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Abstract

Consider the BFGS quasi-Newton method applied to a general non-
convex function that has continuous second derivatives. This paper aims
to construct a four-dimensional example such that the BFGS method need
not converge. The example is perfect in the following sense: (a) All the
stepsizes are exactly equal to one; the unit stepsize can also be accepted by
various line searches including the Wolfe line search and the Arjimo line
search; (b) The objective function is strongly convex along each search
direction although it is not in itself. The unit stepsize is the unique
minimizer of each line search function. Hence the example also applies to
the global line search and the line search that always picks the first local
minimizer; (c) The objective function is polynomial and hence is infinitely
continuously differentiable. If relaxing the convexity requirement of the
line search function; namely, (b), we are able to construct a relatively
simple polynomial example.

Keywords. unconstrained optimization, quasi-Newton method, non-
convex function, global convergence.

1 Introduction

Consider the unconstrained optimization problem

min f(x), x ∈ Rn, (1.1)

where f is a general non-convex function that has continuous second derivatives.
The quasi-Newton method is a class of well-known and efficient methods for
solving (1.1). It is of the iterative scheme

xk+1 = xk − αkHkgk, (1.2)
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where x1 is a starting point, Hk is some approximation to the inverse Hessian
[∇2f(xk)]−1, gk = ∇f(xk), and αk is a stepsize obtained in some way. Defining
the vectors

δk = xk+1 − xk, γk = gk+1 − gk,

the quasi-Newton method asks the next approximation matrix Hk+1 to satisfy
the secant equation

Hk+1γk = δk. (1.3)

This similarity to the identical equation [∇2f(xk+1)]−1γk = δk in the quadrat-
ic case enables the quasi-Newton method to be superlinearly convergent (see
Dennis and Moré [5], for example) and makes it very attractive in practical
optimization.

The first quasi-Newton method was dated back to Davidon [4] and Fletcher
and Powell [9]. The DFP method updates the approximation matrix Hk to
Hk+1 by the formula

Hk+1 = Hk −
Hkγkγ

T
kHk

γTkHkγk
+

δkδ
T
k

δTk γk
. (1.4)

Nowadays, the most efficient quasi-Newton method is perhaps the BFGS method,
which was proposed by Broyden [2], Fletcher [7], Goldfarb [10], and Shanno [24],
independently. The matrix Hk+1 in the BFGS method can be updated by the
way

Hk+1 = Hk −
δkγ

T
kHk +Hkγkδ

T
k

δTk γk
+

(
1 +

γTkHkγk
δTk γk

)
δkδ

T
k

δTk γk
. (1.5)

To pass the positive definiteness of the matrix Hk to Hk+1, practical quasi-
Newton algorithms make use of the Wolfe line search to calculate the stepsize
αk, which ensures a positive curvature to be found at each iteration; namely,
δTk γk > 0. More exactly, defining the one-dimensional line search function

Ψk(α) = f(xk − αHkgk), α ≥ 0, (1.6)

the Wolfe line search consists in finding a stepsize αk such that

Ψk(αk) ≤ Ψk(0) + µΨ′k(0)αk (1.7)

and
Ψ′k(αk) ≥ ηΨ′k(0), (1.8)

where µ and η are constants with 0 < µ ≤ η < 1.
There have been a large quantity of research works devoting to the global

convergence of the quasi-Newton method (see Yuan [28] and Sun and Yuan [26],
for example). Specifically, Powell [18] showed that the DFP method with exact
line searches is globally convergent for uniformly convex functions. In another
paper [20], Powell established the global convergence of the BFGS method with
the Wolfe line search for uniformly convex functions. This result was extended
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by Byrd, Nocedal and Yuan [1] to the whole Broyden’s convex family of methods
except the DFP method. Therefore it is natural to ask the following question:
Does the DFP method with the Wolfe line search converge globally for uniformly
convex functions? On the other hand, since the BFGS method with the Wolfe
line search works well for both convex and non-convex functions, we might ask
another question: Does the BFGS method with the Wolfe line search converge
globally for general functions? The difficulty and importance of the two conver-
gence problems has been addressed in many situations, including Nocedal [15],
Fletcher [8], and Yuan [28].

