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Abstract—For a general MIMO interference channel, we
can determine the feasibility of linear interference alignment
via minimizing the leakage interference. This paper gives a
complete complexity characterization of the leakage interference
minimization problem. It is shown that, when each transmitter
(receiver) is equipped with at least three antennas and each
receiver (transmitter) is equipped with at least two antennas,
the problem of checking whether the interference in the network
can be perfectly aligned is strongly NP-hard. Moreover, when
each transmit/receive node is equipped with two or more anten-
nas, leakage interference minimization can not be solved (even
approximately) in polynomial time, unless P = NP.

Index Terms — Complexity analysis, interference align-
ment, leakage interference minimization.

I. INTRODUCTION

Interference alignment is shown to achieve maximum spatial
degrees of freedom for a multi-user interference network with
time-varying/frequency-selective channel coefficients at high
SNR [1]. The idea is to appropriately choose the transmit
beamforming directions so that the interference signals at each
receiver will lie in a low-dimensional interference subspace.
In this way, each receiver can successfully extract the desired
signal as long as it lies outside the interference subspace. An
improved interference alignment scheme is proposed in [2] to
achieve a higher multiplexing gain in a single-input single-
output (SISO) interference channel for any number of channel
realizations.

Assuming perfect channel state information (CSI) is known,
an important open problem is to determine the feasibility of
linear interference alignment for constant multi-input multi-
output (MIMO) interference networks. Reference [3] shows
that the interference alignment problem is almost surely
feasible for proper systems and almost surely infeasible for
improper systems. A constructive proof of achievability of in-
terference alignment is given in [4] for (N + 1)-user constant
MIMO channel with each node equipped with N antennas.
Distributed algorithms are proposed in [5], [6], [7] for in-
terference alignment and they appear to work well in small
networks. In particular, the leakage interference is minimized
in [5] in order to achieve interference alignment.

In this paper, we provide a complete complexity analysis
of the leakage interference minimization problem. Let Nk

and Mk denote the number of antennas of transmitter k and
receiver k, respectively. We show that if min{Mk, Nk} ≥ 2
and Mk +Nk ≥ 5 for all k, then the problem of determining if
the leakage interference can be made zero for a given degrees
of freedom at each receiver is strongly NP-hard. This result
extends the complexity results of [8]. Furthermore, we show
that the minimization of leakage interference is strongly NP-
hard even when mink{Mk, Nk} ≥ 2. These results suggest
that minimizing leakage interference to achieve interference
alignment is computationally challenging when the number of
users in the system increases.

We adopt the following notations in this paper. Lowercase
boldface and uppercase boldface are used for vectors and
matrices. For given matrix H, Rank(H) and HT denote the
rank and the transpose of H, respectively. Id represents the
d × d identity matrix. We use ek

n to denote a n-dimensional
column vector with its k-th element being one and other
elements zero. Finally, we use K to denote the set of users.

II. PROBLEM FORMULATION

Consider a MIMO interference network with K pairs of
users, so we have K = {1, 2, ..., K}. Let Hkj ∈ R

Mk×Nj

represent the channel matrix of real coefficients between
transmitter j and receiver k (all the complexity results in this
paper can extend to complex channel matrices). Let dk denote
the degrees of freedom achieved by the k-th transmitter-
receiver pair.

Interference Alignment. Given dk (k ∈ K) and Hkj ∈
R

Mk×Nj (k, j ∈ K), find transmit precoding matrices Vk ∈
R

Nk×dk (k ∈ K) and zero-forcing interference suppression
matrices Uk ∈ R

Mk×dk (k ∈ K) with Rank(Uk) =
Rank(Vk) = dk for all k ∈ K such that

UT
kHkjVj = 0dk×dj

, ∀ k �= j; (1)

Rank
(
UT

kHkkVk

)
= dk, ∀ k ∈ K. (2)

Reference [5] explains why condition (2) is automatically
satisfied almost surely if the channel matrices have no special
structures. Supposing that Uk (k ∈ K) and Vk (k ∈ K),
satisfying condition (1), have been found, condition (2) will
be satisfied with probability one if all the elements of channel
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matrices are randomly and independently generated from a
continuous distribution. Therefore, we focus on the problem
of finding Uk and Vk such that{

UT
kHkjVj = 0dk×dj ,∀ k �= j;

Rank(Uk) = Rank(Vk) = dk,∀ k ∈ K.
(3)

Leakage Interference Minimization. An effective method of
checking the feasibility of problem (3) and finding its solution
is via the leakage interference minimization (LIM) [5], which
is given by

min
∑
k∈K

∑
j �=k

‖UT
kHkjVj‖2

s.t. UT
kUk = Idk

, VT
kVk = Idk

, k ∈ K.

