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Max-Min Fairness Linear Transceiver Design Problem for a Multi-User SIMO

Interference Channel Is Polynomial Time Solvable

Ya-Feng Liu, Mingyi Hong, and Yu-Hong Dai

Abstract

Consider the linear transceiver design problem for a multi-user single-input multi-output (SIMO)

interference channel. Assuming perfect channel knowledge, we formulate this problem as one of maximiz-

ing the minimum signal to interference plus noise ratio (SINR) among all the users, subject to individual

power constraints at each transmitter. We prove in this letter that the max-min fairness linear transceiver

design problem for the SIMO interference channel can be solved to global optimality in polynomial

time. We further propose a low-complexity inexact cyclic coordinate ascent algorithm (ICCAA) to solve

this problem. Numerical simulations show the proposed algorithm can efficiently find the global optimal

solution of the considered problem.

Index Terms

Beamforming, complexity, ICCAA, max-min fairness, SIMO interference channel.

I. INTRODUCTION

In a multi-user multi-input multi-output (MIMO) interference channel, a number of linearly interfering

transmitters simultaneously send private data to their respective receivers. When the number of users in

the interference channel is large, multi-user interference becomes a major performance limiting factor.

An effective approach to mitigate the multi-user interference is to jointly optimize the physical layer

transmit-receive beamforming strategies for all users.
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In this letter, we design beamforming strategies to maximize the min-rate utility (equivalent to the

minimum SINR utility), which places the highest emphasis on the user fairness. This max-min fairness

linear transceiver design has been studied extensively in [1]–[9]. Among them, the authors in [1], [2]

proposed to approximate the optimum by minimizing the sum of equally weighted inverse signal to

interference ratios (SIR). For the single receive antenna case, the authors of [3] further extended this

approach by choosing suitable weight factors with which the weighted sum of inverse SIR maximization

can achieve optimal max-min fairness. The reference [4] developed an iterative algorithm by switching

the optimization between uplink and downlink channels based on the uplink-downlink duality theory [4],

[10]. Polynomial time algorithms capable of achieving global optimality have been proposed in [5]–[7]

for the power control and/or transmit beamforming design problems, again for the single receive antenna

case. These results imply that the max-min SINR precoder design problem with fixed receive beamformers

can be solved in polynomial time [5]. For the case where there are more than two antennas per transmitter

and more than one antenna per receiver, it was shown in [8] that the corresponding max-min fairness

linear transceiver design problem is strongly NP-hard. For the single-user multi-carrier MIMO channel,

[9] proposed a unified framework for the joint design of Tx-Rx beamforming.

We prove in this letter that the max-min fairness linear transceiver design problem in an uplink wireless

system, where each transmitter (the mobile user) is equipped with a single antenna and each receiver

(the base station) is equipped with multiple antennas is polynomial time solvable. Due to the specific

SIMO case considered, the complexity status of minimum SINR optimization problem does not follow

from any of the existing complexity results [6]–[8]. We also propose a low-complexity inexact cyclic

coordinate ascent algorithm (ICCAA) to solve this problem.

II. PROBLEM FORMULATION

Consider a K-user SIMO interference channel where each transmitter is equipped with a single antenna

and each receiver is equipped with L antennas, respectively. For the single-carrier channel, the received

signal at receiver k is

yk = hkk
√
pksk +

∑
j ̸=k

hkj
√
pjsj + zk,

where hkj ∈ CL×1 is the channel vector from transmitter j to receiver k, pk ≥ 0 is the transmitted power

by transmitter k, sk ∈ C is the symbol that transmitter k wishes to send to receiver k, and zk ∈ CL×1 is

the additive white Gaussian noise (AWGN) with distribution CN (0, σ2
kI). Let uk ∈ CL×1 be the receive

beamformer for receiver k and a linear reception strategy is assumed. Then, the k-th receiver filters its
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received signal to obtain

ŝk = u†
kyk = u†

khkk
√
pksk +

∑
j ̸=k

u†
khkj

√
pjsj + u†

kzk.

Treating interference as noise, we can write the SINR of user k as

SINRk =
|u†

khkk|2pk
σ2
k∥uk∥2 +

∑
j ̸=k

|u†
khkj |2pj

. (1)

In this letter, we consider the max-min fairness linear transceiver design problem as follows:

max
{u,p}

min
k∈K

{SINRk}

s.t. 0 ≤ pk ≤ Pk, k ∈ K,

(2)

where Pk denotes the power budget of transmitter k, p := (p1; p2, ...; pK), u := (u1;u2; ...;uK), and

K := {1, 2, ...,K}. Introducing an auxiliary variable

SINR = min
k∈K

{SINRk} ,

we can equivalently rewrite the minimum SINR maximization problem (2) as

max
{u,p,SINR}

SINR

s.t. SINR ≤ SINRk, 0 ≤ pk ≤ Pk, k ∈ K.

