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Max-Min Fairness Linear Transceiver Design

for a Multi-User MIMO Interference Channel
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Abstract

Consider the max-min fairness linear transceiver design problem for a multi-user multi-input multi-

output (MIMO) interference channel. When the channel knowledge is perfectly known, this problem

can be formulated as the maximization of the minimum signal to interference plus noise ratio (SINR)

utility, subject to individual power constraints at each transmitter. We prove in this paper that, if the

number of antennas is at least two at each transmitter (receiver) and is at least three at each receiver

(transmitter), the max-min fairness linear transceiver design problem is computationally intractable as

the number of users becomes large. In fact, even the problem of checking the feasibility of a given set of

target SINR levels is strongly NP-hard. We then propose two iterative algorithms to solve the max-min

fairness linear transceiver design problem. The transceivers generated by these algorithms monotonically

improve the min-rate utility and are guaranteed to converge to a stationary solution. The efficiency and

performance of the proposed algorithms compare favorably with solutions obtained from the channel

matched beamforming or the leakage interference minimization.
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I. INTRODUCTION

With the rapid growth of wireless data traffic, multi-user interference has become a major

bottleneck that limits the performance of the existing wireless communication services. Math-

ematically, we can model such an interference-limited communication system as a multi-user

interference channel in which a number of linearly interfering transmitters simultaneously send

private data to their respective receivers. When the transmitters and receivers are equipped with

multiple antennas, one effective approach to mitigate multi-user interference is to jointly optimize

the physical layer transmit-receive beamforming strategies for all users, subject to individual

transmit power budget constraints. In general, the objective of joint transceiver optimization is

to maximize a certain system utility [1]–[12] such as the sum-rate utility, the proportional fairness

utility, among others.

The problem of system utility maximization for a MIMO interference channel has been a

subject of intensive research in recent years. For instance, the sum-rate utility maximization

problem has been shown to be NP-hard [9] and various algorithms have been proposed to find

a local optimal solution [8], [10], [11]. In particular, an iteratively weighted minimum mean

square error (WMMSE) approach was proposed in [11] to maximize the sum-rate utility for the

MIMO interfering broadcast channel. This algorithm also works for the harmonic mean utility

and the proportional fairness utility. For the latter two utilities, the corresponding problem has

been shown to be NP-hard even for cases involving three or more tones or for a multi-input

single-output (MISO) interference channel [9], [10].

In this paper, we design beamforming strategies by maximizing the min-rate utility (or e-

quivalently the minimum SINR utility). This approach places the highest emphasis on the user

fairness. This max-min fairness linear transceiver design has been studied in [1], [2] where

the authors proposed to approximate the optimum by minimizing the sum of equally weighted

inverse signal to interference ratios (SIR). For the single receive antenna case, the authors of

[3] further extended this approach by choosing suitable weight factors with which the weighted

sum of inverse SIR maximization can achieve optimal max-min fairness. Also, polynomial time
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algorithms capable of achieving global optimality have been proposed in [4] (also see [9], [10])

for the power control and/or transmit beamforming design problems, again for the single receive

antenna case. These results imply that the max-min SINR precoder design problem with fixed

receive beamformers can be solved in polynomial time [4]. Recently, it was shown in [13] that

the max-min beamforming design problem for the single-input multi-output (SIMO) interference

channel, where each transmitter is equipped with a single antenna, is polynomial time solvable.

When there are more than one receive antenna and one transmit antenna per user, the max-min

fairness linear transceiver design problem is not known to be solvable in polynomial time nor

is it known to be NP-hard.

The contributions of this paper are twofold. First, we characterize the computational complexi-

ty of the max-min fairness linear transceiver design problem for a multi-user MIMO interference

channel. We show that this problem is strongly NP-hard when the number of antennas is at least

two at each transmitter (receiver) and is at least three at each receiver (transmitter). In fact,

even the problem of checking the feasibility of a given set of target SINR levels is strongly NP-

hard. This intractability result is in contrast to the polynomial time solvability of the max-min

SINR beamforming problem in the MISO (or SIMO) case (i.e., the single receive or transmit

antenna case); see [4], [9], [10], [13], [14]. Second, we propose two efficient algorithms to design

linear transceivers according to the max-min fairness criterion. One algorithm, called exact cyclic

coordinate ascent algorithm (ECCAA), is based on the exact cyclic coordinate ascent strategy,

while the other algorithm, called inexact cyclic coordinate ascent algorithm (ICCAA), uses an

inexact cyclic coordinate ascent strategy. These two cyclic coordinate ascent algorithms (CCAA)

decompose the original problem into a series of simple convex subproblems which can be solved

efficiently. In particular, the transmit beamformers and receive beamformers are updated in an

alternate manner, each update being a convex subproblem. Moreover, we show that both ECCAA

and ICCAA are globally convergent to a stationary solution of the original problem. Finally, we

present simulation results to illustrate the effectiveness of the proposed algorithms and compare

them with the channel matched beamforming strategy and the leakage interference minimization

solution.

Notation: We adopt the following notations in this paper. Lower and upper case letters in bold

are used for vectors and matrices. For a given matrix H, we denote its transpose, Hermitian, and

inverse by HT , H†, and H−1, respectively. Similarly, we denote the transpose and Hermitian
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of a vector x by xT and x†. We use ∥x∥ to represent the Euclidean norm of the vector x.

The notation I represents the identity matrix of an appropriate size. We use ekn to denote a

n-dimensional column vector with its k-th element being one and other elements zero. The sets

of real numbers and complex numbers are denoted by R and C, respectively. Finally, we use

K , {1, 2, ..., K} to denote the set of users.

