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ABSTRACT

In a cellular wireless system, users located at cell edges of-

ten suffer significant out-of-cell interference. In this paper

we consider a coordinated beamforming approach whereby

multiple base stations jointly optimize their downlink beam-

forming vectors in order to simultaneously improve the data

rates of a given group of cell edge users. Assuming perfect

channel knowledge, we formulate this problem as the max-

imization of a system utility function (which balances user

fairness and average user rates), subject to individual power

constraints at each base station. We show that, for the sin-

gle carrier case and when the number of antennas at each

base station is at least two, the optimal coordinated beam-

forming problem is strongly NP-hard for both the harmonic

mean utility function and the proportional fairness utility

function. For the min-rate utility function, we show that the

problem is solvable in polynomial time.

1. INTRODUCTION

In a conventional wireless cellular system, base stations from

different cells communicate with their respective remote ter-

minals independently; signal processing is performed on a

per-cell basis, while the out-of-cell interference is treated as

background noise. This architecture often causes undesir-

able service outages to users situated near cell edges where

the out-of-cell interference can be severe. Since the con-

ventional intra-cell signal processing cannot effectively mit-

igate the impact of intercell interference, we are led to con-

sider coordinated base station beamforming across multiple

cells in order to improve the services to edge users. In this

paper, we focus on the downlink scenario where the base

stations are equipped with multi-antennas and we assume

that the channel state information is known. We consider

joint optimal beamforming across multiple base stations to

simultaneously improve the data rates of a given group of

cell edge users. We formulate this problem as the maxi-

mization of a system utility function (which balances user

fairness and average user rates), subject to individual power

constraints at each base station. We show that, for the sin-

gle carrier case and when the number of antennas at each

base station is at least two, the optimal coordinated beam-

forming problem is strongly NP-hard for both the harmonic

mean utility function and the proportional fairness utility

function. For the min-rate utility function, this problem is

solvable in polynomial time [7].

1.1. Related Work

Downlink beamforming has been studied extensively in the

single cell setup. For the multi-cell interference channel,

the reference [1] considered coordinated beamforming for

the minimization of total weighted transmitted power across

the base stations subject to individual SINR constraints at

the remote users. It turns out this problem can be trans-

formed into a second order conic programming. For the

maximization of weighted sum rates (or some other utility

functions) for an interference channel, the corresponding

optimization problem [2] is NP-hard except for the single

carrier case. In [3], a distributed beamforming approach is

proposed. Some recent work on coordinated beamforming

are given in [4, 5].

2. PROBLEM FORMULATION

Consider a cellular system in which there are K base staions

each equipped with L transmitter antennas. The K base

stations wish to transmit respectively to K mobile receivers

each having only a single antenna. Each base station can

direct a beam to its intended receiver in such a way that

the resulting interference to the other mobile units is small.

Consider the single carrier case, and let hji ∈ C
L denote L-

dimensional complex channel vector between base station j
and receiver i. Let vi ∈ C

L denote the beamforming vector

used by base station i and ui is a complex scalar denoting

the information signal for user i with E|ui|2 = 1. The trans-

mitter vector of jth base station is vjuj . Then the mathe-
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matical model can be described as

yi =
K∑

j=1

h†
ji (vjuj) + zi, i = 1, 2, ..., K, (1)

where yi is the signal received by user i and zi is the additive

white Gaussian complex noise with variance σ2
i /2 on each

of its real and imaginary components. It is easy to see that

the SINR of each user can be expressed as:

SINRi =
|h†

iivi|2
σ2

i +
∑

j �=i |h†
jivj |2

. (2)

Adopting an utility function, we can formulate the optimal

coordinated downlink beamforming problem as

max H(r1, r2, ...rK)

s.t. ri = log

(
1 +

|h†
iivi|2

σ2
i +

∑
j �=i |h†

jivj |2

)
,

‖vi‖2 ≤ Pi, i = 1, 2, ..., K,

(3)

where Pi denotes the power budget of base station i, and

H(·) denotes the system utility function which may be any

of the following

• Sum-rate utility: H1 =
1
K

∑K
i=1 ri.

• Proportional fairness utility: H2 =
(∏K

i=1 ri

)1/K

.

• Harmonic mean utility: H3 = K/
(∑K

i=1 r−1
i

)
.

