the reciprocal of the square of shortest axis’s length of the ellipsoid ¹x 2 Rn W xTAx D 1º. In the

tensor case, the distance from the origin to the set ˝ D ¹x 2 Rn j Axm D 1º is
�

1
�max

� 1
m

, where
�max is the largest Z-eigenvalue of A.

Recently, some algorithms have been developed for calculating extreme Z-eigenvalues. Qi et al.
[12] presented a direct method for the cases that n D 2 and m D n D 3. The power method
was considered in [13] for computing the rank one approximation of higher-order tensors. The
shifted power method [19] was guaranteed to converge to a tensor eigenpair. Han [20] proposed
an unconstrained optimization approach for finding real eigenvalues of even order supersymmetric
tensors. Nie et al. [17] studied semidefinite relaxations for the best rank one tensor approximation.

The purpose of this paper is to utilize the SSPM to calculate Z-eigenvalues of supersymmetric
tensors. The framework of SSPM was firstly proposed by Dai [21] to develop algorithms for pro-
jection on an ellipsoid. The basic idea of SSPM is to, at each iteration, first construct a subspace
by using the information at the current iteration and possibly the previous iterations and then solve
the original problem in the subspace, which is an easy subproblem. The novel SSPM is employed
to construct algorithms for linear eigenvalue problem [22]. In the tensor case, although the original
problem ( 1.1) is difficult, the subproblem restricted to a 2-dimensional subspace is a 2-dimensional
Z-eigenvalue problem, which can be solved by a direct method [12]. Hence, SSPM is a good choice
for computing extreme Z-eigenvalues of supersymmetric tensors.

The rest of this paper is organized as follows. In the next section, we describe the framework of
SSPM. The algorithm and its one variant with a random phase technique are presented in Section 3.
Global convergence and linear convergence results are established in Section 4. In Section 5, we
provide some numerical results for the proposed algorithms. Conclusions and discussions are drawn
in the last section.
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2. SEQUENTIAL SUBSPACE PROJECTION METHOD

We shall describe the principle of SSPM in Subsection 2.1. Meanwhile, we address how to solve
the subproblem in SSPM there. The geometrical explanations of Z-eigenvalues and SSPM are
illuminated in Subsection 2.2.

2.1. Description of SSPM

Consider an n-dimensional supersymmetric tensor A with order m. The Z-eigenvalue � and
Z-eigenvector x of A satisfy (1.1). The problem of getting the largest Z-eigenvalue and its related
Z-eigenvector is equivalent to solving the following global optimization problem:

max Axm

s:t: xT x D 1:
(2.2)

It is worth mentioning that the problem of finding the smallest Z-eigenvalue and the associated
Z-eigenvector can be transformed into a global minimization problem.

The main idea of SSPM is that, at each iteration, a 2-dimensional subspace is constructed by some
information of the current point, and a 2-dimensional subproblem can be derived by projecting the
problem (2.2) on the subspace. SSPM benefits from the fact that the 2-dimensional subproblem can
be solved by a direct method [12].

In details, at the k-th iteration, if xk is not a Z-eigenvector of A, we project the problem (2.2) on
the 2-dimensional subspace

Sk D span¹xk;Axm�1k º:

Define the basis of Sk as Hk D .pk;qk/ 2 Rn�2, where

pk D
xk
jjxkjj2

; zk D Axm�1k �
Axm

k

xT
k

xk
xk; qk D

zk
jjzkjj2

:

It is easy to see that HT
k
Hk D I2, where I2 is the 2-by-2 identity matrix, and that the subspace

Sk D ¹Hkl W l 2 R2º. In this way, the 2-dimensional subproblem can be derived as

max Axm

s:t: xT x D 1;
x 2 Sk WD ¹Hkl W l D .l1; l2/T 2 R2º:

(2.3)

Rewrite the object function as

Axm D A.Hk l/m D
mX
jD0

 
m

j

!
Apm�j

k
qj
k
l
m�j
1 l

j
2 WD Ak lm; (2.4)

where
�
m
j

�
D mŠ

j Š.m�j /Š
, and the constraints as

xT x D lTHT
k Hkl D lT l D 1:

The subproblem (2.3) can be rewritten as

max Aklm

s:t: lT l D 1:
(2.5)

Notice that Ak has 2m entries, which are determined by the following rule: if the number of 2 in
i1; i2; : : : ; im is j , then

.Ak/i1;i2;:::;im D Apm�j
k

qj
k
; j D 0; : : : ; m: (2.6)

The solution to (2.5), .Ql; Q�/, can be obtained directly by Theorem 2.1, and then we set xkC1 D
HkQl D Ql1 pk C Ql2 qk and �kC1 D Q�.