(3)

III. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we investigate the complexity status of the optimization problem (3) (equivalent to

problem (2)). We show that, when each transmitter is equipped with a single antenna (SIMO case), the

corresponding max-min fairness design problem (3) can be solved to global optimality in polynomial

time via solving a series of semi-definite programs (SDP). This result is different from the polynomial

time solvability of the problem in the MISO case [5], [7], where each step solves a second order cone

program (SOCP), and also different from the NP-hardness of the one in the MIMO case [8].

Specifically, the optimal receive beamformer for problem (3) is the linear minimum mean square error

(LMMSE) receive beamformer given by

uk = M−1
k (p)hkk, Mk(p) = σ2

kI+
∑
j∈K

hkjh
†
kjpj ≻ 0, k ∈ K. (4)

Substituting these optimal LMMSE receive beamformers uk into (3) and letting ξ = 1/SINR yields

min
{ξ,p}

ξ

s.t. pk(1 + ξ)h†
kkM

−1
k (p)hkk ≥ 1,

0 ≤ pk ≤ Pk, k ∈ K.

(5)
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Next, we show that checking the feasibility of problem (5) with fixed ξ can be performed in polynomial

time. To this end, we fix ξ in the above program (5) and consider the following optimization problem

min
{p}

∑
k∈K

pk

s.t. pk(1 + ξ)h†
kkM

−1
k (p)hkk ≥ 1,

0 ≤ pk ≤ Pk, k ∈ K.

(6)

Clearly, for any fixed ξ, this problem has a solution if and only if ξ is feasible for problem (5). To

efficiently solve (6), we further introduce a problem closely related to it:

max
{p}

∑
k∈K

pk

s.t. pk(1 + ξ)h†
kkM

−1
k (p)hkk ≤ 1,

0 ≤ pk ≤ Pk, k ∈ K.

(7)

The difference between (6) and (7) lies in minimization versus maximization and the reversed SINR

inequality constraints. It can be observed that problem (7) is always feasible (p = 0 is a certificate for

the feasibility); but problem (6) may not be feasible. Hence, these two problems are not equivalent to

each other in general. The following proposition indicates that they are equivalent as long as problem

(6) is feasible.

Proposition 3.1: Suppose that problem (6) is feasible with some given ξ. Then the optima of problem

(6) and (7) are attained if and only if all the SINR constraints are met with equality. Furthermore, the

point that achieves all the SINR constraints with equality is unique.

To establish Proposition 3.1, we first introduce Lemma 3.1.

Lemma 3.1: Consider the univariate functions f(α) = h† (A+ αB)−1 h and g(α) = αf(α), where

h ̸= 0 ∈ Cn×1, A ≻ 0 ∈ Cn×n, B ≽ 0 ∈ Cn×n and α ∈ [0,+∞). Then f(α) is a decreasing function

and g(α) is a strictly increasing function.

The key insight into proving Lemma 3.1 is that the matrices A and B can be made diagonal si-

multaneously [11] when the conditions in Lemma 3.1 hold true. Due to the page limit, we omit the

proof.

By Lemma 3.1, we know that

gk(p) = gk(pk;p−k) = pk(1 + ξ)h†
kkM

−1
k (p)hkk, ∀ k ∈ K,

is strictly increasing with pk ≥ 0 and is decreasing with each component pj of p−k, where p−k is the

reduced vector of p by deleting the k-th component. We are now ready to prove Proposition 3.1.
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gk0
(p̃) = gk0

(p̃k0
; p̃−k0

)
(a)

≥ gk0
(p̃k0

;α−k0
◦ p̂−k0

) (from the fact αkp̂k ≥ p̃k for all k ∈ K)

(b)
= αk0

p̂k0
(1 + ξ)h†

k0k0

(
σ2
k0
I+ αk0

∑
j∈K+ hk0jh

†
k0j

p̂j +
∑

j /∈K+ hk0jh
†
k0j

p̂j

)−1
hk0k0

(c)
> p̂k0

(1 + ξ)h†
k0k0

(
σ2
k0
I+

∑
j∈K+ hk0jh

†
k0j

p̂j +
∑

j /∈K+ hk0jh
†
k0j

p̂j

)−1
hk0k0

= p̂k0
(1 + ξ)h†

k0k0

(
σ2
k0
I+

∑
j∈K hk0jh

†
k0j

p̂j

)−1
hk0k0

= gk0
(p̂) (from the definition of gk(p̂))