(4)

The conditions Rank(Uk) = Rank(Vk) = dk can be rewritten
as UT

kUk = VT
kVk = Idk

. The optimal value of (4) is zero
if and only if there exists a feasible interference alignment
solution to (3).

The decision version of optimization problem (4), denoted
by LIM(M ), is to decide whether there exists a feasible point
at which the objective value of (4) is not greater than M ,
where M is the given threshold value. The answer to the
decision problem is binary, true or false. In particular, a true
(or false) answer to problem LIM(0) corresponds to precisely
the existence (or non-existence) of a feasible interference
alignment solution to problem (3) for the given tuple of
degrees of freedom d = (d1, d2, ..., dK)T.

III. COMPLEXITY ANALYSIS

We now investigate the complexity status of problem
LIM(M ) and its special case LIM(0) for the multi-user MIMO
interference network. We refer the interference space Ik at
receiver k to the span of all interference vectors from other
users as follows:

Ik = Span

⎧⎨
⎩

⋃
j �=k

dj⋃
n=1

HkjVn
j

⎫⎬
⎭ , k ∈ K,

where Vn
j is the n-th column of Vj .

In general, to show the NP-hardness of a continuous
feasibility (or optimization) problem, we need to transform
a known NP-complete discrete problem to it. To facilitate
this transformation, it is necessary to induce certain discrete
structure to its solutions. In this paper, the 3SAT and MAX-
2SAT problems are employed as our NP-complete problem
and special Hkj are chosen to guarantee that the optimal
transmit beamforming vector vk can be only e1

2 or e2
2.

Theorem 3.1: Problem LIM(0) is strongly NP-hard when
min {Mk, Nk} ≥ 2 and Mk + Nk ≥ 5,∀ k ∈ K. Thus, in
this case, the problem of checking the achievability of a given
tuple of degrees of freedom, d = (d1, d2, ..., dK)T, is strongly
NP-hard.

Proof: Without loss of generality, we consider the case
Mk = 3, Nk = 2, k ∈ K. The proof is based on a
polynomial time transformation from 3SAT problem, which is
NP-complete [9]. The 3SAT problem is described as follows:

given m disjunctive clauses (Recall that for a given set of
Boolean variables, a literal is defined as either a Boolean
variable itself or its negation, while a disjunctive clause refers
to a logical expression consisting of the logical “OR” of
literals) defined on n Boolean variables such that each clause
contains exactly three literals, the question is to check whether
there exists a truth assignment for these Boolean variables such
that all clauses are satisfied. Specifically, we claim that the
problem of checking the minimum value of

min
∑
k∈K

∑
j �=k

(
uT

kHkjvj

)2

s.t. ‖uk‖ = 1, ‖vk‖ = 1, k ∈ K
(5)

is zero or not is strongly NP-hard, where Hkj ∈ R
3×2 and the

given tuple of degree of freedom is d = (1, 1, ..., 1)T. In this
case, all matrices Uk and Vk in (4) reduce to column vectors
uk and vk = (xk, yk)T, respectively. Intuitively, problem
(5) is a special class of homogeneous quartic polynomial
minimization problem subject to unit-norm constraints, so it
is strongly NP-hard. Next, we show it indeed is.

Given any instance of 3SAT problem consisting of m dis-
junctive clauses c1, c2, ..., cm defined on n Boolean variables
x1, x2, ..., xn, we construct a MIMO interference channel with
m+n users, where Boolean variable xi corresponds to the i-th
user, including “variable transmitter” i (V-TXi) and “variable
receiver” i (V-RXi), and clause cj corresponds to the (n+ j)-
th user, including “clause transmitter” j (C-TXj) and “clause
receiver” j (C-RXj). Hence, K = {1, 2, ..., n + m}.