The following theorem [12] provides a direct way to find the Z-eigenvalue of 2-dimensional
supersymmetric tensors. It is used to calculate the largest or smallest Z-eigenvalue of Ak in SSPM.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:283–298
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Theorem 2.1
([12]) Consider an m-order 2-dimensional supersymmetric tensor T with ˛j D ti1;i2;:::;im for 0 6
j 6 m, where i1 D � � � D im�j D 1, im�jC1 D � � � D im D 2. If ˛1 WD t1;:::;1;2 D 0, then
� D ˛0 D t1;:::;1 is the Z-eigenvalue of T , and the associated Z-eigenvector is x D .1; 0/T . The
other Z-eigenvalues and Z-eigenvectors can be obtained by the following 1-dimensional equation of
a:

m�1X
jD0

 
m � 1

j

! �
˛ja

m�j�1 � ˛jC1a
m�j

�
D 0: (2.7)

More exactly, substituting a into the expressions below, the other Z-eigenvalues and Z-eigenvectors
can be obtained by

x1 D ˙
a

p
1C a2

;

x2 D ˙
1

p
1C a2

;

� D

mX
jD0

 
m

j

!
˛jx

m�j
1 x

j
2 :

(2.8)

2.2. A geometrical view of sequential subspace projection method

In this subsection, we shall understand SSPM for even order positive symmetric tensors from the
geometrical view of Z-eigenvalues. Letting y D x

m
p
�

, (1.1) can be transformed into

.yT y/h D
1

�
;

Aym D 1:
(2.9)

The problem (2.2) for the largest Z-eigenvalue can be transformed into the following optimization
problem:

min .yT y/h

s:t: Aym D 1:

The coming theorem in [8] describes the geometrical properties of Z-eigenvalues and Z-
eigenvectors, which supply the geometrical perspective of the newly proposed SSPM.

A general algebraic hypersurface can be represented by

˝ D ¹x 2 Rn j Axm D cº ;

where x D .x1; : : : ; xn/T , Axm 2 RŒx1; : : : ; xn� is a homogeneous polynomial of degree m with n
variables, and c 2 R is a real constant.

Theorem 2.2
([8]) We have the following conclusions on Z-eigenvalues and Z-eigenvectors of A, �:

(a) Z-eigenvalue and Z-eigenvector of A and � exist;
(b) Whenm is even, the supersymmetric tensor A is positive definite (positive semidefinite) if and

only if all the eigenvalues are positive (nonnegative);
(c) Assume that c > 0. Let the largest eigenvalue be denoted as �max. If �max 6 0, then � is

empty. Otherwise, � is not empty, and the distance from � to the origin is

�min D

�
c

�max

	 1
m

;

and this distance occurs at the point y D �minx, where x is an eigenvector associated with �max;

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:283–298
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(d) Assume that c > 0. Denote the smallest eigenvalue as �min. If A is positive definite, then the
largest distance from � to the origin is

�max D

�
c

�min

	 1
m

;

and this distance occurs at the point y D �maxx, where x is an eigenvector associated with �min;
(e) Assume that c > 0. The algebraic hypersurface ˝ surrounds a bounded region if and only if

m is even and all the eigenvalues are positive; namely, A is positive definite.

Consider the case (c) with �max > 0, the problem of finding the largest Z-eigenvalue is equivalent
to finding the distance d0 from � to the origin. The idea of SSPM is to construct a sequence of 2-
dimensional subspace Sk such that the distance from Sk to the origin is monotonically decreasing
to d0.

3. THE SEQUENTIAL SUBSPACE PROJECTION ALGORITHM

We first describe the sequential subspace projection algorithm in Subsection 3.1. Then a random
phase technique is incorporated into SSPM to make the iterates escape from local minimizers /max-
imizers in Subsection 3.2.

3.1. The sequential subspace projection algorithm

At each iteration, a 2-dimensional subspace Sk is spanned by xk and Axm�1
k

. The subproblem
is derived by projecting (2.2) on Sk and solved by Theorem 2.1. The initial point is generated
randomly. We stop the algorithm when Axm�1

k
is parallel to xk , that is .Axm�1

k
/T xk D kxkk �

kAxm�1
k
k. In this paper, we use k � k to denote k � k2. The stopping criterion is set to beˇ̌̌

ˇ̌ Axm
k

kxkk � kAxm�1
k
k
� 1

ˇ̌̌
ˇ̌ 6 �; (3.10)

where � > 0 is a tolerance parameter.

Algorithm 3.1
Given an initial point Nx0, x0 D

Nx0
kNx0k

, � > 0. Set k D 0.

Step 1. Let pk D xk; zk D Axm�1
k
�

Axm
k

xT
k

xk
xk;qk D

zk
kzkk

. Compute Ak by (2.4).

Step 2. Solve the m-degree equation (2.7) and obtain the largest eigenvalue Q� and the associated
eigenvector Qł with Q� by (2.8).

Step 3. Calculate xkC1 D Ql1 pk C Ql2 qk , �kC1 D Q�.
Step 4. If (3.10) with k replaced by k C 1 holds, stop and output .�kC1; xkC1/; otherwise, let
k D k C 1 and go to Step 1.

Some remarks about Algorithm 3.1 are given in the following.

Remark 1
The aforementioned algorithm can also be employed to find the smallest Z-eigenvalue and the
corresponding Z-eigenvector, if the smallest Z-eigenvalue of Ak is computed in Step 2.

Remark 2
The main storage cost of Algorithm 3.1 is nm for the tensor A. The main computational cost lies
in the tensor-vector multiplications Axm�1 and Ak in Step 1. For an m-order n-dimensional super-
symmetric tensor A, it costsO.mnm/ operations to compute Axm�1. Then the value of Axm can be
obtained by multiplying the vectors Axm�1 and x, which takes only 2n � 1 operations. Computing
Ak is more expensive, which requires O.m2nm/ operations. Compared with SSPM, the power
method requires mainly to compute Axm�1. Our numerical experiments with m D 4 in Section 5

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:283–298
DOI: 10.1002/nla



288 C. L. HAO, C. F. CUI AND Y. H. DAI

show that the computational cost of SSPM per iteration is about three to four times of the power
method.