II. PROBLEM FORMULATION

Consider a K-user MIMO interference channel where the k-th transmitter and receiver are

equipped with Nk and Mk antennas, respectively. By “user” in this paper we mean a transmitter-

receiver pair (direct link). For the single-carrier channel, the received signal at receiver k is

yk = Hkkvksk +
∑
j ̸=k

Hkjvjsj + zk,

where Hkj ∈ CMk×Nj is the channel matrix from transmitter j to receiver k, vk ∈ CNk×1 is

the beamformer used by transmitter k, sk ∈ C is the symbol that transmitter k wishes to send

to receiver k, and zk ∈ CMk×1 is the additive white Gaussian noise (AWGN) with distribution

CN (0, σ2
kI). Each receiver uses a linear receive strategy and let uk ∈ CMk×1 be the receive

beamformer of receiver k. Then, the linearly processed signal at the k-th receiver is

ŝk = u†
kyk.

Treating interference as noise, the SINR of user k can be written as

SINRk =
|u†

kHkkvk|2

σ2
k∥uk∥2 +

∑
j ̸=k

|u†
kHkjvj|2

.

The linear transceiver design problem is formulated as

max
{u,v}

U(SINR1, SINR2, ..., SINRK)

s.t. ∥uk∥2 = 1, ∥vk∥2 ≤ Pk, k ∈ K,
(1)

where Pk denotes the power budget of transmitter k, U(·) denotes the system utility, u =

(u1;u2; ...;uK) and v = (v1;v2; ...;vK) . A special case of (1) is the popular sum-rate maxi-

mization problem [8]–[11], where

U(SINR1, SINR2, ..., SINRK) =
∑
k∈K

log (1 + SINRk) .
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Although the sum-rate maximization can achieve high network throughput, it sacrifices user

fairness since only part of users with good channel states are served; the other users with poor

channel conditions tend to be switched off and offered zero data rates. In this paper, we consider

a more fair strategy which maximizes the minimum SINR (equivalent to the minimum rate) of

all users in the system:

max
{u,v}

G(u,v) , min
k∈K

{SINRk}

s.t. ∥uk∥2 = 1, ∥vk∥2 ≤ Pk, k ∈ K.
(2)

Introducing an auxiliary variable

SINR = min
k∈K

{SINRk} ,

the minimum SINR maximization problem (2) can be rewritten as

max
{u,v}

SINR

s.t. SINR ≤ SINRk, ∥uk∥2 = 1, ∥vk∥2 ≤ Pk, k ∈ K.
(3)

The max-min fairness linear transceiver design problem (2) and (3) are nonconvex due to the

quadratic SINR constraints.

III. COMPUTATIONAL COMPLEXITY ANALYSIS

In practice, the number of antennas per user or base station is typically small, while the number

of users in the system can be quite large. This motivates us to study the intrinsic complexity of the

max-min fairness design problem (3) for increasing size of K, but with the number of antennas

per user or base station fixed. As discussed in the introduction, for the single transmit/receive

antenna case, this problem is polynomial time solvable. However, as we show in this section,

when there are multiple antennas at each node, even the problem of checking the feasibility of

a given set of target SINR levels is intrinsically intractable (strongly NP-hard in the sense of

computational complexity theory [15]). This further implies that the optimization problem (2)

and (3) are also intractable for large K (strongly NP-hard).

In computational complexity theory, a problem is said to be NP-hard if it is at least as hard as

any problem in the class NP (problems that are solvable in Nondeterministic Polynomial time).

The latter class includes such well known problems as checking if a given weighted graph has a

tour that visits each node exactly once and whose tour length is no more than a given threshold
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(the traveling salesman problem). NP-complete problems are the hardest problems in NP in the

sense that if any NP-complete problem is solvable in polynomial time, then each problem in

NP is solvable in polynomial time. The traveling salesman is a NP-complete problem. NP-hard

problems may not be in the class NP, but they are at least as hard as any NP-complete problem. It

is widely believed that there can not exist a polynomial time algorithm to solve any NP-complete

(or NP-hard) problem. Thus, once an optimization problem is shown to be NP-hard, we can no

longer insist on having an efficient algorithm that can find its global optimum in polynomial time.

Instead, we have to settle with less ambitious goals, such as finding high quality approximate

solutions or locally optimal solutions of the problem in polynomial time.

The standard way to prove an optimization problem is NP-hard is to establish the NP-

hardness of its corresponding decision problem. The latter is the problem to decide if the global

minimum of the optimization problem is below a given threshold or not. The output of a decision

problem is either true or false. The decision version of an optimization problem is usually in

the class NP. Clearly, the decision version of an optimization problem is always easier than the

optimization problem itself, since the latter further requires finding the global minimum value

and the minimizer. Thus, if we show the decision version of an optimization problem is NP-hard,

then the original optimization problem must also be NP-hard. For the max-min fairness design

problem, the corresponding decision problem is simple to check if a given set of SINR levels

can be satisfied by appropriate choices of linear transceivers.

In complexity theory, to show a decision problem B is NP-hard, we usually follow three steps:

1) choose a suitable known NP-complete decision problem A; 2) construct a polynomial time

transformation from any instance of A to an instance of B; 3) prove under this transformation

that any instance of problem A is true if and only if the instance of problem B is true.

We now establish the NP-hardness of the SINR feasibility problem: given a set of SINR levels

and power budgets, does there exist a transmit/receive beamforming strategy for all users in the

system so that each user’s SINR level is greater than or equal to its given SINR target? To

this end, we will transform an existing NP-complete problem, in our case the so-called 3SAT

problem [15], into the SINR feasibility problem. The 3SAT problem is described as follows:
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given m disjunctive clauses1 defined on n Boolean variables such that each clause contains

exactly three literals, the question is to check whether there exists a truth assignment for these

Boolean variables such that all clauses are satisfied.