= 1 (from (8)),
(10)

Proof of Proposition 3.1: Suppose that problem (6) is feasible and p̂ is one of its optimal solutions,

then all the SINR constraints of problem (6) at the point p̂ are active, i.e.,

gk(p̂) = 1, ∀ k ∈ K. (8)

Otherwise, we can appropriately decrease p̂k associated with the strict SINR constraint and strictly

decrease the objective without violating the SINR constraints (from the monotonicity of gj(p) for all

j ∈ K with respect to pk) and individual power constraints.

Next, we show by contradiction that any p̂ satisfying (8) is also a solution to problem (7). If there exists

some point p̃ ̸= p̂ such that it is feasible to problem (7), namely, gk(p̃) ≤ 1 for all k ∈ K, and
∑

k∈K p̃k ≥∑
k∈K p̂k, we derive a contradiction. In fact, denote the nonempty set K+ = {k ∈ K | p̃k/p̂k > 1} and

k0 = argmaxk∈K+ {p̃k/p̂k} 1. Define the vector α with its k-th component being

αk =

 p̃k0
/p̂k0

> 1, if k ∈ K+;

1, if k /∈ K+.
(9)

By the definition of α, we know p̃k0
= αk0

p̂k0
and αkp̂k ≥ p̃k for all k ∈ K. Using the above definitions,

we can express the function gk0
(p̃) as in (10), which contradicts the feasibility of p̃ to problem (7). In

(10), the notation ◦ in (a) denotes the Hadamard product; the equality (b) is due to p̃k0
= αk0

p̂k0
and

the definition of α in (9); the strict inequality (c) is due to Lemma 3.1 and the fact αk0
> 1. Therefore,

any p̂ satisfying (8) is an optimal solution to problem (7).

1Note that such k0 might not be unique, and we choose any one of them.
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The above proof also implies that the point satisfying condition (8) is unique. Otherwise if there exist

p1 ̸= p2 such that gk(p1) = gk(p2) = 1 for all k ∈ K, and
∑

k∈K (p1)k =
∑

k∈K (p2)k , then we can

treat p1 and p2 as p̂ and p̃ in the above, and prove p2 is not feasible. Hence the point that satisfies

condition (8) is unique. This completes the proof of Proposition 3.1.

Moreover, by using the Schur complement, we know problem (7) is equivalent to the following SDP

max
{p}

∑
k∈K

pk

s.t. Mk(p) ≽ pk(1 + ξ)hkkh
†
kk, k ∈ K,

0 ≤ pk ≤ Pk, k ∈ K.

(11)

Therefore, for some given ξ = ξ̄, the feasibility of problem (6) can be checked in polynomial time by

solving (11). In particular, if the solution to (11) satisfies all the SINR inequalities in (7) with equality,

then problem (6) with ξ = ξ̄ is feasible; otherwise problem (6) is infeasible. Combining with the bisection

technique, we see the max-min fairness problem (5) in the SIMO case can be solved in polynomial time.

Theorem 3.1: When each transmitter is equipped with a single antenna, the max-min fairness linear

transceiver design problem (2) is polynomial time solvable with arbitrary K and L under the (mild)

assumption min
k

{
Pk∥hkk∥2/σ2

k

}
≤ R, where R is a sufficiently large constant.

Proof: We propose the following SDP bisection algorithm (SDPBA) for problem (2). The algorithm

is based on the bisection technique, where each step solves an SDP (11).

Algorithm 1: SDPBA for Problem (2)

S1. Initialization: Choose Sℓ and Su such that the

optimal SINR lies in [Sℓ, Su] and a tolerance

ϵ > 0.

S2. If Su −Sℓ ≤ ϵ, terminate the algorithm; else go

to S3.

S3. Let Smid = (Sℓ + Su)/2 and solve an SDP

problem (11) to check the feasibility problem of

(6) with ξ = 1/Smid. If feasible, set Sℓ = Smid,

else set Su = Smid and go to Step 2.

We now show the polynomial time complexity of the SDPBA. According to the standard analysis of

path-following interior-point methods for SDP, the step S3 in the SDPBA can be finished in O(K6.5L6.5)
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time [12]. As for the initial choices of Sℓ and Su, we let

Sℓ = 0, Su = max
{p,u}

min
k

{
|u†

khkk|2pk
σ2
k∥uk∥2

}
= min

k

{
Pk|hkk|2

σ2
k

}
≤ R.