Remark 3
Up to now, SSPM is designed to handle fully populated supersymmetric tensors, the size of which
is nm. Hence, we can only solve the problems with n 6 100 in a personal computer for the sake of
storage. In the case of large mode size n, it is a good future work to consider how to make SSPM
work well with the idea of the multigrid accelerated alternating least squares type algorithm [23].

3.2. Sequential subspace projection method with random phase

In our numerical experiments, we find that (3.1) may stick in some local minimizers/maximizers.
In this subsection, SSPM with random phase (SSPMr) is proposed by introducing a random phase
in order to escape from local minimizers/maximizers. In details, after some criterion is satisfied, we
switch to construct the subspace by Sk D span¹xk; uº, where u is a unit vector generated randomly,
instead of Sk D span¹xk;Axm�1

k
º in SSPM. Moreover, an upper bound is set for the total number

of switching to the random phase.

Algorithm 3.2
Prefix an initial point Nx0, x0 D

Nx0
kNx0k

, � > 0, and set k D 0, �k D Axm
k

, u D Axm�1
k

, F D 1 � �k
kuk ,

f lagmax D 20, f lag D 0.

Step 1. Let pk D xk; zk D u � .uT xk/xk;qk D
zk
kzkk

. Compute Ak by (2.4).

Step 2. Solve the m-degree equation (2.7) and obtain the largest eigenvalue Q� and the associated
eigenvector Ql with Q� by (2.8).

Step 3. Calculate xkC1 D Ql1 pk C Ql2 qk , �kC1 D Q�.
Step 4. Compute u D Axm�1

kC1
, F D 1 � �kC1

kuk .
If F > �,

if f lag D 0, xk D xkC1, �k D �kC1,
else if �kC1 � �k > 10�6, f lag D 0, xk D xkC1, �k D �kC1,
else f lag D f lag C 1, u D rand.n; 1/, u

kuk .
k D k C 1, go to step 1,

else
if f lag D 0, set f lag D 1, u D rand.n; 1/ and u D u

kuk .
else if 0 < f lag < f lagmax

if �kC1 � �k > 10�6, f lag D 0, xk D xkC1, �k D �kC1.
else f lag D f lag C 1, u D rand.n; 1/, u D u

kuk .
k D k C 1, go to step 1.
else stop and output .�kC1; xkC1/.

4. CONVERGENCE ANALYSIS

In this section, we show the global convergence of Algorithm 3.1 and the linear convergence of the
objective values ¹Axkº under some assumptions.

Noticing that at each iteration, the current point xk belongs to the subspace Sk D
span¹xk;Axm�1

k
º, we have f .xkC1/ D maxs2Sk f .s/ > f .xk/; namely, Algorithm 3.1 is monotone

increasing. For convenience, rewrite (2.2) as

max f .x/

s:t: c.x/ D 0;
(4.11)

where

f .x/ D
1

m
Axm and c.x/ D

1

2

�
xT x � 1

�
:
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The Lagrangian function is

L.x; �/ D f .x/ � � c.x/;

and its gradient and Hessian are

rxL.x; �/ D rf .x/ � � x and rxxL.x; �/ D r2f .x/ � �In:

We use rL.x; �/ and r2L.x; �/ to represent rxL.x; �/ and rxxL.x; �/ unless specifically stated.
Noting that at the KKT point .x�; ��/, it holds rL.x�; ��/ D 0. Therefore, rL.x�; ��/T x
D rf .x�/T x� � �� D 0; namely, �� D rf .x�/T x�. At the k-th iteration, we define �k WD
rf .xk/T xk and

zk WD rf .xk/ �
�
rf .xk/

T xk
�

xk D rf .xk/ � �kxk : (4.12)

It is easy to see that zk D 0 if and only if rL.xk ; �k/ D 0. For the problem (4.11), we have
rf .x/ D Axm�1. By definition, if zk D 0, xk is a Z-eigenvector and �k D xT

k
Axm�1

k
D Axm

k
is

the corresponding Z-eigenvalue.

Assumption 4.1
rf .x/ is bounded and Lipschitz continuous on the unit sphere; namely, there exist positive constants
L and M such that

krf .x/k 6M; 8 xT x D 1I

krf .x/ � rf .y/k 6 Lkx � yk; 8 xT x D yT y D 1:

These assumptions are trivial for polynomials. The global convergence of Algorithm 3.1 is
established in the following lemma.

Lemma 4.2
Consider the problem (4.11). Under Assumption 4.1, for the sequence ¹xkº generated by Algo-
rithm 3.1, there exist positive constants c1 and c2 such that

f .xkC1/ � f .xk/ > min¹c1; c2kzkk
2º; (4.13)

where c1 D 3
4
.M C L/, c2 D 1

4
.M C L/�1. Furthermore,

kz�k WD lim
k!1

kzkk D 0: (4.14)

That is to say, ¹xkº converges to the Karush–Kuhn–Tucker (KKT) point of the problem (4.11)
globally.

