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Abstract

Consider a multi-user Orthogonal Frequency Division Multiple Access (OFDMA) system where

multiple users share multiple discrete subcarriers, but at most one user is allowed to transmit power on

each subcarrier. To adapt fast traffic and channel fluctuations and improve the spectrum efficiency, the

system should have the ability to dynamically allocate subcarriers and power resources to users. Assuming

perfect channel knowledge, two formulations for the joint subcarrier and power allocation problem are

considered in this paper: the first is to minimize the total transmission power subject to quality of service

constraints and the OFDMA constraint, and the second is to maximize some system utility function

(including the sum-rate utility, the proportional fairness utility, the harmonic mean utility, and the min-

rate utility) subject to the total transmission power constraint per user and the OFDMA constraint. In spite

of the existence of various heuristics approaches, little is known about the computational complexity status

of the above problem. This paper aims at filling this theoretical gap, i.e., characterizing the complexity

of the joint subcarrier and power allocation problem for the multi-user OFDMA system. It is shown

in this paper that both formulations of the joint subcarrier and power allocation problem are strongly

NP-hard. The proof is based on a polynomial time transformation from the so-called 3-dimensional
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matching problem. Several subclasses of the problem which can be solved to global optimality or ε-

global optimality in polynomial time are also identified. These complexity results suggest that there are

not polynomial time algorithms which are able to solve the general joint subcarrier and power allocation

problem to global optimality (unless P=NP), and determining an approximately optimal subcarrier and

power allocation strategy is more realistic in practice.

Index Terms

Computational complexity, power control, OFDMA system, subcarrier allocation, system utility

maximization.

I. INTRODUCTION

With the rapid growth of wireless data traffic, multi-user interference has become a major bottleneck

that limits the performance of the existing wireless communication services. Mathematically, we can

model such an interference-limited communication system as a multi-user interference channel in which

a number of linearly interfering transmitters simultaneously send private data to their respective receivers.

Exploiting time/space/frequency/code diversity are effective approaches to mitigate/manage multi-user

interference. For instance, when the transmitters and/or receivers are equipped with multiple antennas, a

joint optimization of the physical layer transmit-receive beamforming vectors for all users can efficiently

mitigate multi-user interference [1]–[4]; when all transmitters and receivers are equipped with a single

antenna, one way to control/mitigate multi-user interference is to impose certain frequency restrictions

or transmission power limits on the frequency resources used by each transmitter [5], [6]. In particular,

Orthogonal Frequency Division Multiple Access (OFDMA) is a form of multi-carrier transmission and

is suited for frequency selective channels and high data rates. This technique effectively decomposes a

frequency-selective wide-band channel into a group of non-selective narrowband subchannels (subcarrier-

s), which makes it robust against large delay spreads by preserving orthogonality in the frequency domain.

Moreover, the ingenious introduction of cyclic redundancy at the transmitter reduces the complexity to

only FFT processing and one tap scalar equalization at the receiver [7].

Conventional OFDMA schemes preassign subcarriers to users in a nonoverlapping way, thus users

(transmitting on different subcarriers) cause no interference to each other. Although the OFDMA scheme

is well suited to be used in a high-speed communication context where quality of service is a major

concern, it can lead to inefficient bandwith utilization. This is because that the preassignment of subcarries

can not adapt traffic load and channel fluctuations in space and time; i.e., a subcarrier preassigned to
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a user can not be released to other users even if it is unusable when the user’s channel conditions are

poor. To adapt these fluctuations and improve the overall system’s throughput, OFDMA based subcarrier

allocation networks such as Worldwide Interoperability for Microwave Access (WiMAX) [8] and Long

Term Evolution (LTE) [9] should be equipped with dynamic subcarrier and power allocation algorithms.

In particular, a dynamic OFDMA based subcarrier and power allocation algorithm is well suited for

the dense femtocell downlink system [10], where a large number of femtocells close to each other are

deployed in a macrocell.

The joint optimization of subcarrier and power allocations for the multi-user OFDMA system is a

nonconvex problem, therefore various heuristics approaches have been proposed for this problem [5], [6],

[10]–[32]. Very recently, the authors in [6] proposed a dynamic joint frequency and transmission power

allocation scheme called enhanced Dynamic Frequency Planning (eDFP). eDFP is a hybrid centralized and

distributed architecture, where a central broker first dynamically partitions subcarriers among neighboring

cells so that the long-term cell-edge inter-cell interference is minimized, and then each cell independently

allocates subcarriers and transmission power to its users in a way that its total transmission power is

minimized.

Notice that nonconvex optimization problems are difficult to solve in general. However, not all noncon-

vex problems are hard to handle since the lack of convexity may be due to an inappropriate formulation,

and many nonconvex optimization problems indeed admit a convex reformulation [5], [33], [34]. There-

fore, nonconvexity of the joint subcarrier and power allocation problem for the multi-user OFDMA

system does not imply that it is computationally intractable (strongly NP-hard in terms of computational

complexity theory [35]–[38]). The aim of this paper is to characterize the computational complexity of

the joint subcarrier and power allocation problem for the multi-user OFDMA system; i.e., to categorize

when the problem is (strongly) NP-hard and when it is polynomial time solvable.

In fact, the dynamic spectrum management problem without the OFDMA constraint (at most one user

is allowed to transmit power on each subcarrier) has been extensively studied in [5], [11], [39]–[41]. It

is shown in [5], [11] that the dynamic spectrum management problem is (strongly) NP-hard when the

number of subcarriers is greater than two, or when the number of users is greater than one. However, the

analysis of these results is highly dependent on the crosstalk channel gains among users; i.e., some of

the crosstalk channel gains are assumed to be large enough, and some of them are assumed to be zero.

We shall see late (in Section II) that the magnitude of crosstalk channel gains has no influence on the

user’s transmission rate if all users are required to transmit power in an orthogonal manner. This makes

the two problems (the dynamic spectrum management problem without the OFDMA constraint in [5]
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and the joint subcarrier and power allocation problem with the OFDMA constraint considered in this

paper) sharply different from each other. An interesting result shown in [11] is that the optimal solution

of the two-user sum-rate maximization problem is automatically OFDMA if the crosstalk channel gains

of the two users on each subcarrier are large enough. In addition, based on the fact that the duality

gap of the dynamic spectrum management problem is zero as the number of subcarriers goes to infinity

(regardless of the convexity of the objective function) [5], [39], [40], dual decomposition algorithms

have been proposed in [40], [41] for the nonconvex optimization problem of multi-carrier systems, again

without considering the OFDMA constraint.

In this paper, we focus on the characterization of the computational complexity status of the joint

subcarrier and power allocation problem for the multi-user OFDMA system. In particular, we consider

two formulations of the joint subcarrier and power allocation problem. The first one is the problem of

minimizing the total transmission power in the system subject to all users’ quality of service constraints,

all users’ power budget constraints per subcarrier, and the OFDMA constraint. The second one is the

problem of maximizing the system utility (including the sum-rate utility, the proportional fairness utility,

the harmonic mean utility, and the min-rate utility) while the total transmission power constraint of each

user, individual power constraints on each subcarrier, and the OFDMA constraint are respected. The main

contributions of this paper are twofold. First, we show that the aforementioned two formulations of the

joint subcarrier and power allocation problem are strongly NP-hard. The proof is based on a polynomial

time transformation from the 3-dimensional matching problem. The strong NP-hardness results suggest

that for a given OFDMA system, computing the optimal subcarrier and power allocation strategy is

generally intractable. Thus, instead of insisting on finding an efficient algorithm that can find the global

optimum of the joint subcarrier and power allocation problem, one has to settle with less ambitious

goals, such as finding high quality approximate solutions or locally optimal solutions of the problem in

polynomial time. Second, we also identify several subclasses of the joint allocation problem which can

be solved to global optimality or ε-global optimality in polynomial time. We therefore clearly delineate

the set of computationally tractable problems within the general class of NP-hard joint subcarrier and

power allocation problems. Specifically, we show in this paper that, when there is only a single user in

the system or when the number of subcarriers and the number of users are equal to each other, the total

transmission power minimization problem is polynomial time solvable; when there is only a single user,

the aforementioned four utility maximization problems are all polynomial time solvable.