Theorem 3.1: Given a target minimum SINR = ζ in (3), the problem of checking the

achievability of ζ is strongly NP-hard when each transmitter (receiver) is equipped with at

least three antennas and each receiver (transmitter) is equipped with at least two antennas.

Proof: Without loss of generality, we consider the case Mk = 3, Nk = 2, k ∈ K. The

proof is based on a polynomial time transformation from the 3SAT problem. Specifically, we

claim that the following feasibility problem is strongly NP-hard, i.e., checking whether there

exist beamforming vectors uk,vk (k ∈ K) such that all users’ SINR levels are greater than or

equal to the given SINR target ζ :

|u†
kHkkvk|2

σ2
k∥uk∥2 +

∑
j ̸=k

|u†
kHkjvj|2

≥ ζ, k ∈ K;

∥uk∥2 = 1, k ∈ K;

∥vk∥2 ≤ Pk, k ∈ K.

In the above, the channel matrices are real-valued and Hkj ∈ R3×2,∀ k, j ∈ K. We remark that

all the complexity results in this paper can extend to complex channel matrices.

Given any instance of the 3SAT problem consisting of m disjunctive clauses c1, c2, ..., cm

defined on n Boolean variables x1, x2, ..., xn, we construct below a MIMO interference channel

with m + n users, whereby the Boolean variable xi corresponds to the i-th user, consisting of

the “variable transmitter” i (V-TXi) and the “variable receiver” i (V-RXi); and the clause cj

corresponds to the (n + j)-th user, consisting of the “clause transmitter” j (C-TXj) and the

“clause receiver” j (C-RXj). Hence, K = {1, 2, ..., n+m}.

Now we construct the direct-link and crosstalk channel matrices Hkj among these m + n

users. To this end, we first define

HA = Me13 (e
1
2)

T
, HB = Me13 (e

2
2)

T
, HC = Me23 (e

1
2)

T
,

HD = Me23 (e
2
2)

T
, HE = Me33 (e

1
2)

T
, HF = Me33 (e

2
2)

T
,

1For a given set of Boolean variables, a literal is defined as either a Boolean variable x or its negation x̄, while a disjunctive

clause refers to a logical expression consisting of the logical “OR” of literals. For instance, c = x∨ ȳ∨ z is a disjunctive clause

over three literals {x, ȳ, z}, and the clause c is satisfied provided that x is true, or y is false, or z is true.
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where M = 6
√
2. All the direct-link channel matrices are set to be

Hkk = E ,


1 1

1 1

1 1

 , k ∈ K.

The corresponding crosstalk channel matrices are: for user k, k = 1, 2, ..., n, let Hkj = 0, ∀ j ∈

K\k; and for user k, k = n+ 1, n+ 2, ..., n+m, Hkj = 0 except

Hkj =

 HB, if απ(k) = xj for some j;

HA, if απ(k) = x̄j for some j,

Hkj =

 HD, if βρ(k) = xj for some j;

HC , if βρ(k) = x̄j for some j,

Hkj =

 HF , if γτ(k) = xj for some j;

HE, if γτ(k) = x̄j for some j,

(4)

where ck−n = απ(k) ∨ βρ(k) ∨ γτ(k), α, β, and γ are taken from {x, x̄}, and π, ρ, and τ are

mappings from {n+ 1, n+ 2, ..., n+m} to {1, 2, ..., n}.

To make the construction of channel matrices clear, an illustrative example is given, where

there are three disjunctive clauses c1 = x1 ∨ x̄2 ∨ x3, c2 = x1 ∨ x2 ∨ x̄4, and c3 = x̄2 ∨ x̄3 ∨ x4

defined on four Boolean variables {x1, x2, x3, x4} . Then there are 7 users in the constructed

MIMO interference network, including 4 “variable user” (denoted as user 1, 2, 3, 4) and 3 “clause

user” (denoted as user 5, 6, 7). In this case, K = {1, 2, ..., 7} . All direct-link channel matrices

are Hkk = E, ∀ k ∈ K; while according to (4), all crosstalk channel matrices are zero except

H5,1 = HB, H5,2 = HC , H5,3 = HF ,

H6,1 = HB, H6,2 = HD, H6,4 = HE,

H7,2 = HA, H7,3 = HC , H7,4 = HF .

The constructed MIMO interference channel between V-TXs and C-RXs is depicted as Fig. 1.

Let σk = 1, Pk = 1 (k ∈ K) and ζ = 1. The constructed feasibility instance of problem (3) is
SINRk ≥ 1, k ∈ K;

∥uk∥2 = 1, k ∈ K;

∥vk∥2 ≤ 1, k ∈ K,

(5)
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1st

2nd

1st

2nd

1st

2nd

1st

2nd

1st

2nd

3rd

1st

2nd

3rd

1st

2nd

3rd
V-TX4

V-TX3

V-TX2

V-TX1

C-RX1

C-RX2

C-RX3

Fig. 1. An illustration of the constructed MIMO interference channel with c1 = x1∨x̄2∨x3, c2 = x1∨x2∨x̄4, c3 = x̄2∨x̄3∨x4,

where all of V-TX1, V-TX2, V-TX3, and V-TX4 are equipped with two antennas while all of C-RX1, C-RX2, and C-RX3 are

equipped with three antennas. The arrows represent the channel matrices between the corresponding V-TXs and C-RXs. According

to (4), the channel matrix between V-TX1 and C-RX1 is HB . When the transmitted signal vector at V-TX1 is v1 = (x1, y1)
T ,

the received signal at C-RX1 will be My1e
1
3, so we only connect the second antenna of V-TX1 with the first antenna of C-RX1.

Similar connections apply to other V-TXs and C-RXs.

where

SINRk =


|u†

kEvk|2, if k = 1, 2, ..., n;

|u†
kEvk|2

1 +
∑

f∈{π,ρ,τ} |u
†
kHkf(k)vf(k)|2

, otherwise.