Proof
Noting that zk lies in the subspace span¹xk;Axm�1

k
º and zT

k
xk D 0, every feasible point of the

problem (2.3) can be expressed by

xk.˛/ D ˛zkpm
p
1 � ˛2kzkk2 xk; �

1

kzkk
6 ˛ 6 1

kzkk
:

It follows that

x0k.˛/ D zk �
˛kzkk2p
1 � ˛2kzkk2

xk :

We shall study the gap between f .xk.˛// and f .xk/:

f .xk.˛// � f .xk/ D
Z ˛

0

rf .xk.t//
T x0k.t/ dt

D

Z ˛

0

rf .xk.t//
T
�
x0k.t/ � x0k.0/

�
dt C ˛rf .xk.0//

T x0k.0/

C

Z ˛

0

.rf .xk.t// � rf .xk.0///
T x0k.0/ dt

D T1 C ˛kzkk
2 C T2;

(4.15)

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:283–298
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where the third equality is due to the definitions of rf .xk.0// and x0
k
.0/. Next, we estimate the

term T1 for ˛ 2 Œ0; Q̨ �, Q̨ D
p
3

2kzkk
.

T1 D

Z ˛

0

rf .xk.t//
T Œx0k.t/ � x0k.0/� dt

> �
Z ˛

0

krf .xk.t//k � kx
0
k.t/ � x0k.0/k dt

> �Mkzkk2
Z ˛

0

tp
1 � t2kzkk2

dt

> �M˛2kzkk2;

(4.16)

where the last inequality follows from 1p
1�t2kzkk2

6 1p
1�Q̨2kzkk2

D 2 for t 6 ˛ 6 Q̨ . For the third

term T2, by Assumption 4.1, we can derive

T2 D

Z ˛

0

.rf .xk.t// � rf .xk.0///
T x0k.0/ dt

> � kzkk
Z ˛

0

krf .xk.t// � rf .xk.0//k dt

> � Lkzkk
Z ˛

0

kxk.t/ � xk.0/k dt

D� Lkzkk
Z ˛

0

ktzk C
�
˙
p
1 � t2kzkk2 � 1

�
xkk dt

D� Lkzkk
Z ˛

0

q
2˙ 2

p
1 � t2kzkk2 dt

> � L˛2kzkk2

(4.17)

where the last equality can be derived by xT
k

zk D 0, kxkk D 1, and the last inequality is due toq
2˙ 2

p
1 � t2kzkk2 6 2tkzkk for t 6 ˛ 6 Q̨ .

It follows from (4.15), (4.16), and (4.17) that

f .xkC1/ � f .xk/ D max
˛261=kzkk2

.f .xk.˛// � f .xk//

> max
06˛6 Q̨

.f .xk.˛// � f .xk//

> max
06˛6 Q̨

.�M˛2kzkk
2 � L˛2kzkk

2 C ˛kzkk
2/

> max
06˛6 Q̨

.�M˛2 � L˛2 C ˛/kzkk
2:

Denote Ǫ D 1
2MC2L

as the maximizer of the quadratic function above. If Q̨2 6 Ǫ2, that is kzkk >p
3.M C L/, the maximum will be achieved at Q̨ :

f .xkC1/ � f .xk/ > .�M Q̨2 � L Q̨2 C Q̨ /kzkk
2

>
p
3

4
kzkk

> 3

4
.M C L/:

(4.18)

Otherwise, if kzkk 6
p
3.M C L/, we can obtain

f .xkC1/ � f .xk/ > .�M Ǫ2 � L Ǫ2 C Ǫ /kzkk2

D
1

4.M C L/
kzkk

2:
(4.19)
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If the sequence ¹zkº is infinite, the ascent can not be greater than a constant because f .x/ must be
bounded on the unit sphere. This means that the relation (4.18) will not occur but the relation (4.19)
holds for sufficiently large k. Thus, there exists an integer N0 such that for all k > N0,

f .xkC1/ � f .xN0/ >
kX

iDN0

.f .xkC1/ � f .xk//

> 1

4.M C L/

kX
iDN0

kzkk
2:

As f .x/ must be bounded on the unit sphere, limk!1 kzkk D 0; namely, the sequence is globally
convergent. �

In order to obtain the linear convergence, we make the following assumption.

Assumption 4.3
Assume that the sequence ¹xkº tends to a point x� and that the second order sufficient condition
for x� being a strict local maximizer of (4.11) is satisfied; namely, the corresponding Lagrangian
multiplier �� and Lagrangian function L.x�; ��/ satisfy

wTr2L.x�; ��/w < 0; 8 w 2 rc.x�/? \ ¹w W c.w/ D 0º: (4.20)

Lemma 4.4
Suppose Assumptions 4.1 and 4.3 hold for the problem (4.11). The sequence ¹xkº generated by
Algorithm 3.1 satisfies

lim
k!1

kzkk2

f .x�/ � f .xk/
> 2�n�1; (4.21)

where �n�1 > 0 is the smallest eigenvalue of the matrix �U Tr2L.x�; ��/U , U 2 Rn�.n�1/ is the
orthogonal complement matrix of rc.x�/.