The rest of this paper is organized as follows. In Section II, we introduce the system model and give

the two formulations of the joint subcarrier and power allocation problem for the multi-user OFDMA
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system. In Section III, we first give a brief introduction to computational complexity theory [35]–[38]

and then address the computational complexity of the joint subcarrier and power allocation problem. In

particular, we show that the aforementioned two formulations of the joint subcarrier and power allocation

problem are generally strongly NP-hard. Several subclasses of the joint allocation problem which are

polynomial time solvable are identified in Section IV. Finally, the conclusion is drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and problem formulation. Consider a multi-user OFDMA

system, where there are K users (transmitter-receiver pairs) sharing N subcarriers. Throughout the paper,

we assume that N ≥ K; i.e., the number of subcarriers is greater than or equal to the number of users.

Otherwise, the OFDMA constraint is infeasible.

Denote the set of users and the set of subcarriers by K = {1, 2, ...,K} and N = {1, 2, ..., N},

respectively. For any k ∈ K and n ∈ N , suppose snk ∈ C to be the symbol that transmitter k wishes

to send to receiver k on subcarrier n, then the received signal ŝnk at receiver k on subcarrier n can be

expressed by

ŝnk = hk,ks
n
k +

∑
j 6=k

hnk,js
n
j + znk ,

where hnk,j ∈ C is the channel coefficient from transmitter j to receiver k on subcarrier n and znk ∈ C is

the additive white Gaussian noise (AWGN) with distribution CN (0, ηnk ). Denoting the power of snk by

pnk ; i.e., pnk := |snk |2, the received power at receiver k on subcarrier n is given by

αnk,kp
n
k +

∑
j 6=k

αnk,jp
n
j + ηnk , k ∈ K, n ∈ N ,

where αnk,j := |hnk,j |2 stands for the channel gain from transmitter j to receiver k on subcarrier n. Treating

interference as noise, we can write the SINR of receiver k on subcarrier n as

SINRnk =
αnk,kp

n
k

ηnk +
∑

j 6=k α
n
k,jp

n
j

, k ∈ K, n ∈ N ,

and transmitter k’s achievable data rate Rk (bits/sec) as

Rk =
∑
n∈N

log2 (1 + SINRnk) , k ∈ K. (1)

In this paper, we consider the joint subcarrier and power allocation problem for the multi-user OFDMA

system. Mathematically, a power allocation vector {pnk} is said to satisfy the OFDMA property if the

following equations hold true:

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N .
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The above equations basically say that at most one user is allowed to transmit power on each subcarrier.

Therefore, the joint subcarrier and power allocation problem for the multi-user OFDMA system can be

formulated as
min
{pnk}

∑
k∈K

∑
n∈N

pnk

s.t. Rk ≥ γk, k ∈ K,

Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N ,

(2)

where the objective function is the total transmission power of all users on all subcarriers, γk > 0

(k ∈ K) is the desired transmission rate target of user k, Pnk is the transmission power budget of user k

on subcarrier n, and the last constraint is the OFDMA constraint.

Due to the OFDMA constraint, we know for any k ∈ K and n ∈ N

SINRnk =
αnk,kp

n
k

ηnk +
∑

j 6=k α
n
k,jp

n
j

=
αnk,kp

n
k

ηnk
.

In fact, if pnk = 0, the above equality holds trivially; while if pnk > 0, it follows from the OFDMA

constraint that pnj = 0 (∀ j 6= k) and thus
∑

j 6=k α
n
k,jp

n
j = 0, which shows that the above equality holds

as well. Thus, problem (2) is equivalent to

min
{pnk}

∑
k∈K

∑
n∈N

pnk

s.t.
∑
n∈N

log2

(
1 +

αnk,kp
n
k

ηnk

)
≥ γk, k ∈ K,

Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N .

(3)

By introducing a group of binary variables xnk (k ∈ K, n ∈ N ), problem (3) can be reformulated as

min
{pnk},{xn

k}

∑
k∈K

∑
n∈N

pnk

s.t.
∑
n∈N

log2

(
1 +

αnk,kp
n
k

ηnk

)
≥ γk, k ∈ K,

xnkP
n
k ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

xnk ∈ {0, 1} , k ∈ K, n ∈ N ,∑
k∈K

xnk ≤ 1, n ∈ N ,

(4)

where the binary variable xnk = 1 if user k transmits power on subcarrier n, or xnk = 0 otherwise. The

last constraint
∑

k∈K x
n
k ≤ 1 (n ∈ N ) stands for the OFDMA constraint.
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Problem (4) can be dealt with by a two-stage approach. At the first stage, we solve the subcarrier

allocation problem; i.e., determining the binary variables {xnk}, which is equivalent to partitioning the

set of subcarriers N = {1, 2, ..., N} into K nonoverlapping groups {Nk}Kk=1. At the second stage, we

solve the power allocation problem; i.e., solving K decoupled power allocation problems

min
{pnk}n∈Nk

∑
n∈Nk

pnk

s.t.
∑
n∈Nk

log2

(
1 +

αnk,kp
n
k

ηnk

)
≥ γk,

Pnk ≥ pnk ≥ 0, n ∈ Nk.

(5)

Problem (5) at the second stage is convex, and thus is easy to solve.

To sum up, the joint subcarrier and power allocation problem can be equivalently formulated as (2),

(3), or (4). Formulation (4) is intuitive and is easy to understand, whereas formulation (3) is compact

and is easy to analyze. The analysis of this paper is mainly based on (3).

Besides the total transmission power minimization problem, we also consider the utility maximization

problem for the multi-user OFDMA system, which can be expressed by

max
{pnk}

H(R1, R2, ..., RK)

s.t.
∑
n∈N

pnk ≤ Pk, k ∈ K,

Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N ,

(6)

where H(R1, R2, ..., RK) denotes the system utility function and Pk (k ∈ K) is the power budget of

transmitter k. Four popular system utility functions are

- Sum-rate utility: H1(R1, R2, ..., RK) =
1

K

K∑
k=1

Rk,

- Proportional fairness utility: H2(R1, R2, ..., RK) =

(
K∏
k=1

Rk

)1/K

,

- Harmonic mean utility: H3(R1, R2, ..., RK) = K/

(
K∑
k=1

R−1k

)
,

- Min-rate utility: H4(R1, R2, ..., RK) = min
1≤k≤K

{Rk} .
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It is simple to see that

H1(R1, R2, ..., RK) ≥ H2(R1, R2, ..., RK)

≥ H3(R1, R2, ..., RK) ≥ H4(R1, R2, ..., RK),

and the equality holds true if and only if R1 = R2 = · · · = RK .

III. HARD CASES

In this section, we show that both the total power minimization problem (3) and the system utility

maximization problem (6) are intrinsically intractable (strongly NP-hard in the sense of computational

complexity theory [35]–[38]), provided that the ratio of the number of subcarriers and the number of

users, that is N/K, is equal to any given constant number c > 1. To begin with, we briefly introduce

complexity theory in Subsection III-A. Then we show problems (3) and (6) are strongly NP-hard in

Subsections III-B and III-C, respectively.

A. A Brief Introduction to Complexity Theory

In computational complexity theory [35]–[38], a problem is said to be NP-hard if it is at least as hard

as any problem in the class NP (problems that are solvable in Nondeterministic Polynomial time). The

NP class includes well known problems like the 3-colorability problem (which is to check whether the

nodes of a given graph can be colored in three colors so that each pair of adjacent nodes are colored

differently). NP-complete problems are the hardest problems in NP in the sense that if any NP-complete

problem is solvable in polynomial time, then each problem in NP is solvable in polynomial time. The

3-colorability problem is NP-complete.

A problem is strongly NP-hard (strongly NP-complete) if it is NP-hard (NP-complete) and it can

not be solved by a pseudo-polynomial time algorithm. An algorithm that solves a problem is called a

pseudo-polynomial time algorithm if its time complexity function is bounded above by a polynomial

function related to both of the length and the numerical values of the given data of the problem. This

is in contrast to the polynomial time algorithm whose time complexity function depends only on the

length of the given data of the problem. The 3-colorability problem is strongly NP-complete. However,

not all NP-hard (NP-complete) problems are strongly NP-hard (strongly NP-complete). For instance, the

partition problem is NP-hard but not strongly NP-hard.

Strongly NP-hard or NP-hard problems may not be in the class NP, but they are at least as hard as any

NP-complete problem. It is widely believed that there can not exist a polynomial time algorithm to solve
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any NP-complete, NP-hard, or strongly NP-hard problem (unless P=NP). Thus, once an optimization

problem is shown to be NP-hard, we can no longer insist on having an efficient algorithm that can find

its global optimum in polynomial time. Instead, we have to settle with less ambitious goals, such as

finding high quality approximate solutions or locally optimal solutions of the problem in polynomial

time.