This is because the crosstalk channel matrices from all transmitters to V-RXs (receiver i, i =

1, 2, ..., n) are zero, so all of V-RXs are interference-free; while C-RXs (receiver n + j, j =

1, 2, ...,m) indeed suffers from crosstalk interferences from three V-TXs. Next, we show the

3SAT problem is satisfied if and only if there exists a feasible solution to problem (5).

Let vk and uk denote the beamforming vector associated with the k-th transmitter and receiver

respectively. If there exists a truth assignment such that all the clauses in the 3SAT problem are

satisfied, we claim that we can find beamforming vectors {uk,vk | k ∈ K} satisfying all the

conditions in (5). In particular, we set

uk =

 e13, if k = 1, 2, ..., n;

e13, e23, or e33, if k = n+ 1, n+ 2, ..., n+m,
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and let vk = (xk, yk)
T with yk = 1− xk, xk = 0 or 1, if k = 1, 2, ..., n;

xk = 1, yk = 0, if k = n+ 1, n+ 2, ..., n+m.
(6)

In this way we define a group of beamforming vectors for (5), with vk = e12 or e22. We claim that,

with these beamforming vectors, the interference subspace at each receiver has a dimension at

most two and is contained in either span{e13, e23}, span{e13, e33}, or span{e23, e33}. As an illustrative

example, suppose that c1 = x1 ∨ x̄2 ∨ x3 is satisfied. Therefore, at least one of the following

conditions x1 = 1, x2 = 0, or x3 = 1 holds true. Consider the (n + 1)-th receiver which

corresponds to the clause c1. The interference vectors at receiver n+ 1 are

In+1,1 = Hn+1,1v1 = HBv1 = My1e
1
3,

In+1,2 = Hn+1,2v2 = HCv2 = Mx2e
2
3,

In+1,3 = Hn+1,3v3 = HFv3 = My3e
3
3.

(7)

Since at least one of the variables y1, x2, y3 is zero, the interference subspace at receiver n+1 has

dimension at most two, and is contained in either span{e13, e23}, span{e13, e33}, or span{e23, e33}.

The same argument can be used for the other receivers n + 2, n + 3, ..., n + m. Moreover,

uk (k = n+ 1, n+ 2, ..., n+m) can be chosen from {e13, e23, e33} such that it is orthogonal to

the interference subspace at receiver k. The resulting leakage interference is then zero, i.e.,

u†
kHkjvj = 0, ∀ j ̸= k, k = n+ 1, n+ 2, ..., n+m. (8)

Let us check the SINR levels at all receivers:

- for user k, k = 1, 2, ..., n,

SINRk = |u†
kHkkvk|2 = |

(
e13
)†
Evk|2 = 1

due to vk ∈ {e12, e22};

- for user k, k = n+ 1, n+ 2, ..., n+m,

SINRk =
|u†

kHkkvk|2

1 +
∑

f∈{π,ρ,τ} |u
†
kHkf(k)vf(k)|2

= |u†
kHkkvk|2 (from (8))

= |u†
kEe

1
2|2 (from (6))

= 1. (uk ∈ {e13, e23, e33})
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As a result, if there exists a truth assignment satisfying all the clauses in the given 3SAT problem,

then we can construct a group of beamforming vector uk,vk (k ∈ K) satisfying (5).

For the converse part, assuming that (5) has a feasible beamforming solution uk,vk (k ∈ K),

we claim that all the clauses in the given 3SAT problem can be satisfied. Denote pk = ∥vk∥2 (k ∈ K) .

For user k = 1, 2, ..., n, we have

1 ≤ SINRk

= |u†
kEvk|2

≤ max∥uk∥2=1, ∥vk∥2=pk |u
†
kEvk|2

= max∥vk∥2=pk λmax

(
Evkv

†
kE

†
)

= max∥vk∥2=pk v
†
kE

†Evk

= 6pk,

(9)

which gives

pk ≥
1

6
, k = 1, 2, ..., n. (10)

From (9) and the fact that ∥vk∥2 ≤ 1, we also have

|u†
kHkkvk|2 ≤ 6, ∀ k ∈ K. (11)

Let us define v̄k from vk = (xk, yk)
T as follows:

v̄k =

 e12, if |xk| ≥ |yk|;

e22, if |xk| < |yk|.
(12)

We prove by contradiction that the beamforming vectors (12) can make the dimension of the

interference subspace at each receiver k (k = n+ 1, n+ 2, ..., n+m) at most two. To see why

this is the case, consider the previous example and assume that at receiver n+ 1 the dimension

of the interference subspace is three. Since v̄k = e12 or e22 (c.f. (12)) and there are three potential

interferers to receiver n + 1, it follows from (7) that each of the interferer can cause either

zero interference or an interference along the direction ei3, i = 1, 2, 3. Thus, for the interference

subspace at receiver n+1 to have dimension 3, the interference subspace at receiver n+1 must

be spanned by

Īn+1,1 = Me13, Īn+1,2 = Me23, Īn+1,3 = Me33. (13)

Combining (7), (12), and (13), we have

|y1| ≥ |x1|, |x2| ≥ |y2|, |y3| ≥ |x3|. (14)
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Let

p = min
1≤k≤n

{pk}. (15)

Consider the SINR at the (n+ 1)-th receiver,

SINRn+1

=
|u†

n+1Hn+1,n+1vn+1|2

1 + |u†
n+1HBv1|2 + |u†

n+1HCv2|2 + |u†
n+1HFv3|2

≤ 6

1 + |u†
n+1HBv1|2 + |u†

n+1HCv2|2 + |u†
n+1HFv3|2

=
6

1 + |u†
n+1In+1,1|2 + |u†

n+1In+1,2|2 + |u†
n+1In+1,3|2

≤ 6

1 +M2
p

2

(
|u†

n+1e
1
3|2 + |u†

n+1e
2
3|2 + |u†

n+1e
3
3|2
)

=
6

1 +M2p/2
(∥un+1∥2 = 1)

< 1, (from M2 = 72, (10), and (15))

where the first inequality is due to (11) and the second inequality is due to (7) and (14). This

contradicts the fact SINRk ≥ 1 (k ∈ K). As a result, we can choose ūk ∈ {e13, e23, e33} such that

ū†
kHkjv̄j = 0,∀ j ̸= k.