• Min-rate utility: H4 = min1≤i≤K ri.

The above beamforming problem (3) is non-convex.

3. COMPLEXITY ANALYSIS

We now investigate the complexity status of the optimal co-

ordinated downlink beamforming problem (3) under vari-

ous different choices of system utility functions, and also

identify subclasses of the problem that are solvable in poly-

nomial time.

1) Maximization of Sum-Rate Utility: Consider the sys-

tem utility function H1 =
1
K

∑K
i=1 ri. When L = 1, the

original optimization problem (3) becomes the following:

max

K∑
i=1

ri

s.t. ri = log

(
1 +

si

γi +
∑

j �=i αjisj

)
,

0 ≤ si ≤ Pi, i = 1, 2, ..., K,

(4)

where si = ‖vi‖2, αji = ‖hji‖2/‖hii‖2 and γi = σ2
i /‖hii‖2.

Problem (4) is known to be NP-hard [2] and the proof is

based on a polynomial time reduction from the maximum

independent set problem.

2) Maximization of Harmonic Mean Utility: We now

study the complexity status of the optimal coordinated down-

link beamforming problem when the system utility function

is the harmonic mean utility.

Theorem 3.1 (Harmonic Mean Utility) For the harmonic
mean utility function H3 = K/

(∑K
i=1 r−1

i

)
, the optimal

coordinated downlink beamforming problem can be trans-
formed into a convex optimization problem when L = 1, but
is strongly NP-hard when L ≥ 2.

The first part of Theorem 3.1 was proved in [2]. The NP-

hardness proof for L ≥ 2 is quite involved and we out-

line its main steps below for the special case when each re-

ceiver is equipped with two antennas. The single receive

antenna case will be treated in the expanded version of this

paper. We first notice that, because of the concavity of the

harmonic utility function with respect to each beamforming

vector vi, the maximizing solution must be on the bound-

ary of the feasible solution. In this way, we can constrain

the optimal beamforming vectors to be taken from two or-

thogonal vectors ha or hb.

Lemma 3.1 The function (log(1 + (σ2 + x)−1)−1 is con-
cave in x ≥ 0 for any σ �= 0, and ha = (1, 0), hb = (0, 1)
are the only global optimizers for the optimization problem

min (log(1 + (σ2 + x)−1)−1 + (log(1 + (σ2 + y)−1)−1

s.t. x + y = 1 > 0, x ≥ 0, y ≥ 0.

The NP-hardness proof of Theorem 3.1 is based on a re-

duction from a variant of the 3SAT [6] problem. To describe

this variant, we need to define the UNANIMITY property

and the NAE (stands for “not-all-equal”) property of a dis-

junctive clause.

Definition 3.1 A disjunctive clause satisfies the UNANIM-
ITY property if all literals in the clause have the same value
(whether it is the true or the false value). Otherwise it is
said to be satisfied in the NAE sense.

Clearly, a disjunctive clause must be satisfied if it is to have

the NAE property. We define the MAX-UNANIMITY-SAT

problem as follows: given a positive integer M and a SAT

problem consisting of m disjunctive clauses defined on n
boolean variables, we ask whether there exists a truth as-

signment to the boolean variables such that the number of

disjunctive clauses with UNANIMITY property is no less

than M . If a MAX-UNANIMITY-SAT problem has two

literals in each disjunctive clause, then it is called a MAX-

2UNANIMITY-SAT problem. Similarly, we can define the

NAE-SAT problem: given an integer number M and a 3-

SAT problem, we ask whether at least M of the clauses can
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be satisfied in the NAE sense. The NAE-SAT problem is

known to be NP-complete [6]. The following lemma holds.

Lemma 3.2 MAX-2UNANIMITY-SAT is NP-complete.

Proof We construct a polynomial time reduction from the

NAE-SAT problem. It can be checked that MAX-2UNANIMITY-

SAT is in the class NP. Given a clause with 3 literals, c =
x ∨ y ∨ z, let us construct 6 clauses with 2 literals:

R(c) : x ∨ ȳ, x ∨ z̄, y ∨ x̄, y ∨ z̄, z ∨ x̄, z ∨ ȳ. (5)

It can be checked that R(c) has the following properties:

1. The number of clauses in R(c) with all literals having

same value is at most 4.