The standard way to prove an optimization problem is NP-hard is to establish the NP-hardness of its

corresponding feasibility problem or decision problem. The latter is the problem to decide if the global

minimum of the optimization problem is below a given threshold or not. The output of a decision problem

is either true or false. The feasibility or decision version of an optimization problem is usually in the

class NP. Clearly, the feasibility or decision version of an optimization problem is always easier than the

optimization problem itself, since the latter further requires finding the global minimum value and the

minimizer. Thus, if we show the feasibility or decision version of an optimization problem is NP-hard,

then the original optimization problem must also be NP-hard.

In complexity theory, to show a decision problem B is NP-hard, we usually follow three steps: 1) choose

a suitable known NP-complete decision problem A; 2) construct a polynomial time transformation from

any instance of A to an instance of B; 3) prove under this transformation that any instance of problem A is

true if and only if the constructed instance of problem B is true. Furthermore, if the chosen NP-complete

problem A is strongly NP-complete, then problem B is strongly NP-hard.

In the following two subsections, we show that problems (3) and (6) are strongly NP-hard.

B. Strong NP-Hardness of Power Minimization Problem (3) when N/K = c > 1

To analyze the computational complexity of problem (3), we consider its feasibility problem. If the

feasibility problem is strongly NP-hard, so is the original optimization problem.

Feasibility Problem of (3). Given a set of transmission rate levels γk, individual power budgets

per subcarrier Pnk , direct-link channel gains αnk,k, and noise powers ηnk , check whether there exists a

subcarrier and power allocation strategy such that

∑
n∈N

log2

(
1 +

αnk,kp
n
k

ηnk

)
≥ γk, k ∈ K,

Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N .

(7)

To analyze the computational complexity of the feasibility problem (7), we choose the following

strongly NP-complete problem (see [35]).
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3-Dimensional Matching Problem with Size K. Let X ,Y, and Z be three different sets with

|X | = |Y| = |Z| = K, and R be a subset of X × Y × Z . The 3-dimensional matching problem is to

check whether there exists a match M⊂ R such that the following two conditions are satisfied:

a) for any two different tripes (x1, y1, z1) ∈M and (x2, y2, z2) ∈M, we have x1 6= x2, y1 6= y2, and

x3 6= y3;

b) X = {x | (x, y, z) ∈M}, Y = {y | (x, y, z) ∈M} , and Z = {z | (x, y, z) ∈M} .

Next, we first show that any instance of the 3-dimensional matching problem corresponds to an instance

of the transmission rate feasibility problem (7) when N/K = 2.

Lemma 3.1 (Basic Lemma): Checking the feasibility problem of (3) is strongly NP-hard when N/K =

2. Thus, problem (3) itself is also strongly NP-hard when N/K = 2.

Proof: Assume that N/K = 2. Consider any instance of the 3-dimensional matching problem with

X = {1x, 2x, ...,Kx} ,

Y = {1y, 2y, ...,Ky} ,

Z = {1z, 2z, ...,Kz} ,

and a relationship set

R = {(kx, jy, lz) | kx ∈ X , jy ∈ Y, lz ∈ Z} ⊆ X × Y × Z,

we construct a multi-user multi-carrier system where there are K users (which correspond to set X ) and

2K subcarriers (which correspond to set Y
⋃
Z). More exactly, K = X and N = Y

⋃
Z. Define

S1 = {(kx, jy) | (kx, jy, lz) ∈ R} ,

S2 = {(kx, lz) | (kx, jy, lz) ∈ R} .
(8)

For each k ∈ K, the power budgets per subcarrier Pnk , the noise powers ηnk , and the direct-link channel

gains αnk,k are given by

Pnk =


3, if n ∈ Y;

2, if n ∈ Z,
(9)

ηnk =


1, if (k, n) ∈ S1;

2, if (k, n) ∈ S2;

3, if (k, n) /∈ S1
⋃
S2,

(10)
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and

αn1

k,k = αn2

k,k =


1, if (k, n1, n2) ∈ R;

0.25, if (k, n1, n2) /∈ R,
(11)

respectively. Letting

γk = 3, k ∈ K,

the corresponding instance of problem (7) is

∑
n∈N

log2

(
1 +

αnk,kp
n
k

ηnk

)
≥ 3, k ∈ K,

3 ≥ pnk ≥ 0, k ∈ K, n ∈ Y,

2 ≥ pnk ≥ 0, k ∈ K, n ∈ Z,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N ,

(12)

where ηnk and αnk,k are given in (10) and (11), respectively. We are going to show that the answer to the

3-dimensional matching problem is yes if and only if the constructed problem (12) is feasible.

We first show that if the answer to the 3-dimensional matching problem is yes, then problem (12)

is feasible. In fact, if {(kx, jy, lz)} is a match for the 3-dimensional matching problem, then a feasible

power allocation of problem (12) is given by

pnkx =


3, if n = jy;

2, if n = lz;

0, if n 6= jy or lz.

(13)

This is because, since {(kx, jy, lz)} is a match for the 3-dimensional matching problem, the above power

allocation strategy (13) is orthogonal to each other (i.e., pnkxp
n
jx

= 0, ∀ kx 6= jx, kx, jx ∈ X , ∀ n ∈ N ).

Furthermore, we have for user kx = 1x, 2x, ...,Kx,

Rkx =
∑
n∈N

log2

(
1 +

αnkx,kxp
n
kx

ηnkx

)
(from (12))

(a)
= log2

(
1 +

α
jy
kx,kx

p
jy
kx

η
jy
kx

)
+ log2

(
1 +

αlzkx,kxp
lz
kx

ηlzkx

)

(b)
= log2

(
1 +

1 ∗ 3

1

)
+ log2

(
1 +

1 ∗ 2

2

)
= 3,
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where (a) is due to (13) and (b) is due to (10), (11) and (13). So (13) is a feasible power allocation of

problem (12).

On the other hand, we show that if all the constraints in (12) are satisfied, the answer to the 3-

dimensional matching problem must be yes. Notice that for any user kx ∈ K, if the transmission rate

Rkx ≥ 3, it must transmit on at least two subcarriers, for otherwise if it transmits only on one subcarrier,

its maximum transmission rate is

log2

(
1 +

1 ∗ 3

1

)
= 2 < 3.

Since there are K users and N = 2K subcarriers and at most one user is allowed to transmit on each

subcarrier (by the OFDMA constraint), the feasibility of (12) asks that each user in the network must

transmit on exactly two subcarries. By the construction of the parameters of the system, one can verify

that the corresponding direct-link channel gains of the user on the two subcarriers must be 1, for otherwise

the transmission rate is at most

log2

(
1 +

1 ∗ 3

1

)
+ log2

(
1 +

0.25 ∗ 3

1

)
= log2 7 < 3.

Furthermore, the fact that all users’ transmission rate requirements are satisfied implies that each user

transmits on one subcarrier in {1y, 2y, ...,Ky} with noise power 1 and one in {1z, 2z, ...,Kz} with noise

power 2, which makes the transmission rate equal to

log2

(
1 +

1 ∗ 3

1

)
+ log2

(
1 +

1 ∗ 2

2

)
= 3.

Otherwise,

- if one user transmits on two subcarries in {1z, 2z, ...,Kz} , the transmission rate is at most

log2

(
1 +

1 ∗ 2

2

)
+ log2

(
1 +

1 ∗ 2

2

)
= 2 < 3.

- if one user transmits on two subcarries in {1y, 2y, ...,Ky} both with noise power 1, then at least

one user will transmit on two subcarries in {1z, 2z, ...,Kz} either with noise power 2 or 3 and the

transmission rate of this user is at most 2.

Therefore, problem (12) is feasible if and only if that for all users kx (kx ∈ K) there exist jy and lz

such that

α
jy
kx,kx

= αlzkx,kx = 1, (kx, jy) ∈ S1, (kx, lz) ∈ S2

and

{1y, 2y, ...,Ky, 1z, 2z, ...,Kz} =

K⋃
k=1

{jy, lz} .
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According to the construction of S1, S2 and (11), we see that

{(kx, jy, lz)}Kk=1

is a match for the 3-dimensional matching problem.

It is simple to check that the above transformation from the 3-dimensional matching problem to the

feasibility problem (12) can be done in polynomial time. Since the 3-dimensional matching problem is

strongly NP-complete, we conclude that checking the feasibility of problem (12) is strongly NP-hard.