Proof
First, we deduce the fact that f .x�/�f .xk/ > 0. By c.xk/ D c.x�/ D 0 andrL.x�; ��/ D z� D 0,

f .x�/ � f .xk/ D L.x
�; ��/ � L.xk; �k/

D �
1

2
.xk � x�/Tr2L.x�; ��/.xk � x�/C o.kxk � x�k2/:

(4.22)

For the problem (4.11), xT
k

xk D x�T x� D 1, thus

� .xk � x�/T x� D 1 � xTk x� D
1

2
.xk � x�/T .xk � x�/; (4.23)

which means that if we project xk � x� on the orthogonal space of x�,

wk D xk � x� �
�
.xk � x�/T x�

�
x� D xk � x� CO.kxk � x�k2/: (4.24)

It follows from the second order sufficient condition (4.20) that

�
1

2
.xk � x�/Tr2L.x�; ��/.xk � x�/

D �
1

2
.wk CO.kxk � x�k2//Tr2L.x�; ��/.wk CO.kxk � x�k2//

D �
1

2
wTk r

2L.x�; ��/wk C o.kxk � x�k2/

> 0;

which with (4.22) shows f .x�/ � f .xk/ > 0.
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Second, the approximation of zk is required. It follows from z� D 0 in (4.14) that

zk D zk � z�

D rf .xk/ � �kxk � rf .x
�/C ��x�

D r2f .x�/.xk � x�/ � ��.xk � x�/ � .�k � �
�/xk CO.kxk � x�k2/

D r2L.x�; ��/.xk � x�/ � .�k � �
�/xk CO.kxk � x�k2/;

(4.25)

where the last equality follows from the definition r2L.x�; ��/ D r2f .x�/ � ��In. Consider the
term �k � �

�, by the Taylor expansion,

�k � �
� D rf .xk/

T xk � rf .x
�/T x�

D
�
rf .xk/ � rf .x

�/
�T

xk Crf .x
�/T .xk � x�/

D .xk � x�/Tr2f .x�/xk CO.kxk � x�k2/C ��x�T .xk � x�/

D O.kxk � x�k2/;

(4.26)

where the third equality is obtained by z� D rf .x�/���x� D 0, and the last equality follows from
.xk � x�/Tr2f .x�/xk 6 M.xk � x�/T xk , .xk � x�/T xk D 1

2
kxk � x�k2 and (4.23). It follows

from (4.24), (4.25), and (4.26),

kzkk
2 D kr2L.x�; ��/.xk � x�/CO.kxk � x�k2/k2

D kr2L.x�; ��/.xk � x�/k2 C o.kxk � x�k2/

D kr2L.x�; ��/wk2 C o.kxk � x�k2/:

(4.27)

Let U 2 Rn�.n�1/ be the orthogonal complement of the vector rc.x�/. For any w defined in (4.24),
there exists v 2 Rn�1 such that w D U v. It follows from (4.22) and (4.27) that

kzkk2

f .x�/ � f .xk/
D

kr2L.x�; ��/.xk � x�/k2

�1
2
.xk � x�/Tr2L.x�; ��/.xk � x�/

D
kr2L.x�; ��/wk2

�1
2

wTr2L.x�; ��/w

D
2kr2L.x�; ��/U vk2

�vTU Tr2L.x�; ��/U v

D
2kU kkr2L.x�; ��/U vk2

�vTU Tr2L.x�; ��/U v

> 2kU
Tr2L.x�; ��/U vk2

�vTU Tr2L.x�; ��/U v
> 2�n�1;

where the fourth equality is derived from kBk2 D
p
kBTBk D 1 and the first inequality follows

from the matrix compatibility. For the last inequality, suppose the Cholesky decomposition of the
positive definite matrix �U Tr2L.x�; ��/U is LTL. Denoting y D Lx, we can obtain xTPP x

xTP x
D

yTP y
yT y
> �n�1: �

Theorem 4.5
If Assumptions 4.1 and 4.3 hold for the problem (4.11), the sequence ¹Axm

k
; xkº generated by Algo-

rithm 3.1 convergent to .��; x�/ globally, where .��; x�/ is some Z-eigenpair of A. Furthermore,
¹f .xk/º converges to f .x�/ linearly.

Proof
It follows from Assumption 4.3 that ¹xkº is convergent to x�. We showed that z� D A.x�/m�1 �
��x� D 0 in Lemma 4.2. Thus, .��; x�/ is some Z-eigenpair of A.
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Further, it follows from (4.13) and (4.21) that

lim
k!1

f .x�/ � f .xkC1/
f .x�/ � f .xk/

D 1 � lim
k!1

f .xkC1/ � f .xk/
f .x�/ � f .xk/

6 1 � 1

4.M C L/
lim
k!1

kzkk2

f .x�/ � f .xk/

6 1 � �n�1

2M C 2L

< 1:

(4.28)

This completes the proof. �

The aforementioned theorem is established under Assumption 4.3. If ¹xkº is an infinite sequence,
there must be some convergent subsequence ¹xki º, say ¹xki º ! x� for some point x� on the unit
sphere. Therefore, the point x� can also been proved to be a Z-eigenvector.

5. NUMERICAL RESULTS

In this section, we report some numerical results of the proposed SSPM and compare SSPM with the
power method (PM). Our code was implemented in MATLAB (R2013a). All the experiments were
preformed on a Dell desktop with Intel dual core E6750 CPU at 2.66 GHz and 2 GB of memory
running Windows 7. The initial point Nx0 is generated randomly, and the parameter � in the stopping
criterion is set to be 10�10.

The solution to each testing problem is known in advance, and hence, we can tell whether SSPM
and PM find the right solution or not. Moreover, we focus on 4-order tensors in the numerical
experiments for convenience. In this case, Step 2 of Algorithm 3.1 involves the quartic equation

˛1a
4 � .˛0 � 3˛2/a

3 � 3.˛1 � ˛3/a
2 � .3˛2 � ˛4/a � ˛3 D 0;

where

˛0 D Ap4k; ˛1 D Ap3kqk; ˛2 D Ap2kq2k; ˛3 D Apkq3k; ˛4 D Aq4k :

5.1. Testing diagonal tensors

The following proposition [1] gives all the Z-eigenvalues and the related Z-eigenvectors of diagonal
tensors. Based on this proposition, we can choose diagonal tensors as testing problems.