2. The clause c is satisfied in the NAE sense if and only if

the number of clauses in R(c) with UNANIMITY property

is 4.

Now given any instance φ of NAE-SAT, we construct an

instance R(φ) as follows: for each clause ci = α∨ β ∨ γ of

φ, we add R(φ) the six clauses in (5), with x, y, z replaced

with α, β, γ. If φ has m clauses, then R(φ) will have

6m clauses. Let M = 4m. Then properties 1 and 2 imply

that at least M = 4m clauses in R(φ) can be satisfied with

UNANIMITY property if and only if φ is satisfied in the

NAE sense. This reduction is in polynomial time.

Proof of Theorem 3.1: Given any instance of MAX-

2UNANIMITY-SAT problem φ with clauses c1, c2, ..., cm,

variables x1, x2, ..., xn and an integer M , where cj =
αj1∨αj2 , with αj1 , αj2 taken from {x1, x̄1, x2, x̄2, ..., xn, x̄n}.

Define

hj1 =
{

ha, if αj1 = xi for some i
hb, if αj1 = x̄i for some i

h̄j1 =
{

hb, if αj1 = xi for some i
ha, if αj1 = x̄i for some i

The vectors hj2 and h̄j2 are defined similarly. We construct

below an instance1 of (3) with a total of K = 2m+n users:

min

n∑
i=1

1
ri

+
m∑

j=1

(
1

rcj1

+
1

rcj2

)

s.t. ri = log
(
1 + Mi‖vi‖2

)
, ‖vi‖2 ≤ 1, 1 ≤ i ≤ n,

rcj1
= log

(
1 +

|h†
cj

vcj |2
σ2 + |h†

j1
vj1 |2 + |h†

j2
vj2 |2

)
,

rcj2
= log

(
1 +

|h†
cj

vcj
|2

σ2 + |h̄†
j1

vj1 |2 + |h̄†
j2

vj2 |2

)
,

‖vcj
‖2 ≤ 1, j = 1, 2, ..., m.

(6)

1Strictly speaking, this construction requires two antennas per receiver

since there is a signal power term ‖vi‖2 (norm squared) in the definition

of ri, which is written as the sum of two squared components (vi is two

dimensional), not a single squared term as in (3).

where σ2 = 1, Mi is a small positive number (to be speci-

fied later), and hcj is a unit-norm vector ‖hcj‖ = 1. Notice

that there are m variables vcj
, one per clause in φ. In ad-

dition, there are n variables vi, one per boolean variable

xi. Since each variable vcj
appears only once in rcj1

and

rcj2
, it follows that vcj = hcj at global minimum. The cor-

respondence between MAX-2UNANIMITY-SAT problem

and the coordinated optimal downlink beamforming prob-

lem (6) is listed in Table 1. Note that rcj1
can be obtained

from clause cj according to Table 1 and rcj2
can be obtained

from rcj1
by swapping ha with hb. We claim that the num-

Table 1. Variable Correspondence

MAX-2UNANIMITY-SAT problem (6)

variable xi vector vi

clause cj rates rcj1
and rcj2

literal xi |h†
avi|2

literal x̄i |h†
bvi|2

ber of clauses in φ satisfied in the UNANIMITY sense is at

least M if and only if the minimum of (6) is no greater than

M (1/log(2) + 1/log(4/3))

+ (m − M) (2/log(3/2)) +
n∑

i=1

1/log(1 + Mi).
(7)

The above reduction is in polynomial time. We prove that

for sufficiently small Mi, say Mi = 1/(144m), i = 1, 2, ..., n,

each global minimizer v∗
1, v∗

2, ..., v∗
K of (6) must have

unit-norm ‖v∗
i ‖ = 1, i = 1, 2, ..., n. To argue ‖v∗

1‖ = 1,

consider the optimization problem with only v1 as variable

and with the constraint ‖v1‖ ≤ 1 dropped:

min 1/log
(
1 + M1‖v1‖2

)
+

∑
j∈S1

1/log
(
1 + 1/(σ2

j2
+ v2

11)
)