Therefore, the optimization problem (3) is also strongly NP-hard.

To illustrate the above proof, we take the following 3-dimensional matching problem as an example,

X = {1x, 2x, 3x, 4x} ,

Y = {1y, 2y, 3y, 4y} ,

Z = {1z, 2z, 3z, 4z} ,

and

R = {(1x, 2y, 2z), (1x, 2y, 4z), (2x, 1y, 2z),

(2x, 1y, 3z), (3x, 2y, 2z), (3x, 4y, 3z), (4x, 3y, 1z)} .

It is simple to check that

{(1x, 2y, 4z), (2x, 1y, 2z), (3x, 4y, 3z), (4x, 3y, 1z)} (14)

is a match for the above given instance of the 3-dimensional matching problem. Based on this 3-

dimensional matching problem, we construct a 4-user 8-carrier system with K = {1x, 2x, 3x, 4x} and

N = {1y, 2y, 3y, 4y, 1z, 2z, 3z, 4z}. According to (8), we have

S1 = {(1x, 2y), (2x, 1y), (3x, 2y), (3x, 4y), (4x, 3y)}

and

S2 = {(1x, 2z), (1x, 4z), (2x, 2z),

(2x, 3z), (3x, 2z), (3x, 3z), (4x, 1z)} .

The proof of Lemma 3.1 suggests the following system parameters (cf. (9)–(11)): all power budgets per

subcarrier are

Pnk = 3, k = 1x, 2x, 3x, 4x, n = 1y, 2y, 3y, 4y,
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Pnk = 2, k = 1x, 2x, 3x, 4x, n = 1z, 2z, 3z, 4z;

all noise powers are ηnk = 3 (k ∈ K, n ∈ N ) except

η
2y

1x
= η

1y

2x
= η

2y

3x
= η

4y

3x
= η

3y

4x
= 1,

η2z

1x
= η4z

1x
= η2z

2x
= η3z

2x
= η2z

3x
= η3z

3x
= η1z

4x
= 2;

and all direct-link channel gains are αnk,k = 0.25 (k ∈ K, n ∈ N ) except

α
2y

1x,1x
= α2z

1x,1x
= α4z

1x,1x
= α

1y

2x,2x
= α2z

2x,2x
= α3z

2x,2x
= 1,

α
2y

3x,3x
= α2z

3x,3x
= α

4y

3x,3x
= α3z

3x,3x
= α

3y

4x,4x
= α1z

4x,4x
= 1.

In this example, based on the match (14), we can construct an OFDMA solution to the corresponding

feasibility check problem (12), i.e.,(
p
1y

1x
, p

2y

1x
, p

3y

1x
, p

4y

1x
, p1z

1x
, p2z

1x
, p3z

1x
, p4z

1x

)
= (0, 3, 0, 0, 0, 0, 0, 2),(

p
1y

2x
, p

2y

2x
, p

3y

2x
, p

4y

2x
, p1z

2x
, p2z

2x
, p3z

2x
, p4z

2x

)
= (3, 0, 0, 0, 0, 2, 0, 0),(

p
1y

3x
, p

2y

3x
, p

3y

3x
, p

4y

3x
, p1z

3x
, p2z

3x
, p3z

3x
, p4z

3x

)
= (0, 0, 0, 3, 0, 0, 2, 0),(

p
1y

4x
, p

2y

4x
, p

3y

4x
, p

4y

4x
, p1z

4x
, p2z

4x
, p3z

4x
, p4z

4x

)
= (0, 0, 3, 0, 2, 0, 0, 0).

On the other hand, to look for a feasible solution of problem (12), we have to make each user transmit

on two subcarriers (one with noise power 1 and the other with noise power 2) and the direct-link channel

gains of the user on the corresponding two subcarriers be 1. Notice that η2y

1x
= η

1y

2x
= η

4y

3x
= η

3y

4x
= 1, η4z

1x
=

η2z

2x
= η3z

3x
= η1z

4x
= 2, and α2y

1x,1x
= α4z

1x,1x
= α

1y

2x,2x
= α2z

2x,2x
= α

4y

3x,3x
= α3z

3x,3x
= α

3y

4x,4x
= α1z

4x,4x
= 1.

We can ask user 1x to transmit on subcarriers 2y and 4z, user 2x to transmit on subcarriers 1y and 2z, user

3x to transmit on subcarriers 4y and 3z, and user 4x to transmit on subcarriers 3y and 1z , respectively.

Consequently, {(1x, 2y, 4z), (2x, 1y, 2z), (3x, 4y, 3z), (4x, 3y, 1z)} is a match for the given instance of the

3-dimensional matching problem.

Lemma 3.1 shows that checking the feasibility of problem (3) is strongly NP-hard when c = 2. Based

on this basic result, we can further prove that it is strongly NP-hard to check the feasibility of problem

(3) when N/K = c provided that c is a strictly greater than one constant. We summarize this result as

Theorem 3.1, and relegate its proof to Appendix A.

Theorem 3.1: Given any constant c > 1, checking the feasibility of problem (3) is strongly NP-hard

when N/K = c. Thus, problem (3) itself is also strongly NP-hard.

Remark 1: Problem (3) remains strongly NP-hard if the per-subcarrier power budget constraints Pnk ≥

pnk ≥ 0 (k ∈ K, n ∈ N ) there are replaced by the total power constraints
∑

n∈N p
n
k ≤ Pk (k ∈ K) or
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∑
k∈K

∑
n∈N p

n
k ≤ P. By setting Pk = 5 (k ∈ K) or P = 5K and using the same argument as in the

proof of Lemma 3.1 and Theorem 3.1, the strong NP-hardness of the corresponding feasibility problems

can be shown. In fact, all strong NP-hardness results of problems (3) and (6) in this paper also hold true

for problems with either of the above two total power constraints.

Remark 2: Another extension of problem (3) is the so-called joint subcarrier and bit allocation problem

[16], [29]. The goal of the joint subcarrier and bit allocation problem is to allocate subcarriers to users

and at the same time allocate transmission bits to each user-subcarrier pair such that the total transmission

power is minimized and the OFDMA constraints and all users’ transmission requirements are satisfied.

Mathematically, the problem can be formulated as

min
{pnk}, {rnk }

∑
k∈K

∑
n∈N

pnk

s.t.
∑
n∈N

rnk ≥ γk, k ∈ K,

pnk = (2r
n
k − 1)ηnk/α

n
k,k, k ∈ K, n ∈ N ,

rnk ∈ {r1, r2, ..., rm, 0} , k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N .

(15)

The second constraint in (15) says that (2r
n
k − 1)ηnk/α

n
k,k (cf. (1)) is necessary for user k transmitting on

subcarrier n to achieve transmission rate rnk , and the third constraint in (15) enforces rnk to take values

in the possible transmission rate set {r1, r2, ..., rm, 0} .

Given a total power budget P > 0, the decision version of problem (15) is to ask whether there exists

a feasible power and bit allocation strategy such that the optimal value of (15) is less than or equal to

P. It was shown in [29] that the decision version of problem (15) is strongly NP-hard when m ≥ 2. The

proof is based on a polynomial time transformation from the scheduling problem [35]. In fact, by setting

P = 5K,m = 2, r1 = 2, r2 = 1 and using the same argument as in Lemma 3.1 and Theorem 3.1, we

can also show the strong NP-hardness of the decision version of problem (15).

C. Strong NP-Hardness of Utility Maximization Problem (6) when N/K = c > 1

In this subsection, we study the computational complexity of the system utility maximization problem

(6) for the multi-user OFDMA system, where the utility is one of the four system utility functions

introduced in Section II. Theorem 3.2 establishes the strong NP-hardness of the problem for the general

case c > 1. The proof of Theorem 3.2 can be found in Appendix B.
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Theorem 3.2: Given any constant c > 1, the system utility maximization problem (6) with H =

H1, H2, H3, or H4 is strongly NP-hard when N/K = c.