Proposition 5.1
([1]) Suppose A is a diagonal tensor with diagonal elements ¹a1; a2; : : : ; anº. Let

J1 D ¹i W ai < 0º; J2 D ¹i W ai > 0º:

If at least one of J1 and J2 has more than one element, then A has more than n Z-eigenvalues. In
this case, besides the n Z-eigenvalues, which are the diagonal elements of A, for each NJk � Jk with
j NJkj > 2, k D 1; 2,

� D .�1/k

2
4X
i2 NJk

�
1

jai j

	 2
m�2

3
5
�m�22

is a Z-eigenvalue of A, with a Z-eigenvector x defined by

xi D

8<
:
�
�
ai

� 1
m�2

; for i 2 NJkI

0; otherwise:
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Table I. Compare SSPM with PM for Example 5.1

PM SSPM SSPM

n iter CPU � iter CPU �max iter CPU �min

10 3 0.0012 100 3 0.0052 100 8 0.0132 3.4142
20 5 0.0203 200 4 0.0581 200 7 0.0983 2.7795
30 5 0.0930 300 4 0.2602 300 9 0.5677 2.5031
40 5 0.2705 400 4 0.8290 400 10 2.0087 2.3372
50 5 0.7583 500 4 2.5156 500 8 4.8226 2.2226
60 5 2.1273 600 4 6.5730 600 10 15.2800 2.1368
70 6 5.2405 700 5 17.0260 700 8 26.2312 2.0692
80 5 7.8705 800 4 23.5201 800 11 62.4543 2.0139

PM = power method; SSPM = sequential subspace projection method.

Proposition 5.2
Consider a 4-order diagonal tensor A, ai > 0, i D 1; 2; : : : ; n. Suppose that a1 > a2 > � � � > an >
0. Then the largest Z-eigenvalue �max D a1, and the smallest Z-eigenvalue �min D

1
nP
iD1

1
ai

.

Example 5.1
Consider the diagonal tensor A with diagonal elements Ai;i;i;i D 10i , i D 1; 2; : : : ; n for n D
10; 20; � � � ; 80.

We record the numerical results in Table I, where ‘iter’ is the iteration number, ‘CPU’ is the
CPU time (in seconds), ‘�’ is the Z-eigenvalue returned by PM, and ‘�max’ (‘�min’) is the largest
(smallest) Z-eigenvalue returned by SSPM. For the sake of fairness, the three algorithms share the
same initial point. From Table I, it can be seen that SSPM requires fewer iterations, but a little more
CPU time. Noting that SSPM looks for an optimal solution in a 2-dimensional subspace while PM
does in a 1-dimensional subspace, it is reasonable that SSPM is likely to require fewer iterations
than PM. From the computational complexity analysis in Section 3.1, SSPM needs two tensor-vector
multiplications while PM only needs one, so SSPM needs more computation per iteration. In this
experiment, the iteration numbers required by PM and SSPM are very close, which can interpret
why SSPM takes more total CPU time than PM.

5.2. A numerical example that favors sequential subspace projection method

In this subsection, we test a kind of tensor from [17], which shows that SSPM might perform much
better than PM.

Example 5.2
[17] Consider 4-order n-dimensional supersymmetric tensors with the elements

Ai1;:::;i4 D arctan

�
.�1/i1

i1

n

	
C � � � C arctan

�
.�1/i4

i4

n

	
:

For this example, the largest magnitude Z-eigenvalue is the smallest one. Hence, PM returns the
smallest Z-eigenvalue, and SSPM is called to calculate the smallest Z-eigenvalue. The results are
reported in the following Table II. We can see that SSPM performs much better than PM in both
iterations and CPU time. Specifically, SSPM can terminate in 10 iterations, while PM takes far more.
Thus, SSPM uses less CPU time than PM in this test, although it takes more CPU time per iteration.

Before we proceed, several remarks are in order.

Remark 4
We can also use the Matlab build-in solver GloptiPoly3 to solve the subproblem (2.5). To compare
GloptiPoly3 with the direct method, we test Example 5.1 for n D 10; 20; � � � ; 80. The two methods
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Table II. Compare the quality SSPM and PM for Example 5.2.

PM SSPM

n iter CPU � iter CPU �min

5 23 0.0016 -2.357e+01 6 0.0028 -2.357e+01
15 97 0.0897 -1.650e+02 6 0.0281 -1.650e+02
25 160 0.8646 -4.353e+02 7 0.1847 -4.353e+02
35 218 4.1928 -8.342e+02 8 0.7868 -8.342e+02
45 285 15.2155 -1.361e+03 7 2.1085 -1.361e+03
55 348 53.6189 -2.018e+03 8 6.9728 -2.018e+03
65 421 171.6298 -2.803e+03 7 14.4386 -2.803e+03
75 503 411.9391 -3.716e+03 5 19.4202 -3.716e+03
85 544 739.4757 -4.758e+03 7 49.7785 -4.758e+03
95 608 1315.2707 -5.929e+03 7 70.3252 -5.929e+03

PM = power method; SSPM = sequential subspace projection method.

provide the same solution to the subproblem (2.5) and lead to the same sequence of iterates ¹xkº,
but the CPU time is slightly different. We report the CPU time (in seconds) in Table III.