+
∑

j∈S1
1/log

(
1 + 1/(σ̄2

j2
+ v2

12)
) (8)

where S1 = { j | x1 ∈ cj}
⋃ { j | x̄1 ∈ cj}, σ2

j2
= 1 +

|h†
j2

vj2 |2, σ̄2
j2

= 1+ |h̄†
j2

vj2 |2, assuming cj = x1∨yj2 and

j ∈ S1. Denote v1 = (v11, v12)T . The necessary optimality

condition of (8) is

−2M1

log(1 + M1‖v1‖2)2(1 + M1‖v1‖2)
v1

+

⎛
⎜⎜⎜⎜⎝

∑
j∈S1

2v11/(σ2
j2

+ v2
11 + 1)/(σ2

j2
+ v2

11)

log
(
1 + 1/

(
σ2

j2
+ v2

11

))2

∑
j∈S1

2v12/(σ̄2
j2

+ v2
12 + 1)/(σ̄2

j2
+ v2

12)

log
(
1 + 1/

(
σ̄2

j2
+ v2

12

))2

⎞
⎟⎟⎟⎟⎠

= 0.
(9)
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Table 2. COMPLEXITY STATUS OF OPTIMAL COORDINATED DOWNLINK BEAMFORMING
����������Problem

Utility
Sum-Rate Proportional Fairness Harmonic Mean Min-Rate

L = 1, any K Strongly NP-hard [2] Convex [2] Convex [2] Poly. time Algorithm [2, 7]

L ≥ 2, any K Strongly NP-hard Strongly NP-hard Strongly NP-hard Poly. time Algorithm [2, 7]

It can be checked that if M1 ≤ 1/(144m), (9) will never

hold. Thus, when Mi ≤ 1/(144m), the minimizers of (6)

must satisfy ‖v∗
i ‖ = 1.

Next, we prove the equivalence of MAX-2UNANIMITY-

SAT and (6). In fact, as the solution has property ‖v∗
i ‖ =

1, i = 1, 2, ..., n, (6) can be transformed into

min

m∑
j=1

1/log
(

1 +
1

1 + yj1 + yj2

)

+
m∑

j=1

1/log
(

1 +
1

1 + zj1 + zj2

)
s.t. yi + zi = 1, yi ≥ 0, zi ≥ 0, ∀i.

(10)

where cj = αj1 ∨ αj2 defines the indices j1 and j2, and

yj�
= |h†

j�
vj�

|2 and zj�
= |h̄†

j�
vj�

|2, � = 1, 2. From

Lemma (3.1), the objective of (10) is concave for each pair

of (yi, zi), it follows that the minimizer of (10) must be at

(0, 1) or (1, 0) for each pair of (yi, zi). Substituting this

form (yi, zi) into the objective function, we see that the

minimum of (10) is M (1/log(2) + 1/log(4/3)) + (m −
M) (2/log(3/2)), where M is the largest number of clauses

with UNANIMITY property (i.e., either yj1 = yj2 = 0
or zj1 = zj2 = 0). Therefore, the number of clauses in

φ which is satisfied in the UNANIMITY sense is greater

than or equal to M if and only if (7) holds. This completes

the polynomial reduction from MAX-2UNANIMITY-SAT

problem to the optimal coordinated beamforming problem

(3) with the harmonic mean utility function.

3) Maximization of Proportional Fairness Utility: Like

the harmonic mean utility, we have the following hardness

result.

Theorem 3.2 (Proportional Fairness Utility) For the pro-

portional fairness utility function H2 =
(∏K

i=1 ri

)1/K

, the
optimal coordinated downlink beamforming problem can
be transformed into a convex optimization problem when
L = 1 and is strongly NP-hard when L ≥ 2.

The first part of Theorem 3.2 is proved in [2]. For the

second part, the argument is similar to that of Theorem 3.1.

For space reasons, we omit the details.

4) Maximization of Min-Rate Utility: Let the system

utility function be given by H = H4. In this case, the prob-

lem can be solved in polynomial time for arbitrary L and

K [7]. In fact the problem (3) becomes

max r

s.t. r ≤ log

(
1 +

|h†
iivi|2

σ2
i +

∑
j �=i |h†

jivj |2

)
,

‖vi‖2 ≤ Pi, i = 1, 2, ...,K,

(11)

Given a r̄ ≥ 0, we can efficiently check if there exists vi

such that the constraints in (11) are satisfied. A bisection

technique [7] with each step solving a second order cone

feasibility problem is proposed for (11).
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