Actually, (12) gives a truth assignment which satisfies all the clauses in the 3SAT problem as

in [16].

Finally, this transformation is in polynomial time. Since the 3SAT problem is NP-complete,

we can conclude that the problem of checking whether the given target SINR is feasible is

strongly NP-hard.

The max-min fairness linear transceiver design problem is shown to remain NP-hard for the

scenario where all transmitters and receivers are equipped with exactly two antennas (Mk = Nk =

2, k ∈ K) in a late paper [17]. Their proof is also based on a polynomial time transformation

from the same NP-hard problem as the one used in this paper. We point out that the NP-hardness

result in [17] does not imply our result, since the result in [17] holds true only for complex

channel matrices, while our result holds true for both complex and real channel matrices.
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IV. CYCLIC COORDINATE ASCENT ALGORITHM

We develop cyclic coordinate ascent algorithms (CCAA) for the max-min fairness linear

transceiver design problem (2). The basic idea of CCAA is to partition the design variables

into different blocks and cyclicly solve the problem with respect to one block while fixing the

others. To exploit the separable structure of the constraints, we partition the variables in problem

(2) into two blocks u = (u1; ...;uK) and v = (v1; ...;vK). Denote by n the iteration index and

assume that v0 is given. By fixing v = vn (n ≥ 0), problem (2) with respect to u can be solved

by solving K independent small problems

max
{uk}

|u†
kHkkv

n
k |2

σ2
k∥uk∥2 +

∑
j ̸=k

|u†
kHkjv

n
j |2

s.t. ∥uk∥2 = 1,

(16)

for k = 1, . . . , K. Defining

Mk(v) =

(∑
j∈K

Hkjvj (Hkjvj)
† + σ2

kI

)−1

, ∀ k ∈ K,

the optimal solution un
k to problem (16) is the linear minimum mean square error (LMMSE)

receive beamformer

un
k = ũn

k/∥ũn
k∥, ũn

k = Mk(v
n)Hkkv

n
k . (17)

Then fixing u = un, we solve problem (2) with regard to v for vn+1. In this case, the problem

is

max
{v}

min
k∈K

{
| (un

k)
†Hkkvk|2

σ2
k +

∑
j ̸=k | (un

k)
† Hkjvj|2

}
s.t. ∥vk∥2 ≤ Pk, k ∈ K.

(18)

We call the corresponding algorithm by exact (inexact) cyclic coordinate ascent algorithm if

(18) is solved exactly (inexactly) for the transmit beamformer vn+1. They are abbreviated by

ECCAA and ICCAA, respectively.

A. Exact Cyclic Coordinate Ascent Algorithm

Consider the ECCAA for problem (2). For convenience, define the mapping u = ϕ(v) with its

k-th block uk = ϕk(v) = ũk/∥ũk∥, ũk = Mk(v)Hkkvk, and Φ(vn) to be the optimal solution

set of problem (2) with v = vn fixed (the optimal LMMSE solution is not unique, as any optimal
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solution multiplied by a complex unit norm scalar will remain optimal). Noticing that ϕk(v
n) is

exactly the vector in (17), so un = ϕ(vn) ∈ Φ(vn).

In ECCAA, when un is fixed, we solve problem (18) exactly for an optimal transmit beam-

former vn+1 ∈ Ψ(un), where Ψ(un) represents the optimal solution set of problem (18) (the

solution of problem (18) is not unique in general due to the quasi-convexity of the problem with

respect to v [4]). By [10], problem (18) can be solved to global optimality in polynomial time

using a bisection procedure, where each step solves a second order cone programming (SOCP)

[18].

Denote G2n = G(un,vn) and G2n+1 = G(un,vn+1), where G is the objective function in

problem (2). The following stopping criterion is used to terminate the algorithm,

G2n+1 −G2n−1

max {G2n−1, 1}
≤ ϵ, (19)

where ϵ is the prescribed stopping tolerance. A detailed description of ECCAA is given as

follows.

ECCAA

S1. Initialization: Given v0 and tolerance ϵ. Set n = 0.

S2. Computing un: Compute the optimal LMMSE receive

beamformer un = ϕ(vn) ∈ Φ(vn) with v = vn fixed.

S3. Computing vn+1: Solve problem (18) to obtain the

optimal transmit beamformer vn+1 ∈ Ψ(un) with u =

un fixed.

S4. Termination:

- if (19) is satisfied, terminate the algorithm;
- else set n = n+ 1 and go to S2.

In general, cyclic coordinate algorithms may not converge to a KKT solution even if each

subproblem is exactly solved [19]. It is known from [20] that the separability of the constraints is

a necessary condition for the convergence. The book [21] established some convergence results

for cyclic coordinate algorithms under strong assumptions. For example, the objective function

is required to be continuously differentiable over the feasible set and the minimizer (maximizer)

in terms of each block is assumed to be unique. Noticing that the objective function in problem

(2) is non-differentiable and that the optimal solution of (16) is not unique, the result of [21]
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is not applicable to the ECCAA. In fact, the algorithm similar as the ECCAA has already been

proposed to solve the linear transceiver design problem in different scenarios, i.e., the problem

of minimizing the total transmission power subject to quality of service constraints in [22] and

the problem of maximizing the minimum SINR for the MIMO downlink channel in [12], but the

convergence of the algorithm is not guaranteed. Nevertheless, the next result shows the global

convergence of ECCAA for the max-min fairness linear transceiver design problem (2).