Table III. Compare direct method with GloptiPoly3 for the subproblem (2.5).

n 10 20 30 40 50 60 70 80

Root 0.005 0.058 0.260 0.829 2.517 6.573 17.026 23.520
Glo3 0.449 0.506 0.716 1.303 2.877 6.832 17.153 24.309

PM = power method; SSPM = sequential subspace projection method.

Remark 5
SSPM can also be applied to supersymmetric tensors with general m, although we test m D 4 in
the experiments. By the direct method [12], the subproblem (2.5) leads to an m degree equation
(2.7), which can be solved by Wu method [24]. Besides, GloptiPoly3 is also a choice to solve the
subproblem directly.

Remark 6
PM outputs the largest magnitude Z-eigenvalue, but SSPM can find both the smallest one and the
largest one. For example,

A D diag¹�8;�7;�6;�5; 1; 2; 3; 4º:

PM outputs �8. SSPM can find both �8 and 4. However, SSPM applies only to supersymmetric
tensors while PM can also work for unsymmetric ones.

5.3. Efficiency of the global strategy of the random phase

To improve the performance of SSPM in finding extreme Z-eigenvalues, the globalization
strategy of random phase is introduced in Algorithm 3.2 once the iterates get trapped in local
minimizers/maximizers.

Let A be an m-th order n-dimensional supersymmetric tensor and P D .pi;j / be an n � n real
matrix. Define B D PmA as another m-th order n-dimensional tensor with entries [12],

bi1;i2;:::;im D

nX
j1;j2;:::;jmD1

pi1;j1pi2;j2 � � �pim;jmaj1;j2;:::;jm :

Then B is also a supersymmetric tensor. If P is an orthogonal matrix, we say that A and B are
orthogonally similar [12]. If A and B are orthogonally similar, A and B share the same Z-eigenvalues
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Table IV. Compare SSPM, SSPMr with PM for Example 5.3.

n = > < PMopt SSPMopt = > < PMopt SSPMropt

6 93 0 7 41 45 41 0 59 41 100
8 83 1 16 42 49 43 0 57 42 99
10 86 0 14 50 61 50 0 50 50 98
12 94 0 6 65 69 65 0 35 65 100

PM = power method; SSPM = sequential subspace projection method;
SSPMr = SSPM with random phase.

and related Z-eigenvectors [12]. Tensors that are orthogonally similar to diagonal ones are tested to
illustrate the efficiency of this globalization strategy.

Example 5.3
Let A;B be 4-order n-dimensional diagonal tensors, with B D PmA and Ai;i;i;i D i , i D
1; 2; : : : ; n,

P D .I � 2w1wT1 /.I � 2w2wT2 /.I � 2w3wT3 /;

where w1, w2, and w3 are unit vectors generated randomly. The task is to find the largest
Z-eigenvalue of B.

We test Example 5.3 with different n. Each test is conducted 100 times with different initial points.
The left half of Table IV compares PM with SSPM, and the right half with SSPMr. In this table,
D .>;</ stands for the number of the cases that PM finds the same (better, worse) Z-eigenvalue,
and PMopt (SSPMopt, SSPMropt) represents the number of cases that PM (SSPM, SSPMr) finds the
optimal solution.

From Table IV, it can be seen that both SSPM and SSPMr perform better than PM in that they
can find the optimal solutions with higher probability. If all the three algorithms fail to return the
largest Z-eigenvalue, SSPM and SSPMr always return a larger one than PM. Obviously, SSPMr has
a higher successful rate than SSPM. Hence, the globalization strategy of the random phase does
work.

5.4. Determining positive definiteness of tensors

The smallest Z-eigenvalue is useful for checking whether a supersymmetric tensor is positive defi-
nite or not [12]. In Algorithm 3.1, once some �k < 0 in some subspace is detected, we can stop the
algorithm and claim that the tensor is not positive definite.

The original problem and the subproblem are

�min Dmin Axm

s:t: xT x D 1

and

�min
k Dmin Ak lm

s:t: lT l D 1;

respectively. It is easy to see that �min 6 �min
k

. Therefore, if there exists a �min
j < 0 for some j , we

can have �min < 0 and claim that A is not positive definite.
We utilize Algorithm 3.1 to compute the smallest Z-eigenvalue of the diagonal tensor

A D diag¹�0:002;�0:001; 1; 2; 3; 4; 6; 7; 8; 8:001º

with 50 different random initial points. In our experiments, Algorithm 3.1 takes two iterations for
41 times, one iteration for six times, three iterations twice and four iterations once to detect the
phenomenon that �jmin < 0. Moreover, similar results have been obtained for the tensors that are
orthogonally similar to A.
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6. CONCLUSIONS AND DISCUSSIONS

A new algorithm, SSPM, for finding extreme Z-eigenvalues of supersymmetric tensors is proposed.
It was motivated by SSPM in [21] and the direct method for Z-eigenvalue of tensor with n D 2

in [12]. Besides, we present SSPMr in which a random phase is incorporated so that the algorithm
can escape from the local minimizers/maximizers with a high probability. Theoretically, the global
convergence and local linear convergence have been established under some mild assumptions. Pre-
liminary numerical results illustrated that SSPM takes few iterations than PM, but it needs more
computational cost and slightly more storage cost per iteration. For some specific problems, SSPM
can reduce the number of iterations and CPU time significantly compared with PM, as shown in
Subsection 5.2.