Now, we construct the crosstalk channel matrices Hkj

among these m + n users. To this aim, we define

HA = e1
3

(
e1
2

)T
, HB = e1

3

(
e2
2

)T
, HC = e2

3

(
e1
2

)T
,

HD = e2
3

(
e2
2

)T
, HE = e3

3

(
e1
2

)T
, HF = e3

3

(
e2
2

)T
.

For user k = 1, 2, ..., n, let Hkj = 0, ∀ j ∈ K\{k}; and for
user k = n + 1, n + 2, ..., n + m, let Hkj = 0 except for the
following three interference matrices

Hkj =
{

HB , if απ(k) = xj for some j;
HA, if απ(k) = x̄j for some j,

Hkj =
{

HD, if βρ(k) = xj for some j;
HC , if βρ(k) = x̄j for some j,

Hkj =
{

HF , if γτ(k) = xj for some j;
HE , if γτ(k) = x̄j for some j,

(6)

where ck−n = απ(k) ∨ βρ(k) ∨ γτ(k), α, β, and γ are taken
from {x, x̄} and π, ρ, and τ are mappings from {n + 1, n +
2, ..., n+m} to {1, 2, ..., n}. The constructed special instance
of (5) with a total of m + n users is given by

min
n+m∑

k=n+1

∑
f∈{π,ρ,τ}

(
uT

kHkf(k)vf(k)

)2

s.t. ‖uk‖ = 1, ‖vk‖ = 1, k ∈ K.

(7)

This is because the crosstalk interference matrices between all
transmitters and V-RXi (i = 1, 2, ..., n) are zero, so all of V-
RXs are interference-free; while C-RXj (j = 1, 2, ..., m) in-
deed suffers from crosstalk interferences from three V-TXs.
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Fig. 1. An illustration of the constructed MIMO interference channel with
c1 = x1∨x̄2∨x3, where all of V-TX1, V-TX2, and V-TX3 are equipped with
two antennas while C-RX1 is equipped with three antennas. The solid arrows
represent the channel matrices between the corresponding V-TXs and C-RX.
According to (6), the channel matrices between V-TX1, V-TX2, and V-TX3

and C-RX1 are HB , HC , and HF , respectively. When the transmitted signal
vector at V-TX1 is v1 = (x1, y1)T, the signal received at C-RX1 will be
y1e1

3, so we only connect the second antenna of V-TX1 with the first antenna
of C-RX1. Similar connections apply to other V-TXs.

Furthermore, problem (7) degenerates into

min
n+m∑

k=n+1

∑
f∈{π,ρ,τ}

(
uT

kHkf(k)vf(k)

)2

s.t. ‖vk‖ = 1, k = 1, 2, ..., n,

‖uk‖ = 1, k = n + 1, n + 2, ..., n + m,

(8)

which is a problem of checking whether there exist proper
vk (k = 1, 2, ..., n) and uk (k = n + 1, n + 2, ..., n + m)
such that all of C-RXs can achieve interference alignment.
An example of the constructed MIMO interference channel is
depicted in Fig. 1, where c1 = x1 ∨ x̄2 ∨ x3.

Next, we show that the 3SAT problem is satisfied if and only
if the minimum value of (8) is zero.

If there is a truth assignment to all the Boolean variables
x1, x2, ..., xn, which makes all of clauses in the 3SAT problem
satisfied, we prove that the optimal value of (8) is zero. Let
yk = 1 − xk (k = 1, 2, ..., n) and we get a feasible vk

(either e1
2 or e2

2) for problem (8). We claim these beamformers
can make the dimension of the interference space at each
receiver k (k = n + 1, n + 2, ..., n + m) at most two. As
an illustrative example, suppose that c1 = x1 ∨ x̄2 ∨ x3 is
satisfied. Therefore, at least one of the following facts x1 = 1,
x2 = 0, or x3 = 1 hold true. Consider receiver n + 1. The
interference vectors at receiver n + 1 are as follows:

Hn+1,1v1 = HBv1 = y1e1
3,

Hn+1,2v2 = HCv2 = x2e2
3,

Hn+1,3v3 = HF v3 = y3e3
3.

Thus, the dimension of the interference space In+1 at receiver
n+1 is at most two and un+1 can be chosen as its orthogonal
complement such that the leakage interference at receiver n+1
is zero. The same argument can be used for other users.