Theorem 4.1: Consider the ECCAA for solving problem (2) with ϵ = 0. Then the generated

sequence {(un,vn)} either terminates at a stationary point2 finitely or every accumulation point

of the sequence is a stationary point of (2).

Proof: Suppose that the sequence {(un,vn)} does not terminate finitely. Since both {∥un∥}

and {∥vn∥} are bounded, they have convergent subsequences. Assume without loss of generality

that un → ū and vn → v̄ for n ∈ N , where N is some infinite subsequence. Consequently, we

have

G2n = G(un,vn) → G(ū, v̄) , Ḡ, n ∈ N .

By the ECCAA, the sequence {Gn} is nondecreasing and hence Gn → Ḡ.

The outline of the remaining proof is as follows. We first claim that ū ∈ Φ(v̄) and v̄ ∈ Ψ(ū),

which imply that ū is an optimal solution of problem (2) with v = v̄ fixed, and v̄ is an optimal

solution of problem (2) with u = ū fixed, respectively. Then we combine these two facts to

prove that (ū, v̄) is a stationary point of problem (2).

From the fact that SINRk(u,v) only depends on uk with fixed v and the optimality of un,

we have for any feasible u that

SINRk(u
n,vn) ≥ SINRk(u,v

n), ∀ k ∈ K.

Taking limits from both sides of the above inequality, it follows that

SINRk(ū, v̄) ≥ SINRk(u, v̄), ∀ k ∈ K,

2A point x is said to be a stationary point (KKT point) of a maximization problem P if it satisfies the KKT condition of

problem P. Under some mild conditions [23], the stationarity of x implies its local optimality in the sense that there is no

feasible ascent direction at point x for problem P . However, the stationarity of x does not imply its global optimality in general

(unless problem P is convex).
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which implies that ū ∈ Φ(v̄). Moreover, because of vn+1 ∈ Ψ(un), for any feasible v, we have

G(un,v) ≤ G(un,vn+1) ≤ G(ū, v̄), n ∈ N .

Letting n go to infinity in the above inequality, we obtain G(ū,v) ≤ G(ū, v̄). Thus, v̄ ∈ Ψ(ū).

Now we prove that (ū, v̄) is a stationary point of problem (2). It is clear that (ū, v̄) is feasible.

On one hand, the fact ū ∈ Φ(v̄) (i.e., ūk solves problem (16) with vn there replaced with v̄.)

implies that there exist multipliers {ηk}k∈K satisfying

∇uk
SINRk(ū, v̄) = 2ηkūk, ∀ k ∈ K. (20)

On the other hand, we know from v̄ ∈ Ψ(ū) (i.e., v̄ solves problem (18) with un there replaced

with ū.) that there exist multipliers {λk}k∈K and {µk}k∈K such that
∑

k∈K λk∇vi
SINRk(ū, v̄) = 2µiv̄i, ∀ i ∈ K,∑

k∈K λk = 1, λk = 0 if SINRk(ū, v̄) > Ḡ,

λk ≥ 0, µk ≥ 0, µk(Pk − ∥v̄k∥2) = 0, ∀ k ∈ K.

(21)

Multiplying (20) by λk and combining it with (21) and the feasibility condition of (ū, v̄), we

obtain the KKT conditions of problem (2) as follows:

∑
k∈K

λk∇vi
SINRk(ū, v̄) = 2µiv̄i, ∀ i ∈ K,∑

k∈K

λk∇ui
SINRk(ū, v̄) = 2τiūi,∀ i ∈ K,∑

k∈K

λk = 1, λk = 0 if SINRk(ū, v̄) > Ḡ,

∥ūk∥2 = 1, ∥v̄k∥2 ≤ Pk, ∀ k ∈ K,

λk ≥ 0, µk ≥ 0, µk(Pk − ∥v̄k∥2) = 0,∀ k ∈ K,

where µk ≥ 0 and τk = λkηk serve as the Lagrangian multipliers corresponding to the constraints

Pk − ∥vk∥2 ≥ 0 and ∥uk∥2 − 1 = 0, respectively. Hence (ū, v̄) is a stationary point of problem

(2).

B. Inexact Cyclic Coordinate Ascent Algorithm

In ECCAA, the exact solution of problem (18) for a new transmit beamformer vn+1 requires

solving a sequence of SOCP feasibility problems [10] and hence is computationally expensive.

It would be interesting to design a more practical scheme for updating vn+1 that not only has
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a moderate computation cost but also preserves the monotonicity and the global convergence

of ECCAA. By this motivation, we consider an inexact cyclic coordinate ascent algorithm, in

which the transmit beamformer vn+1 is the solution of the problem

max
{v, θ}

θ

s.t.
(un

k)
† Hkkvk − θ√

σ2
k +

∑
j ̸=k | (un

k)
† Hkjvj|2

≥
√
G2n, k ∈ K,

∥vk∥2 ≤ Pk, k ∈ K,

(22)

where G2n = G(un,vn) as before. It is worth pointing out that if we solve problem (22)

(assuming the solution of problem (22) is v̂n) and update G2n = G(un, v̂n) in it iteratively, we

can solve the transmit beamforming design problem (18) with fixed receiver u = un to global

optimality [24]. However, here we just solve problem (22) once to reduce the computational cost

of updating the transmit beamforming vector. For notational simplicity, we define Dk(u,v) and

Ik(u,v) as

Dk(u,v) = u†
kHkkvk, Ik(u,v) =

√
σ2
k +

∑
j ̸=k

|u†
kHkjvj|2, ∀ k ∈ K.