Remark 3: The result in Theorem 3.2 is different from the one in [11]. It was shown in [11] that

the sum-rate utility maximization problem (6) (i.e., H = H1) is NP-hard when the number of users is

equal to 2. The proof is based on a polynomial time transformation from the equipartition problem [35],

which is known to be NP-complete but not strongly NP-complete. Theorem 3.2 shows that the sum-rate

utility maximization problem is strongly NP-hard. The other three utility functions (H = H2, H3, or H4)

are not considered in [11]. The reference [5] proved the NP-hardness of the three utility maximization

problems (H = H2, H3, or H4) in the two-user case by establishing a polynomial time transformation

from the equipartition problem. However, the proof of [5] is nonrigorous, since the given equipartition

problem has a yes answer does not imply that the transmission rate of the two users (at the solution of

the corresponding utility maximization problem) is equal to each other, and vice versa. The complexity

status of problem (6) with the proportional fairness utility, the harmonic mean utility, and the min-rate

utility remains unknown when K ≥ 2 is fixed.

In this section, we have shown that both the total power minimization problem (3) and the system utility

maximization problem (6) are strongly NP-hard. The basic idea of the proof is establishing a polynomial

time transformation from the 3-dimensional matching problem to the decision version of problems (3)

and (6). The complexity result suggests that there are not polynomial time algorithms which can solve

problems (3) and (6) to global optimality (unless P=NP). Therefore, one should abandon efforts to find

globally optimal subcarrier and power allocation strategy for problems (3) and (6), and determining an

approximately optimal subcarrier and power allocation strategy is more realistic in practice.

IV. EASY CASES

In this section, we identify some easy cases when problem (3) or problem (6) can be solved in

polynomial time. Before doing this, we introduce a concept called strong polynomial time algorithm. A

problem is said to admit a strong polynomial time algorithm if there exists an algorithm satisfying the

following two conditions:

a) the complexity of the algorithm (when applied to solve the problem) depends only on the dimension

of the problem and is a polynomial function of the dimension;

b) the algorithm solves the problem to global optimality (not just ε-global optimality).

We remark that so far we do not know whether there exists a strong polynomial time algorithm to

solve the general linear programming. When the interior-point algorithm is applied to solve the linear
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programming, it is only guaranteed to return an ε-optimal solution in polynomial time and the complexity

of the interior-point algorithm depends on the factor log2(1/ε) [43]. The best complexity results of solving

the linear programming is still related to the condition number of the constraint matrix [44].

In the following subsections, we identify four (strong) polynomial time solvable subclasses of problems

(3) and (6). More specifically, we first show that both problem (3) and problem (6) are (strongly)

polynomial time solvable when there is only one user in the system; see Subsection IV-A and Subsection

IV-B, respectively. The (extended) “water-filling” technique plays a fundamental role in proving the

polynomial time complexity. Then, we show in Subsection IV-C that problem (3) is strongly polynomial

time solvable when the number of subcarriers is equal to the number of users. In this case, we can

reformulate problem (3) as an assignment problem for a complete bipartite graph, which can be solved in

strong polynomial time. Finally, we show the polynomial time complexity of problem (6) with sum-rate

utility without the total power constraint by transforming it into the polynomial time solvable Hitchcock

problem in Subsection IV-D.

A. Polynomial Time Solvability of Problem (3) when K = 1

When there is only one user (i.e., K = 1), problem (3) becomes

P ∗ = min
{pn}

∑
n∈N

pn

s.t.
∑
n∈N

log2

(
1 +

αnpn

ηn

)
≥ γ,

Pn ≥ pn ≥ 0, n ∈ N .

(16)

We claim that solving problem (16) is equivalent to finding a minimal P such that the optimal value of

problem

max
{pn}

∑
n∈N

log2

(
1 +

αnpn

ηn

)
s.t.

∑
n∈N

pn ≤ P,

Pn ≥ pn ≥ 0, n ∈ N

(17)

is equal to γ. This is an important observation towards obtaining the closed-form solution of problem

(16). In fact, if the optimal value of problem (16) is P ∗, then the optimal value of problem (17) with

P = P ∗ is γ; and vice versa. In more details, for any fixed P > 0, problem (17) is strictly convex with
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respect to {pn} and hence has a unique solution. Therefore, the set defined by

∑
n∈N

log2

(
1 +

αnpn

ηn

)
≥ γ,

∑
n∈N

pn ≤ P ∗,

Pn ≥ pn ≥ 0, n ∈ N

contains only one point, which must be the solution of problem (17) with P = P ∗. Hence, problems

(16) and (17) share the same solution.

The solution to problem (16) or problem (17) is given by the following extended water-filling solution

pn = min

{
Pn,

(
1

λ
− ηn

αn

)
+

}
, n ∈ N , (18)

where λ is chosen such that the objective value of problem (17) is equal to γ, and (x)+ = max {x, 0} .

After obtaining the optimal λ, the optimal value P ∗ of problem (16) is given by

P ∗ =
∑
n∈N

pn =
∑
n∈N

min

{
Pn,

(
1

λ
− ηn

αn

)
+

}
.

For completeness, we show in Appendix C that (18) indeed is the solution to problem (17) and λ is

actually the Lagrangian multiplier corresponding to the constraint
∑

n∈N p
n ≤ P .

We point out that the water-filling solution (18) extends the conventional water-filling solution

pn =

(
1

λ
− ηn

αn

)
+

, n ∈ N (19)

in [42] in the following two respects. First, the conventional water-filling solution (19) solves the power

control problem (17) without the power budget constraints per subcarrier, while the power control problem

(17) not only involves the total power constraint but also involves the power budget constraints per

subcarrier. Second, the parameter λ in the conventional water-filling solution (19) is chosen such that∑
n∈N p

n = P, while the parameter λ in (18) is chosen such that∑
n∈N

log2

(
1 +

αnpn

ηn

)
= γ.

The only left problem now is to find τ := 1/λ in (18) such that the objective value of problem (17) is

equal to γ. A natural way to find the desired τ∗ is to perform a binary search on τ, since the objective

function of (17) is an increasing function with respect to τ. As is known, the efficiency of the binary

search depends on the initial search interval of τ. To derive a good lower and upper bound, we first order

the sequence

{bn}2Nn=1 :=

{
ηn

αn
,
ηn

αn
+ Pn

}N
n=1

, (20)
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and without loss of generality, suppose that

b1 ≤ b2 ≤ · · · ≤ b2N . (21)

Notice that it takes O(2N log2(2N)) operations to order {bn}2Nn=1 . Then we calculate the objective values

of problem (17) at τ = bn (n = 1, 2, ..., 2N), denoting them by {vn}2Nn=1. It follows from the monotonicity

of {bn} that

v1 ≤ v2 ≤ · · · ≤ v2N .

If there exists an index n∗ such that vn
∗

= γ, then τ∗ = bn
∗
. Otherwise, we have vn

∗
< γ < vn

∗+1 for

some n∗ and hence τ∗ ∈ (bn
∗
, bn

∗+1). In this case, we can start the binary search from (bn
∗
, bn

∗+1) and

it takes at most log2
(
(bn

∗+1 − bn∗)/ε
)

iterations to obtain an ε-optimal τ. Assume that

max
n

{
ηn

αn
+ Pn

}
≤ R,

where R is a sufficiently large constant1. Then, we can conclude that problem (16) is polynomial time

solvable and the worst case complexity of solving it is

O(log2(R/ε) +N log2 (N)).

Remark 4: The complexity status of the total power minimization problem (3) remains unknown when

K ≥ 2 is fixed.

B. Strong Polynomial Time Solvability of Problem (6) when K = 1

If the system has only one user, all the four system utility functions coincide and problem (6) becomes

max
{pn}

∑
n∈N

log2

(
1 +

αnpn

ηn

)
s.t.

∑
n∈N

pn ≤ P,

Pn ≥ pn ≥ 0, n ∈ N .

(22)

The main difference between problem (22) and problem (17) lies in that, P is a given constant in problem

(22), but is an unknown parameter in problem (17). This feature of P in problem (22) enables us to

design a strong polynomial time algorithm for the problem. Without loss of generality, we assume that the

1This is a standard assumption in the complexity analysis of the interior-point methods for solving convex conic programming

[43].
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parameters in problem (22) satisfy P ≤
∑

n∈N P
n; otherwise, the solution to problem (22) is pn = Pn

for all n ∈ N .

Notice that the solution to problem (22) is given by the extended water-filling solution (18), where τ :=

1/λ is chosen such that
∑

n∈N p
n = P. The desired τ∗ here can be found by solving a univariate linear

equation. In fact, in a similar fashion as in Subsection IV-A, we can order {bn}2Nn=1 in (20) and assume

that (21) holds. Then we calculate the total transmission power
∑

n∈N p
n at τ = bn (n = 1, 2, ..., 2N),

denoting them by {un}2Nn=1. It follows from the monotonicity of {bn} that

u1 ≤ u2 ≤ · · · ≤ u2N .