Conversely, assuming that the minimum value of (8) is zero,
we argue all clauses can be satisfied. Let ṽk = (x̃k, ỹk)T (k =
1, 2, ..., n) be a solution to (8). We make new beamforming
vectors vk = (xk, yk)T (k = 1, 2, ..., n) as follows:

vk =

{
e1
2, if x̃k �= 0,

e2
2, if x̃k = 0.

(9)

First, the constructed vk is feasible to (8). Furthermore, at
each receiver the dimension of the interference space with
newly constructed beamforming vectors (9) is not greater than
the dimension of the interference space with beamforming
vector ṽk. As a result, we can choose proper uk (k =
n + 1, n + 2, ..., n + m) such that the objective value of
(8) at point (9) is zero. Actually, (9) also gives rise to a
truth assignment to Boolean variables x1, x2, ..., xn. Next, we
prove by contradiction that this truth assignment (9) can make
all clauses in the 3SAT problem satisfied. Take the previous
example. If c1 = x1 ∨ x̄2 ∨ x3 is not satisfied, it follows that
x1 = 0, x2 = 1, and x3 = 0. Due to (9), we have y1 = 1 and
y3 = 1, and the interference space at receiver n + 1 is

In+1 = Span{y1e1
3, x2e2

3, y3e3
3} = Span{e1

3, e
2
3, e

3
3}.

Thus, the dimension of the interference space is three at
receiver n + 1, and the optimal value of (8) is greater than
or equal to one, which is a contradiction. As a result, the
3SAT problem is satisfied.

Finally, this transformation is in polynomial time. Since the
3SAT problem is NP-complete, we can conclude that problem
LIM(0) is strongly NP-hard.

If letting

Hkk =

⎛
⎝ 1 1

1 1
1 1

⎞
⎠ , k ∈ K,

we can show the problem of checking the achievability of a
given tuple of degrees of freedom is also strongly NP-hard.

Theorem 3.1 immediately implies that the problem LIM(M )
is strongly NP-hard for any M ≥ 0 when min {Mk, Nk} ≥ 2,
and Mk + Nk ≥ 5, ∀ k ∈ K. Furthermore, it also im-
plies that there does not exist a polynomial time constant
factor approximation algorithm for problem LIM(M ) unless
NP=P. Specially, assume such an algorithm A exists. Then
for any instance of (5), we can apply A to this instance and
would obtain a bound I such that CI ≤ Imin ≤ I, where
Imin is the optimal value of (5) and 0 < C ≤ 1 is a constant
factor. This further implies that Imin = 0 if and only if I = 0.
Consequently, we can use the approximation algorithm A to
decide whether the minimal value of (5) would be zero or not
in polynomial time, contradicting Theorem 3.1.
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A relaxation [10] of interference alignment problem (3) is⎧⎨
⎩

∑
j �=k

‖UT
kHkjVj‖2 ≤ εk, ∀ k ∈ K;

UT
kUk = Idk

, VT
kVk = Idk

, ∀ k ∈ K,

(10)

where εk ≥ 0 (k ∈ K) are the given interference tolerances.
Our analysis shows that (10) is still strongly NP-hard.

Corollary 3.1: It is strongly NP-hard to check the feasi-
bility of interference alignment relaxation problem (10) when
min {Mk, Nk} ≥ 2 and Mk + Nk ≥ 5, ∀ k ∈ K.

Proof: To verify the corollary we need to establish a poly-
nomial time transformation from 3SAT problem to relaxation
problem (10). We construct a special instance of problem (10)
based on the 3SAT problem as follows:⎧⎪⎨

⎪⎩
∑

f∈{π,ρ,τ}

(
uT

kHkf(k)vf(k)

)2 ≤ εk, ∀ k ∈ K;

‖uk‖ = 1, ‖vk‖ = 1, ∀ k ∈ K,

(11)

where Hkj (k �= j ∈ K) are the same as those in the proof of
Theorem 3.1 and 0 ≤ εk < 0.5 (k ∈ K) .

We claim that there exists a truth assignment such that the
3SAT problem is satisfied if and only if there exists a feasible
solution to (11).