ACKNOWLEDGEMENTS

The authors thank Dr. Bo Jiang for his useful discussions about the convergence analysis in
Section 4. They are also grateful to the anonymous referees and the managing editor for their valu-
able comments, which improved the quality of this paper greatly. The work of the first author is
supported by Chinese NSF grant (no. 11301016) and the Research Fund for the Doctoral Program
of Higher Education of China (no. 20131103120029) and that of the third author is supported by the
Chinese NSF grants (nos. 11331012 and 81173633) and the China National Funds for Distinguished
Young Scientists (no. 11125107).

REFERENCES

1. Qi LQ. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation 2005; 40:1302–1324.
2. Lim LH. Singular values and eigenvalues of tensors: a variational approach. In Proceedings of the IEEE International

Workshop on Computational Advances in Multi-Sensor Addaptive Processing (CAMSAP’05), Vol. 1. IEEE Computer
Society Press: Piscataway, New Jersey, 2005; 129–132.

3. Qi LQ, Yu GH, Wu EX. Higer order positive semidefinite diffusion tensor imaging. SIAM Journal on Imaging
Sciences 2010; 3(3):416–433.

4. Qi LQ, Teo KL. Multivariate polynomial minimization and its application in signal processing. Journal of Global
Optimization 2003; 26:419–433.

5. Wei TC, Goldbart PM. Geometric measure of entanglement and applications to bipartite and multipartite quantum
states. Physical Review A 2003; 68:042307.

6. Lathauwer LD, Comon P, Moor BD, Vandewalle J. High-order power method-application in independent component
analysis. In Proceeding of the International Symposium on Nonlinear Theory and its Applications (NOLTA’95):
Las Vegas, Nevada, 1995; 91–96.

7. Cardoso JF. High-order contrasts for independent component analysis. Neural computation 1999; 11:157–192.
8. Qi LQ. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic

hypersurface it defines. Journal of Symbolic Computation 2006; 41:1309–1327.
9. Qi LQ. Eigenvalues and invariants of tensors. Journal of Mathematical Analysis and Applications 2007; 325(2):

1363–1377.
10. Ni G, Qi LQ, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. Journal of

Mathematical Analysis and Applications 2007; 329:1218–1229.
11. Qi LQ. Eigenvalues of a Supersymmetric Tensor and Positive Definiteness of an Even Degree Multivariate Form.

Department of Applied Mathematics: The Hong Kong Polytechnic University, 2004.
12. Qi L Q, Wang F, Wang YJ. Z-eigenvalue methods for a global polynomial optimization problem. Mathmatical

Programming 2009; 118:301–316.
13. Lathauwer LD, Moor BD, Vandewalle J. On the best rank-1 and rank- (R1;R2; :::;RN ) approximation of higher-

order tensors. SIAM Journal of Matrix Analysis and Applications 2000; 21:1324–1342.
14. Kofidis E, Regalia PA. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM Journal of

Matrix Analysis and Applications 2002; 23:863–884.
15. Zhang T, Golub GH. Rank-1 approximation of higer-order tensors. SIAM Journal of Matrix Analysis and

Applications 2001; 23:534–550.
16. Zhang XZ, Ling C, Qi LQ. The best rank-1 approximation of a symmetric tensor and related spherical optimization

problems. SIAM Journal on Matrix Analysis and Applications 2012; 33(3):806–821.
17. Nie JW, Wang L. Semidefinite relaxations for best rank-1 tensor approximations. ArXiv 1308.6562, 2013.
18. Ni Q, Qi LQ, Wang F. An eigenvalue method for testing positive definiteness of a multivariate form. IEEE

Transactions on Automatic Control 2008; 53(5):1096–1107.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:283–298
DOI: 10.1002/nla



298 C. L. HAO, C. F. CUI AND Y. H. DAI

19. Kolda TG, Mayo JR. Shifted power method for computing tensor eigenpairs. SIAM Journal of Matrix Analysis and
Applications 2011; 32(4):1095–1124.

20. Han LX. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors.
Numerical Algebra, Control and Optimization 2013; 3(3):583–599.

21. Dai Y H. Fast algorithm for projection on an ellipsoid. SIAM Journal on Optimization 2006; 16:986–1006.
22. Liu X, Hao CL, Cheng MH. A sequential subspace projection method for linear eigenvalue problem. Asia Pacific

Journal of Operational Research 2013; 30(3):1340003.
23. Khoromskij B N, Khoromskaia V. Multigrid accelerated tensor approximation of function related multi-dimensional

arrays. SIAM Journal on Scientific Computing 2009; 31(4):3002–3026.
24. Wang DM, Xia BC, Li ZM. Computer Algebra (2nd edn). Tsinghua University Press: Beijing, 2007.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:283–298
DOI: 10.1002/nla


	A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors
	Summary
	Introduction
	Sequential subspace projection method
	Description of SSPM
	A geometrical view of sequential subspace projection method

	The sequential subspace projection algorithm
	The sequential subspace projection algorithm
	Sequential subspace projection method with random phase

	Convergence analysis
	Numerical results
	Testing diagonal tensors
	A numerical example that favors sequential subspace projection method
	Efficiency of the global strategy of the random phase
	Determining positive definiteness of tensors

	Conclusions and discussions
	Acknowledgements
	REFERENCES