If there is an index n∗ such that P = un
∗
, then τ∗ = bn

∗
. Otherwise, we have that un

∗
< P < un

∗+1

for some 1 ≤ n∗ < N . Then for each n = 1, 2, ..., N, we have

min

{
Pn,

(
τ − ηn

αn

)
+

}

=



Pn, if
ηn

αn
+ Pn ≤ bn∗ ;

τ − ηn

αn
, if

ηn

αn
< bn

∗
<
ηn

αn
+ Pn;

0, if
ηn

αn
≥ bn∗ .

Therefore, the problem of finding the desired τ∗ reduces to solve a univariate linear equation in terms of

τ, and the desired τ∗ is obtained in a closed form. From the above discussion, we see that the complexity

of finding the desired τ∗ is O(N log2(N)).

Remark 5: The reference [5] has addressed problem (22), but without power budget constraints per

subcarrier. The reference [5] has also shown that the sum-rate maximization problem (6) is NP-hard when

K ≥ 2.

C. Strong Polynomial Time Solvability of Problem (3) when N = K

When the number of users is equal to the number of subcarriers (i.e., N = K), we transform problem

(3) into an assignment problem for a complete bipartite graph with 2K nodes in polynomial time.

Specifically, we construct the bipartite graph G = (V,E) with

• the node set

V =
{

1, 2, ...,K, 1′, 2′, ...,K ′
}
,

where K = {1, 2, ...,K} and N = {1′, 2′, ...,K ′} correspond to the set of users and the set of

subcarriers, respectively;
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• the edge set

E =
{

(k, n) | k ∈ {1, 2, ...,K} , n ∈
{

1′, 2′, ...,K ′
}}

with the weight wnk of edge (k, n)

wnk =


(2γk − 1) ηnk

αnk,k
, if log2

(
1 +

αnk,kP
n
k

ηnk

)
≥ γk;

∑
k∈K

∑
n∈N

Pnk , otherwise.
(23)

Therefore, problem (3) can be equivalently reformulated as

{(xnk)∗} = arg min
{xn

k}

∑
k∈K

∑
n∈N

wnkx
n
k

s.t.
∑
k∈K

xnk = 1, n ∈ N ,

∑
n∈N

xnk = 1, k ∈ K,

xnk ∈ {0, 1} , k ∈ K, n ∈ N .

(24)

In the above problem, the binary variable xnk is equal to 1 if user k transmits power on subcarrier n

and 0 otherwise. The first constraint
∑

k∈K x
n
k = 1 (n ∈ N ) stands for the OFDMA constraint, which

requires that at most one user is allowed to transmit power on each subcarrier. The second constraint∑
n∈N x

n
k = 1 (k ∈ K) requires that each user must transmit on one subcarrier to satisfy its specified

transmission rate requirement.

From [36, Theorem 11.1], we know that the Hungarian method solves problem (24) to global optimality

in O(K3) operations. The Hungarian method is in essence a primal-dual simplex algorithm for solving

the linear program
{(xnk)∗} = arg min

{xn
k}

∑
k∈K

∑
n∈N

wnkx
n
k

s.t.
∑
k∈K

xnk = 1, n ∈ N ,

∑
n∈N

xnk = 1, k ∈ K,

0 ≤ xnk ≤ 1, k ∈ K, n ∈ N ,

(25)

which is a relaxation of problem (24) by replacing xnk ∈ {0, 1} with 0 ≤ xnk ≤ 1. In general, the

primal-dual simplex method is not a polynomial time algorithm. When it is used to solve problem (25),

however, it can return the global optimal integer solution of problem (25) in O(K3) operations [36].
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We remark that if the optimal value P ∗ of problem (24) satisfies

P ∗ <
∑
k∈K

∑
n∈N

Pnk ,

the optimal solution to (3) is

(pnk)∗ = (xnk)∗
(2γk − 1) ηk

αnk,k
, k ∈ K, n ∈ N ;

otherwise, we will have that

P ∗ ≥
∑
k∈K

∑
n∈N

Pnk ,

which indicates that problem (3) is infeasible.

Remark 6: In fact, problem (3) is also polynomial time solvable when N = K + C, where C ≥ 1 is

a given constant integer. Specifically, we can first partition K +C subcarriers into K nonempty subsets

{Nn}K
′

n=1′ . Denote the number of ways to partition K + C subcarriers into K nonempty subsets by

S(K + C,K). We show in Appendix D that S(K + C,K) is upper bounded by (K + C)2C .

After the partition of the subcarriers, the problem reduces to the case N = K. The only difference

here is that the parameter wnk (k = 1, 2, ...,K, n = 1′, 2′, ...,K ′) is set to be

wnk = min
{plk}l∈Nn

∑
l∈Nn

plk

s.t.
∑
l∈Nn

log2

(
1 +

αlk,kp
l
k

ηlk

)
≥ γk,

P lk ≥ plk ≥ 0, l ∈ Nn

(26)

if the above problem is feasible; otherwise

wnk =

K∑
k=1

N∑
l=1

P lk.

We know from Subsection IV-A that problem (26) is polynomial time solvable under a mild assumption.

Actually, if problem (26) is feasible and Nn = {l} only contains a singleton, we have

wnk =
(2γk − 1) ηlk

αlk,k
,

which is the same as the one in (23). Then, for a given partition p = 1, 2, ..., S(K +C,K), we can use

the Hungarian method to solve problem (24) in O(K3) operations, and assume the optimal value to be

vp.Therefore, the optimal value of the original problem is

min
p=1,2,...,S(K+C,K)

{vp}

if it is strictly less than
∑K

k=1

∑N
l=1 P

l
k; otherwise the original problem is infeasible. It follows from the

above analysis that problem (3) with N = K + C can be solved in O(K2C+3) operations.
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D. Polynomial Time Solvability of Sum-Rate Maximization Problem (6) without Total Power Constraint

If we drop the total power constraint
∑

n∈N p
n
k ≤ Pk (k ∈ K), then problem (6) with H = H1

becomes
max
{pnk}

H1(R1, R2, ..., RK)

s.t. Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N .

(27)

Problem (27) is always feasible as pnk = 0 (for all k and n) is a certificate for the feasibility. Further,

since problem (27) does not involve the total power constraint for each user, its optimal solution pnk (k ∈

K, n ∈ N ) is either 0 or Pnk . To solve problem (27) in polynomial time, we consider transforming it

into the polynomial time solvable Hitchcock problem [36] (also known as transportation problem).

Hitchcock problem. Suppose there are K sources of some commodity, each with a supply of ak ∈

R+ (k = 1, 2, ...,K) units, and N terminals, each of which has a demand of dn ∈ R+ (n = 1, 2, ...N)

units. Suppose that the unit cost of transporting the commodity from source k to terminal n is cnk ∈

R+ (k = 1, 2, ...,K, n = 1, 2, ..., N). The problem is how to satisfy the demands at a minimal cost?

In fact, by setting

ak = N, k = 1, 2, ...,K;

dn = 1, n = 1, 2, ...N, dN+1 = (K − 1)N ;

cnk = c̄− log2

(
1 +

αnk,kP
n
k

ηnk

)
≥ 0, k = 1, 2, ...,K, n = 1, 2, ..., N ;

cN+1
k = 0, k = 1, 2, ...,K,

where c̄ = maxk,n

{
log2

(
1 +

αnk,kP
n
k

ηnk

)}
, we can see that problem (27) is equivalent to the following

Hitchcock problem

min
{xn

k}

K∑
k=1

N+1∑
n=1

cnkx
n
k

s.t.
∑K

k=1 x
n
k = 1, n = 1, 2, ..., N,∑K

k=1 x
N+1
k = (K − 1)N,∑N

n=1 x
n
k = N, k = 1, 2, ...,K,

xnk = {0, 1} , k = 1, 2, ...,K, n = 1, 2, ..., N.