The fact that the 3SAT problem is satisfied directly implies
that (11) is feasible. For the converse part, we prove that if
ûk, v̂k = (x̂k, ŷk)T (k ∈ K) is feasible to problem (11), then
all the clauses in the 3SAT problem can be made satisfiable.
Receive beamformer ûk could be e1

3, e2
3, or e3

3. This is
because for any choice of v̂k,∑

f∈{π,ρ,τ}
Hkf(k)v̂f(k)v̂T

f(k)H
T
kf(k), k ∈ K,

are always diagonal and the optimal ûk (k ∈ K) is the eigen-
vector corresponding to the smallest eigenvalue. Construct a
group of new transmit-receive beamformers

uk = ûk, vk =

{
e1
2, if |x̂k| ≥ |ŷk|;

e2
2, if |x̂k| < |ŷk|.

(12)

We can show∑
f∈{π,ρ,τ}

(
uT

kHkf(k)vf(k)

)2
= 0, ∀ k ∈ K, (13)

which implies that the 3SAT problem can be made satisfiable
from the proof of Theorem 3.1. In fact, assume that (13) is
not true, then there exists k0 and j0 ∈ {π(k0), ρ(k0), τ(k0)}
with

uT
k0

Hk0j0vj0 = 1. (14)

Combining (12) and (14), we have(
ûT

k0
Hk0j0 v̂j0

)2 ≥ 0.5.

Therefore,∑
f∈{π,ρ,τ}

(
ûT

k0
Hk0f(k0)v̂f(k0)

)2 ≥ (
ûT

k0
Hk0j0 v̂j0

)2 ≥ 0.5,

which contradicts the fact that ûk, v̂k (k ∈ K) are feasible to
(11).
For the scenario where each node is equipped with exactly
two antennas, we have the following results.

Theorem 3.2: When min {Mk, Nk} ≥ 2, ∀ k ∈ K, prob-
lem LIM(M ) is strongly NP-hard. However, problem LIM(0)
is polynomial time solvable when Mk = Nk = 2, ∀ k ∈ K.

Proof: The second part of the theorem is due to [8], where
the authors transform the feasibility problem LIM(0) in poly-
nomial time into an instance of 2SAT problem [9]. The 2SAT
problem differs from the 3SAT problem in the respect that each
of its clauses contain only two literals. Since 2SAT problem
is known to be solvable in polynomial time, problem LIM(0)
is polynomial time solvable when Mk = Nk = 2, ∀ k ∈ K.

Next, we prove the first part of Theorem 3.2. Similar
to the proof of Theorem 3.1, we use a polynomial time
transformation from the MAX-2SAT problem [9]. The MAX-
2SAT problem is, given a set of disjunctive clauses, each with
two literals in it, and an integer M , we are asked whether there
is a truth assignment that satisfies at least M of the clauses.

Given any instance of the MAX-2SAT problem consisting
of m disjunctive clauses c1, c2, ..., cm defined on n Boolean
variables x1, x2, ..., xn, we construct a (m + n)-user MIMO
interference channel, where Boolean variable xi corresponds
to the i-th user and clause cj corresponds to the (n + j)-th
user, with a set of crosstalk channel matrices Hkj ∈ R

2×2. To
this end, denote vk = (xk, yk)T (k ∈ K) and

HA = e1
2

(
e1
2

)T
, HB = e1

2

(
e2
2

)T
,

HC = e2
2

(
e1
2

)T
, HD = e2

2

(
e2
2

)T
.

In particular, for k = 1, 2, ..., n, let Hkj = 0, ∀ j �= k; and
for k = n + 1, n + 2, ..., n + m and 1 ≤ j ≤ n, let Hkj = 0
except for the following two crosstalk channel matrices

Hkj =
{

HB , if απ(k) = xj for some j;
HA, if απ(k) = x̄j for some j,

Hkj =
{

HD, if βρ(k) = xj for some j;
HC , if βρ(k) = x̄j for some j,

where ck−n = απ(k) ∨ βρ(k), α and β are taken from {x, x̄}
and π and ρ are mappings from {n + 1, n + 2, ..., n + m} to
{1, 2, ..., n}. The constructed problem is

min
n+m∑

k=n+1

∑
f∈{π,ρ}

(
uT

kHkf(k)vf(k)

)2

s.t. ‖vk‖ = 1, k = 1, 2, ..., n,

‖uk‖ = 1, k = n + 1, n + 2, ..., n + m.