It takes log2 (R/ϵ) iterations to reach tolerance ϵ. Therefore, a total of O(log2 (R/ϵ)K6.5L6.5) arithmetic

operations are needed in the worst case, and the above algorithm has a polynomial time worst case

complexity.

Theoretically, the SDPBA is a polynomial time algorithm. However it needs to solve a series of SDPs to

get the solution of problem (2), therefore still it is computationally intensive. To reduce the computational

complexity, we propose to use the ICCAA in [8] to solve the max-min fairness linear transceiver design

problem (2)2.

Specializing the ICCAA [8] to problem (2), we partition the variables in problem (2) into two blocks

p = (p1; p2, ...; pK) and u = (u1;u2; ...uK). In particular, when p = pn (n ≥ 0 denotes the iteration

index) fixed, we compute the optimal LMMSE receive beamformer un in (4). On the other hand, when

u = un is fixed, we update the power vector pn+1 by solving the following linear program

max
{p, θ}

θ

s.t.
| (un

k)
† hkk|2pk − θ

σ2
k∥un

k∥2 +
∑
j ̸=k

| (un
k)

† hkj |2pj
≥ S2n, k ∈ K,

0 ≤ pk ≤ Pk, k ∈ K,

(12)

where S2n is the minimum SINR value among all users at the point (un, pn). The algorithm is terminated

if S2n+2−S2n ≤ ϵ. We know from [8] that the minimum SINR sequence generated by the above ICCAA

is globally convergent.

IV. NUMERICAL SIMULATIONS

To evaluate the effectiveness of the proposed ICCAA, we present some numerical simulations in this

section. We consider a SIMO multi-user interference channel with a single antenna at each transmitter and

four antennas (L = 4) at each receiver. Similar to [8], we generate the channel vectors according to the

complex Gaussian distribution, i.e., hkj ∼ CN (0, I), ∀ k, j ∈ K. The transmit power budget and the noise

power are set to be Pk = 1 and σ2
k = σ2 for all users, and the SNR is defined as SNR= −10 log10

(
σ2

)
.

2We remark that the algorithms in [3]–[5], [10] based on the uplink-downlink duality theory are all designed for the

corresponding optimization problems in the downlink channel with the total power constraint. Therefore, they can not be

applied to solve problem (2) with individual power constraints.
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Fig. 1. Average minimum SINR versus the number of users with SNR = 15 dB.
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Fig. 2. Average CPU time versus the number of users with SNR = 15 dB.

In our simulations, we adopt the so-called channel matched beamformer (uk = hkk, pk = Pk) as the

benchmark, where each user selfishly maximizes its own received signal power by matching the direct-

link channel and transmitting full power. We also use the global optimal solution generated by the SDPBA

(Algorithm 1) as the upper bound. We initialize the ICCAA to the channel matched beamformer, and use

CVX [13] to solve the SDP problem (11). Each curve in the figures is averaged over 200 independent

channel realizations.

Fig. 1 plots the average minimum SINR performance comparison of the proposed algorithms (SDPBA

and ICCAA) and the benchmark versus different number of users.This plot shows that the proposed
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algorithms significantly outperform the benchmark in terms of the achieved minimum SINR value. We

can also observe from them that the ICCAA is always able to find the global optimal solution to problem

(2). This is not surprising, since we have already shown that problem (2) is polynomial time solvable

(Theorem 3.1) and the ICCAA is globally convergent [8].

The average CPU time comparison of the SDPBA and the ICCAA versus different number of users

is illustrated as Fig. 2. We can see from it that the ICCAA takes substantially less average CPU time

than the SDPBA. This is due to the fact that in each update of the transmit power, one SDP needs to be

solved in the SDPBA while one linear program is solved in the ICCAA.

V. CONCLUSION

In this letter, we consider the max-min fairness linear transceiver design problem for a multi-user

SIMO interference channel. A major design challenge is to find the globally optimal transmit/receive

beamforming strategy. We show in this letter that, when each transmitter is equipped with a single antenna

and each receiver is equipped with multiple antennas, the max-min fairness linear transceiver design

problem is polynomial time solvable. This result is in sharp contrast to the corresponding problem for

a MIMO interference channel, where each transmitter and receiver are equipped with multiple antennas.

In addition, we also propose a low-complexity algorithm, ICCAA, to solve the linear transceiver design

problem. Numerical simulations demonstrate that the proposed ICCAA always solves the problem to

global optimality with significantly less CPU time compared to the SDPBA.
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