(28)

In the above problem, the binary variable xnk = 1 (k = 1, 2, ...,K, n = 1, 2, ..., N) if user k transmits

full power Pnk on subcarrier n and xnk = 0 if user k does not transmit any power on subcarrier n. The
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constraint
∑K

k=1 x
n
k = 1 and the constraint xnk = {0, 1} (k = 1, 2, ...,K) implies that at most one user

is allowed to transmit power on each subcarrier n. However, one user is allowed to transmit on multiple

subcarriers. The variables xN+1
k (k = 1, 2, ...,K) are auxiliary dummy variables, since cN+1

k = 0 for

all k = 1, 2, ...,K. Moreover, we know from [36, Theorem 13.3 and its Corollary] that problem (28) is

equivalent to the linear program

min
{xn

k}

K∑
k=1

N+1∑
n=1

cnkx
n
k

s.t.
∑K

k=1 x
n
k = 1, n = 1, 2, ..., N,∑K

k=1 x
N+1
k = (K − 1)N,∑N

n=1 x
n
k = N, k = 1, 2, ...,K,

0 ≤ xnk ≤ 1, k = 1, 2, ...,K, n = 1, 2, ..., N.

(29)

The equivalence between problems (28) and (29) is because the linear equality constraint in (29) satisfies

the so-called totally unimodular property [36], and thus all the vertices of the feasible set of problem

(29) are integer. Since the linear program (29) is polynomial time solvable, the sum-rate maximization

problem (27) is polynomial time solvable. Further, suppose {(xnk)∗} is the optimal solution to problem

(29), then the optimal solution {(pnk)∗} to problem (27) is

(pnk)∗ = (xnk)∗Pnk , k = 1, 2, ...,K, n = 1, 2, ..., N.

It is worthwhile remarking that the so-called αβ-algorithm [36, Section 7.4] can efficiently solve problem

(29), although it is not a polynomial time algorithm.

Remark 7: In a similar fashion, we can show that the weighted sum-rate maximization problem

max
{pnk}

K∑
k=1

wkRk

s.t. Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N

(30)

is also polynomial time solvable, where wk ≥ 0 (k = 1, 2, ...,K) are non-negative weights. Again, we can

transform problem (30) into the Hitchcock problem in polynomial time. The corresponding parameters

of the Hitchcock problem are the same as before, except

cnk = c̄− wk log2

(
1 +

αnk,kP
n
k

ηnk

)
≥ 0
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for k = 1, 2, ...,K, n = 1, 2, ..., N, and

c̄ = max
k,n

{
wk log2

(
1 +

αnk,kP
n
k

ηnk

)}
.

We summarize the main results in this section as the following theorem.

Theorem 4.1: The following statements are true.

- Problem (3) is strongly polynomial time solvable when the number of users is equal to the number

of subcarriers.

- Problem (3) is polynomial time solvable when there is only one user in the system.

- Problem (6) is strongly polynomial time solvable when there is only one user in the system.

- The (weighted) sum-rate maximization problem (6) without the total power constraint is polynomial

time solvable.

In this section, we have identified four subclasses of problems (3) and (6) which are (strongly)

polynomial time solvable. By doing so, we successfully pick a subset of computationally tractable

problems within the general class of strongly NP-hard joint subcarrier and power allocation problems.

V. CONCLUDING REMARKS

Dynamic allocation of subcarrier and power resources in accordance with channel and traffic load

changes can significantly improve the network throughput and spectral efficiency of the multi-user multi-

carrier communication system where a number of users share some common discrete subcarriers. A major

challenge associated with joint subcarrier and power allocation is to find, for a given channel state, the

globally optimal subcarrier and power allocation strategy to minimize the total transmission power or

maximize the system utility function. This paper mainly studies the computational challenges of the joint

subcarrier and power allocation problem for the multi-user OFDMA system. We have shown that the

general joint subcarrier and power allocation problem for the multi-user OFDMA system is strongly NP-

hard. The complexity result suggests that we should abandon efforts to find globally optimal subcarrier

and power allocation strategy for the general multi-user OFDMA system unless for some special cases

(i.e., the case when there is only one user in the system, or the case when the number of users is equal

to the number of subcarriers). The problem is shown to be (strongly) polynomial time solvable in these

special cases. In a companion paper, we shall design efficient algorithms to solve the joint subcarrier and

power allocation problem.
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APPENDIX A

PROOF OF THEOREM 3.1

Before going into very details, let us first give a high level preview of the proof. The basic idea of

proving the strong NP-hardness of problem (3) with c > 1 is to reduce it to the one with c = 2. More

specifically, we first partition all users into two types (Type-I and Type-II) and also all subcarriers into

two types (Type-I and Type-II), where the number of Type-I subcarriers is required to be twice as large

as the number of Type-I users. Then, we construct “good” channel parameters between Type-I (Type-II)

users and Type-I (Type-II) subcarriers while “bad” channel parameters between Type-I (Type-II) users

and Type-II (Type-I) subcarriers such that the only way for all users to satisfy their transmission rate

requirements is that Type-I (Type-II) users will only transmit power on Type-I (Type-II) subcarriers. In

addition, in our construction, all Type-II users and Type-II subcarriers are dummy ones, since all Type-

II users’ transmission rate requirements can easily be satisfied by transmitting full power on Type-II

subcarriers. In this way, the problem of checking the feasibility of problem (3) with c > 1 reduces to the

one of checking whether all Type-I users’ transmission rate targets can be met or not, where the number

of Type-I subcarriers is twice larger than the number of Type-I users (c = 2) as required in the partition.

Below is the detailed proof of Theorem 3.1. By Lemma 3.1, we only need to consider the following

two cases: (i) 1 < c < 2 and (ii) c > 2.

In case (i), we partition K users into (c− 1)K Type-I users and (2− c)K Type-II users, and N = cK

subcarriers into 2(c−1)K Type-I subcarriers and (2−c)K Type-II subcarriers. We construct the channel

parameters of Type-I users on Type-I subcarriers in the same way as in the proof of Lemma 3.1 where

c = 2. Furthermore, noise powers, direct-link channel gains, and power budgets of all Type-II users on

Type-II subcarriers are set to 0.3, 1, and 3, respectively; these parameters of all Type-I users on Type-II

subcarriers and all Type-II users on Type-I subcarriers are set to 3, 0.25, and 1, respectively. All Type-II

users’ desired transmission rate targets are set to be log2 11. See Fig. 1 for the corresponding OFDMA

system.
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Type-II User(s) Type-II Subcarriers

Type-I Users Type-I Subcarriers
(1/2/3, 1/0.25, 2/3)

(0.3, 1, 3)

(3, 0.25, 1)

(3, 0.25, 1)

1

Fig. 1. An illustration of the multi-user OFDMA system constructed for case (i) and case (ii), where the number of Type-I

subcarriers is exactly twice of the number of Type-I users. In both cases, the channel parameters of Type-I users on Type-I

subcarriers are chosen in the same way as in the proof of Lemma 3.1 where c = 2. Noise powers, direct-link channel gains,

power budgets of Type-II user(s) on Type-II subcarriers are set to 0.3, 1, and 3, respectively; these parameters of Type-I users on

Type-II subcarriers and Type-II user(s) on Type-I subcarriers are set to 3, 0.25, and 1, respectively. For case (i), the transmission

rate targets of Type-II users are all set to log2 11. For case (ii), the transmission rate target of the single Type-II user is set to

((c− 2)K + 2) log2 11.

Our construction is such that the channel condition of the Type-I (Type-II) users on the Type-I (Type-

II) subcarriers is reasonably better than the one of the Type-I (Type-II) users on the Type-II (Type-I)

subcarriers. One can check that the only possible way for all K users to meet their transmission rate

targets is that, each Type-II user transmits full power on (any) one Type-II subcarrier (actually Type-II

users and subcarriers are dummy users and subcarriers) and all Type-I users appropriately transmit power

on Type-I subcarriers. By Lemma 3.1, however, checking whether all Type-I users’ transmission rate

requirements can be satisfied is strongly NP-hard.

In case (ii), we partition K users into K−1 Type-I users and 1 Type-II user, and N = cK subcarriers

into 2(K−1) Type-I subcarriers and (c−2)K+2 Type-II subcarriers. We construct the channel parameters

of Type-I users on Type-I subcarriers in the same way as in the proof of Lemma 3.1 where c = 2.

Moreover, noise powers, direct-link channel gains, and power budgets of the single Type-II user on

Type-II subcarriers are set to 0.3, 1, and 3, respectively; these parameters of all Type-I users on Type-II

subcarriers and the single Type-II user on Type-I subcarriers are set to 3, 0.25, and 1, respectively. The

transmission rate of the single Type-II user is required to be not less than ((c − 2)K + 2) log2 11. See

Fig. 1 for the corresponding system.
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Due to special construction of the system, one can check that the only way for all K users to meet their

transmission rate targets is that, the single Type-II user transmits full power on all Type-II subcarriers

and all Type-I users appropriately transmit power on Type-I subcarriers. Again, by Lemma 3.1, checking

whether all Type-I users’ transmission rate requirements can be satisfied is strongly NP-hard.