(15)

Problem (15) is a special instance of (4). We show that there
exists a truth assignment such that at least M of the clauses
are satisfied if and only if the optimal value of (15) is less
than or equal to m − M.

If there exists a truth assignment such that M of the clauses
are satisfied, we prove that the optimal value of (15) is less
than or equal to m − M. Set yk = 1 − xk (k = 1, 2, ..., n).

- For a satisfied clause j0, the interference space In+j0 at
receiver n+j0 is {0}, {

e1
2

}
, or

{
e2
2

}
, so we can choose
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TABLE I
COMPLEXITY STATUS OF THE PROBLEM LIM(0) IN THE MULTI-USER MIMO INTERFERENCE CHANNEL

�����������Rx antennas
Tx antennas

Nk = 1 Nk = 2 Nk ≥ 3

Mk = 1 Polynomial Time Solvable Polynomial Time Solvable Poly. Time Solvable
Mk = 2 Polynomial Time Solvable Polynomial Time Solvable [8] Strongly NP-hard
Mk ≥ 3 Polynomial Time Solvable Strongly NP-hard Strongly NP-hard

un+j0 as the orthogonal complement of In+j0 to make
the leakage interference at receiver n + j0 zero;

- For an unsatisfied clause j0, the interference space In+j0

is Span
{
e1
2, e2

2

}
, any choice of feasible receive beam-

forming vector un+j0 makes the leakage interference at
receiver n + j0 one.

Then the optimal value of (15) is not greater than m−M, since
we have already found a feasible solution uk,vk at which the
objective value of (15) is m − M.

Conversely, assuming that the optimal value of (15) is not
greater than m − M, we claim at least M of the clauses can
be satisfied. Let vk = (xk, yk)T and uk be the solution to
problem (15). For any choice of ûk,∑
f∈{π,ρ}

HT
kf(k)ûf(k)ûT

f(k)Hkf(k), k = n+1, n+2, ..., n+m,

are always diagonal and the optimal vk in (15) is the eigen-
vector corresponding to the smallest eigenvalue, it follows
that the optimal vk should be either e1

2 or e2
2. The solution

{vk}n
k=1 also gives a truth assignment to the Boolean variables

x1, x2, ..., xn, and we claim by contradiction that this truth
assignment make at least M clauses satisfied. Suppose that less
than M clauses are satisfied. From the first part of the argu-
ments, the objective value at newly constructed beamformers
uk,vk would be greater than or equal to m+1−M, yielding
a contradiction.

Finally, the transformation is in polynomial time. Due to
NP-completeness of the MAX-2SAT problem, the leakage
interference minimization problem (15) is strongly NP-hard,
so is problem LIM(M ).

Consider problem LIM(M ) in the multi-input single-output
(MISO) channel. In this case, problem (4) decomposes into K
independent eigenvalue problems:

min Tr

⎛
⎝VT

k

⎛
⎝∑

j �=k

HT
jkHjk

⎞
⎠Vk

⎞
⎠

s.t. VT
kVk = Idk

.

(16)

Therefore, problem LIM(M ) is polynomial time solvable in
this case, so is problem LIM(0). Similar argument applies to
the single-input multi-output (SIMO) interference network.

Table I summarizes the complexity status of problem
LIM(0), i.e., the problem of checking whether the network
can be made interference-free or not with a given tuple of
degrees of freedom in the multi-user MIMO interference
channel. It shows that the complexity of the feasibility problem
really depends on the number of antennas at transmit/receive

nodes. In general, when the number of antennas at each
transmit/receive node is at least two, the problem LIM(0)
is strongly NP-hard except the scenario where each node is
equipped with exactly two antennas.

IV. CONCLUSION

Leakage interference minimization is a useful transceiver
design approach for interference mitigation in a multi-user
communication system. This paper examines the computa-
tional complexity of leakage interference minimization for a
multi-user time-invariant MIMO channel. Our analysis sug-
gests that there are significant computational challenges in
this approach as the number of users in the system increases.
Therefore, when each node in the network is equipped with
multiple antennas and the number of users in the system is
large, we should focus attention to develop efficient algorithms
to find the suboptimal transmit/receive beamforming solution
instead of the globally optimal solution.
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