It follows from the optimality of vn+1 that Dk(u
n,vn+1) > 0, ∀ k ∈ K.

The above problem (22) is feasible since we can appropriately rotate vn
k (k ∈ K) so that

(un
k)

† Hkkv
n
k > 0 (∀ k ∈ K) and hence (vn, 0) is a feasible point for problem (22). Consequently,

the optimal value θn+1 of (22) is always nonnegative and G2n+1 ≥ G2n. This, with G2n ≥ G2n−1

(due to the choice of un), implies that the minimum SINR sequence {Gn} is monotonically

increasing. Further, since the optimal solution (vn+1, θn+1) must be such that at least one of the

inequality constraints involving θ is met with equality, we can express the optimal value θn+1

of problem (22) as

θn+1 = min
k∈K

{
Dk(u

n,vn+1)−
√
G2nIk(u

n,vn+1)
}
. (23)

As the solution to problem (22) does not solve problem (18) in general, we denote the algo-

rithm corresponding to problem (22) for the transmit beamformer vn+1 by ICCAA. The whole

description of ICCAA is given as follows.
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ICCAA

S1. Initialization: Given v0 and tolerance ϵ. Set n = 0.

S2. Computing un: Compute the optimal LMMSE receive

beamformer un = ϕ(vn) ∈ Φ(vn) with v = vn fixed.

S3. Computing vn+1: Solve problem (22) to obtain the

transmit beamformer vn+1 with u = un fixed.

S4. Termination:
- if (19) is satisfied, terminate the algorithm;
- else set n = n+ 1 and go to S2.

Notice that problem (22) is an SOCP and hence can be solved to global optimality in

polynomial time. In contrast, to update the transmit beamformer from vn to vn+1, the ECCAA

requires solving a sequence of SOCP feasibility problems in the binary search step. Hence, the

ICCAA, which only requires solving one SOCP, significantly reduces the computation cost of

vn+1 per iteration. Although we update the transmit beamforming vector in an inexact manner

in ICCAA, we still have the following global convergence result for it. See Appendix A for the

proof.

Theorem 4.2: Consider the ICCAA for solving problem (2) with ϵ = 0. Then either the

generated sequence {(un,vn)} terminates at a stationary point or any of its accumulation point

(ū, v̄) is a stationary point.

V. NUMERICAL RESULTS

In this section, we present some numerical simulations to evaluate the effectiveness of the

proposed ECCAA and ICCAA. We consider a MIMO multi-user interference channel with three

antennas (Nk = 3) at each transmitter and two antennas (Mk = 2) at each receiver. In a similar

way as in [8] and [11], the channel matrices are generated according to the complex Gaussian

distribution vec(Hkj) ∼ CN (0, I),∀ k, j ∈ K. The transmit power budget and the noise power

are set to 1 and σ2 for all users. Define SNR= −10 log10 (σ
2) . The following suboptimal solutions

are adopted as benchmarks:

1. Benchmark1 is the so-called channel matched beamformer, which solves the following
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maximization problem

(ũk, ṽk) = arg max
{uk,vk}

|u†
kHkkvk|2

s.t. ∥uk∥2 = 1, ∥vk∥2 ≤ Pk.

Notice ũk and ṽk are the scaled left and right singular vectors corresponding to the largest

singular value of the direct-link channel matrix Hkk. In this case, each user selfishly

maximizes its own received signal power. The channel matched beamformer scheme is

optimal when the network has only one user.

2. Benchmark2 is the leakage interference minimization solution. Leakage interference mini-

mization problem
min
{u,v}

∑
k∈K

∑
j ̸=k

|u†
kHkjvj|2

s.t. ∥uk∥2 = 1, ∥vk∥2 ≤ Pk, k ∈ K
(24)

is proposed in [25] as an effective method of checking the feasibility of interference

alignment [26] and finding the solution of achieving interference alignment (if there exists

such a solution). However, problem (24) is shown to be strongly NP-hard in [16] when

each node is equipped with more than one antenna. We use the proposed algorithm in [25]

to obtain one suboptimal solution of problem (24).

An upper bound on the optimal value of linear transceiver design problem (2) is given by

min
k∈K

{
|ũ†

kHkkṽk|2/σ2
k

}
,

which is not achievable in general. However, it can still be used as an ultimate upper bound.

In our simulations, both the ICCAA and the ECCAA are initialized to the channel matched

beamformer (Benchmark1), and the stopping criterion parameter ϵ in (19) is set to be 10−3. We

use CVX [27] to solve the related SOCP problems. All figures are obtained by averaging over

200 independent channel realizations except Fig. 2.

Fig. 2 plots the convergence behavior of the proposed ICCAA and ECCAA for the case of

K = 5 and SNR = 15 dB. It can be seen that the min-SINR values generated by the ICCAA and

the ECCAA indeed increase monotonically as expected, and that the most of improvement is

achieved in the first few iterations. These two properties make the proposed algorithms attractive

for practical implementations. In general, one update of the transmit beamformer in ECCAA

yields more gain than in ICCAA. This is because the transmit beamformer is exactly solved
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Fig. 2. A convergence example of ICCAA and ECCAA with K = 5 and SNR = 15 dB.
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Fig. 3. Average minimum SINR versus the number of users with SNR = 15 dB.

in ECCAA (but inexactly solved in the ICCAA). Compared to the ECCAA, the ICCAA takes

more iterations to converge, but needs far less computation cost per iteration. We can also see

from Fig. 2 that the performance of ICCAA is better than that of the ECCAA. This is due to

the fact that the algorithms may converge to different KKT solutions.