APPENDIX B

PROOF OF THEOREM 3.2

We first prove the strong NP-hardness of problem (6) with H = H1, H2, H3, and H4 for the special

case c = 2 and then prove their strong NP-hardness for the general case c > 1.

We first consider the case N/K = 2. For any instance of the 3-dimensional matching problem, we

construct the same system as in the proof of Lemma 3.1 and set Pk = 5 (k ∈ K = {1x, 2x, ...,Kx}).

Strong NP-hardness of problem (6) with H = H4 : Lemma 3.1 directly implies that the following

problem
max
{pnk}

min
k∈K
{Rk}

s.t.
∑
n∈N

pnk ≤ Pk, k ∈ K,

Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N

is strongly NP-hard, since the problem of checking whether its optimal value is greater than or equal to

3 is strongly NP-hard.

Strong NP-hardness of problem (6) with H = H1 : We prove that the sum-rate maximization

problem

max
{pnk}

1

K

∑
k∈K

Rkx

s.t.
∑
n∈N

pnk ≤ Pk, k ∈ K,

Pnk ≥ pnk ≥ 0, k ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, k, j ∈ K, n ∈ N

(31)

is also strongly NP-hard. In particular, we show that checking the optimal value H1(R
∗
1x
, R∗2x

, ..., R∗Kx
)

of problem (31) is greater than or equal to 3 is strongly NP-hard, where R∗kx is the transmission rate of
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user kx at the solution of problem (31). To this aim, consider the following relaxation of problem (31),

max
{pnk}

1

K

∑
k∈K

R′k

s.t.
∑
k∈K

∑
n∈N

pnk ≤ 5K,

pnk ≥ 0, k ∈ K, k, j ∈ K, n ∈ N ,

pnkp
n
j = 0, ∀ j 6= k, n ∈ N ,

(32)

where

R′k =
∑
n∈Y

log2

(
1 +

pnk
1

)
+
∑
n∈Z

log2

(
1 +

pnk
2

)
≥ Rk.

Due to the OFDMA constraint, we see that problem (32) is equivalent to

max
{pn}

∑
n∈Y

log2

(
1 +

pn

1

)
+
∑
n∈Z

log2

(
1 +

pn

2

)
s.t.

∑
n∈N

pn ≤ 5K,

pn ≥ 0, n ∈ N .

(33)

Noticing that problem (33) is convex, we can obtain its optimal solution

(p1y , p2y , ..., pKy , p1z , p2z , ..., pKz) = (3, 3, ..., 3, 2, 2, ..., 2)

and its optimal value 3K. Therefore, the optimal value H1(R
∗
1x
, R∗2x

, ..., R∗Kx
) of the original problem

(31) is less than or equal to 3, and the equality holds if and only if

R∗1x
= R∗2x

= · · · = R∗Kx
= 3.

The latter holds if and only if the answer to the 3-dimensional matching problem is yes. Therefore, the

optimal value of problem (31) is greater than or equal to 3 if and only if the answer to the 3-dimensional

matching problem is yes.

Strong NP-hardness of problem (6) with H = H2 and H = H3 : For the cases H2 and H3, notice

that for all R1, R2, . . . , RK ≥ 0,

H4(R1, R2, ..., RK) ≤ H3(R1, R2, ..., RK)

≤ H2(R1, R2, ..., RK) ≤ H1(R1, R2, ..., RK)

and the equalities hold if and only if

R1 = R2 = · · · = RK .
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Therefore, the optimal value of H2(R
∗
1x
, R∗2x

, ..., R∗Kx
) or H3(R

∗
1x
, R∗2x

, ..., R∗Kx
) is greater than or equal

to 3 if and only if the answer to the 3-dimensional matching problem is yes. This implies the strong

NP-hardness of all the four utility maximization problems (6) with c = 2.

Now we consider the general case N/K = c > 1. We show the strong NP-hardness of problem (6) for

the general case c > 1 by constructing some dummy users and subcarriers as in the proof of Theorem

3.1. Take the sum-rate maximization problem as an example. It is simple to check that

- in case 1 < c < 2, the sum-rate utility function of the constructed system is greater than or equal to

3(c− 1) + (2− c) log2 11

if and only if the given instance of the 3-dimensional matching problem with size (c− 1)K has a

positive answer;

- in case c > 1, the sum-rate utility function of the constructed system is greater than or equal to

3(K − 1) + ((c− 2)K + 2) log2 11

K

if and only if the given instance of the 3-dimensional matching problem with size K − 1 has a

positive answer.

Hence, the sum-rate maximization problem in the case that c > 1 is strongly NP-hard. Similar results

also hold true for the other three utility functions. We omit the proof for brevity.

APPENDIX C

EXTENDED WATER-FILLING SOLUTION FOR POWER CONTROL PROBLEM (17)

To show (18) is the solution to problem (17), let us first write down the KKT condition of problem (17).

Suppose (λ, {ξn} , {νn}) are the Lagrangian multipliers corresponding to the constraints
∑

n∈N p
n ≤

P, Pn ≥ pn, and pn ≥ 0, respectively, then the KKT condition of problem (17) is given as follows

−1

ηn/αn + pn
+ λ+ ξn − νn = 0,

∑
n∈N

pn ≤ P, λ ≥ 0, λ

(∑
n∈N

pn − P

)
= 0,

Pn ≥ pn, ξn ≥ 0, (Pn − pn)ξn = 0, n ∈ N ,

pn ≥ 0, νn ≥ 0, pnνn = 0, n ∈ N .

(34)

Since problem (17) is convex for any fixed P > 0, it follows that the KKT condition (34) is necessary

and sufficient for {pn} to solve problem (17). Therefore, to show (18) is the solution to problem (17),
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it suffices to show that there exist appropriate Lagrangian multipliers such that ({pn} , λ, {ξn} , {νn})

satisfy the KKT system (34). Next, we construct appropriate (λ, {ξn} , {νn}) such that {pn} in (18)

together with the constructed (λ, {ξn} , {νn}) satisfy all the conditions in (34).

Specifically, we choose λ ≥ 0 such that the objective value of problem (17) is equal to γ, and

- if pn = 0 in (18), then 1/λ− ηn/αn ≤ 0; we set ξn = 0 and νn = λ− αn/ηn ≥ 0;

- if 0 < pn < Pn in (18), then Pn > 1/λ− ηn/αn > 0; we set ξn = νn = 0;

- if pn = Pn in (18), then 1/λ− ηn/αn ≥ Pn; set ξn =
1

ηn/αn + Pn
− λ ≥ 0 and νn = 0.

It is simple to check ({pn} , λ, {ξn} , {νn}) constructed in the above satisfies the KKT system (34). Hence,

(18) is the solution to problem (17).

APPENDIX D

THE ORDER OF STIRLING NUMBER S(K + C,K)

In combinatorics, a Stirling number of the second kind [45], denoted by S(N,K), is the number of

ways to partition a set of N objects into K nonempty subsets, where N ≥ K ≥ 1. Stirling numbers of

the second kind obey the following recursive relation

S(N + 1,K) = S(N,K − 1) +KS(N,K) (35)

with initial conditions S(k, k) = 1 and S(k, 0) = 0 for any k ≥ 1. To understand this formula, observe

that a partition of N + 1 objects into K nonempty subsets either contains the (N + 1)-th object as a

singleton (which corresponds to the term S(N,K − 1) in (35)) or contains it with some other elements

(which corresponds to the term KS(N,K) in (35)).

Next, we claim by induction that

S(K + C,K) ≤ (K + C)2C .

In fact, when C = 1, we obtain

S(K + 1,K) =
K(K + 1)

2
.

This is because that dividing K + 1 elements into K sets means dividing it into one set of size 2 and

K−1 sets of size 1. Therefore, we only need to pick those two elements. Assume that S(K+C−1,K) ≤
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(K + C − 1)2(C−1), we show that S(K + C,K) ≤ (K + C)2C . By invoking (35), we have

S(K + C,K)

= S(K + C − 1,K − 1) +KS(K + C − 1,K)

≤ S(K + C − 1,K − 1) +K(K + C − 1)2(C−1)

≤ S(K + C − 1,K − 1) + (K + C)2C−1

≤
∑K

k=1 (k + C)2C−1

≤ (K + C)2C ,

which shows that S(K + C,K) ≤ (K + C)2C holds true.
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