Fig. 3 shows the average minimum SINR performance comparison of the proposed algorithms

and benchmarks versus different number of users, while Fig. 4 depicts the the average minimum

SINR performance vs. the SNR. Figs. 3 and 4 show that the proposed algorithms significantly

outperform the benchmarks in terms of the achieved minimum SINR value, and achieve almost
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Fig. 4. Average minimum SINR versus SNR with K = 5.
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Fig. 5. Average CPU time versus the number of users with SNR = 15 dB.

50% of the interference-free max-min SINR value when the number of users in the network is

small (e.g., K ≤ 5). One can also observe from Figs. 3 and 4 that the ICCAA and the ECCAA

yield almost the same performance. Actually, the performance of ICCAA is slightly better than

the one of ECCAA in our simulations. This difference becomes obvious in Fig. 4 for large SNR

values. We also applied the ICCAA to solve the minimum SINR maximization problem for the

SIMO interference channel in [13], and we found that the ICCAA always solves the problem

to global optimality.
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Fig. 6. Average CPU time versus SNR with K = 5.

The average CPU time comparison of the ICCAA and the ECCAA versus different number

of users and different SNRs are illustrated as Fig. 5 and Fig. 6, respectively. We can observe

that the ICCAA substantially outperforms the ECCAA in terms of the average CPU time. This

is not surprising since in each update of the transmit beamformer, a sequence of SOCPs need to

be solved in the ECCAA while only one SOCP is solved in the ICCAA. One may say that it is

not intuitive that the CPU time decreases as the number of users increases in Fig. 5. The reason

why this “strange” phenomenon happens is because we initialize the two iterative algorithms3,

ECCAA and ICCAA, to the channel matched beamformer. We know that the channel matched

beamformer is nearly optimal in the strong interference channel. As the number of users in

the network increases, the interference level in the network becomes higher. Thus, the channel

matched beamformer becomes closer to the true solution, and it takes less CPU time for the two

algorithms to terminate.

VI. CONCLUSION

In this paper, we consider the max-min fairness linear transceiver design problem for a multi-

user MIMO interference channel. A major design challenge is to find the globally optimal

transceiver to maximize the minimum SINR among all users. We first show in this paper that,

3How long it takes an iterative algorithm to terminate of course depends on the initial point.
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when each transmitter (receiver) is equipped with more than a single antenna and each receiver

(transmitter) is equipped with more than two antennas, the max-min fairness linear transceiver

design problem is computationally intractable (strongly NP-hard) as the number of users in the

system increases. Motivated by the complexity result, we then propose two iterative algorithms

based on the cyclic coordinate ascent strategy, ECCAA and ICCAA, for the max-min fairness

linear transceiver design problem. The proposed algorithms alternately optimize the transmit

beamformer (including the power allocation) and the receive beamformer, and thus decompose

the original NP-hard problem into a series of easily solvable convex subproblems. Monotonicity

of the proposed algorithms are guaranteed and their global convergence to a KKT solution are

established. Numerical simulations demonstrate that a substantial performance improvement can

be achieved by the proposed algorithms over the benchmarks.
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APPENDIX A

PROOF OF THEOREM 4.2

Suppose the sequence {(un,vn)} does not terminate finitely, then there must exist an accu-

mulation point for the bounded sequence {∥un∥} and {∥vn∥}. Denote the accumulation point

as ū and v̄, and we have un → ū and vn → v̄ with n from an infinite subsequence N . Without

loss of generality, we also assume that vn+1 → v̂, n ∈ N . Furthermore, the monotonicity of

{Gn} (according to the remark after problem (22)) implies Gn → G(ū, v̂) = G(ū, v̄) , Ḡ and

Gn ≤ Ḡ for all n ≥ 0. Taking limits from both sides of (23) yields

θn+1 → θ̂ , min
k∈K

{
Dk(ū, v̂)−

√
Ḡ Ik(ū, v̂)

}
≥ 0, n ∈ N . (25)

We know from the proof of Theorem 4.1 that to show (ū, v̄) is a stationary point of problem

(2), it is sufficient to prove ū ∈ Φ(v̄) and v̄ ∈ Ψ(ū). The same argument as in the proof of

Theorem 4.1 shows that ū ∈ Φ(v̄). Since G(ū, v̂) = G(ū, v̄), it follows that v̄ ∈ Ψ(ū) if

and only if v̂ ∈ Ψ(ū). Next, we establish the claim v̂ ∈ Ψ(ū) by proving the following two

statements:
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1) (v̂, θ̂) solves the SOCP problem

max
{v, θ}

θ

s.t.
(ūk)

† Hkkvk − θ√
σ2
k +

∑
j ̸=k | (ūk)

†Hkjvj|2
≥

√
Ḡ, k ∈ K,

∥vk∥2 ≤ Pk, k ∈ K;

2) θ̂ = 0.

In fact, for any feasible v, due to the optimality of vn+1, it follows for all n ∈ N ,

min
k∈K

{
Dk(u

n,vn+1)−
√

G2n Ik(u
n,vn+1)

}
≥ min

k∈K

{
Dk(u

n,v)−
√

G2n Ik(u
n,v)

}
. (26)

Taking limits from both sides of (26) and recalling the definition of θ̂ in (25), we obtain

θ̂ ≥ min
k∈K

{
Dk(ū,v)−

√
Ḡ Ik(ū,v)

}
. (27)

Hence the first statement holds true. Now we show the second statement θ̂ = 0. Since G2n+1 ≤ Ḡ

and

min
k∈K

{
Dk(u

n,vn+1)−
√

G2n+1 Ik(u
n,vn+1)

}
= 0,

we have

min
k∈K

{
Dk(u

n,vn+1)−
√

Ḡ Ik(u
n,vn+1)

}
≤ 0, n ∈ N .

Taking limits in the above, we know that θ̂ ≤ 0. Combining this and (25) yields θ̂ = 0. This

completes the proof.
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