Recent studies provide a negative answer to the convergence problem of
the BFGS method for nonconvex functions. As a matter of fact, in an early
paper [21], which analyzes the convergence properties of the conjugate gradient
method, Powell mentioned that the BFGS method need not converge if the line
search can pick any local minimizer of the line search function Ψk(α). After
further studies on the two-dimensional example in [21], Dai [3] presented an
example with six cycling points and showed by the example that the BFGS
method with the Wolfe line search may fail for nonconvex functions. Later,
Mascarenhas [14] constructed a three-dimensional counter-example such that
the BFGS method does not converge if the line search picks the global minimizer
of the function Ψk(α). It should be noted that the stepsize in the counter-
example of [14] also satisfies the Wolfe line search conditions. However, neither
examples are such that the stepsize is the first local minimizer of the line search
function Ψk(α).

Surprisingly enough, if there are only two variables, and if the stepsize is
chosen to be the first local minimizer of Ψk(α); namely,

αk = arg min {α > 0 : α is a local minimizer of Ψk(α)}, (1.9)

Powell [22] established the global convergence of the BFGS method for general
twice continuously differentiable function. Powell’s proof makes use of the prin-
ciple of contradiction and is quite sophisticated. Assuming the nonconvergence
of the method and the relation lim inf

k→∞
‖gk‖ 6= 0, Powell showed that the limit

points of the BFGS path

P = {x : x lies on the line segment connecting xk and xk+1 for some k ≥ 1}

(that is exactly the same as the Polak-Ribière conjugate gradient path if n = 2
and gTk+1δk = 0 for all k) forms some line segment L. The use of the specific
line search (1.9) is such that the objective function is monotonically decreasing
on the line segment Lk that connects xk and xk+1. It follows that f(x) ≡
lim
k→∞

f(xk) for all x ∈ L. Consequently, the line segment Lk cannot cross L
and all the points xk with large indices lies in the same side of L. Furthermore,
Powell showed that starting around from one end of the line segment L, the
BFGS path can not get any close to the other end of L and finally obtained
a contradiction. Intuitively, it is difficult to extend Powell’s result to the case
when n ≥ 3. This is because, even if it has been shown that the BFGS path
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tends to some limit line segment L, each line segment Lk could turn around L
providing that n ≥ 3, making the similar analysis of the BFGS path complicated
and nearly impossible.

The purpose of this paper is to construct a four-dimensional counter-example
for the BFGS method with the following features:

(a) All the stepsizes in the example are exactly equal to one; namely,

αk ≡ 1; (1.10)

For the search direction defined by the BFGS update in the example, a
unit stepsize satisfies various line search conditions, including the Wolfe
conditions and the Armijo conditions;

(b) The objective function is strongly convex along each search direction; name-
ly, the line search function Ψk(α) is strongly convex for all k, although the
objective function is not in itself. The unit stepsize is the unique minimiz-
er of Ψk(α). Hence the example also applies to the global line search and
the specific line search (1.9);

(c) The objective function is polynomial and hence is infinitely continuously
differentiable.

On the other hand, the objective function in our example is linear in the third
and fourth variables and thus has no local minimizer. However, the iterations
generated by the BFGS method tend to a non-stationary point.

As seen from §3.4, the construction of the example is quite complicated. To
be such that the line search function Ψk(α) is strongly convex, a polynomial of
degree 38 is introduced. Nevertheless, if we relax the convexity requirement of
Ψk(α); namely, (b) in the above, it is possible to construct a relatively simple
polynomial example of low degree (see §3.3).

The construction of our examples can be divided into four procedures: (1)
Prefix the special forms of the steps {δk} and gradients {gk}, leaving several
parameters to be determined later. In this case, once x1 is given, the whole
sequence {xk} is fixed. As seen in §2.1, our steps {δk} and gradients {gk}
are asked to possess some symmetrical and cyclic properties and to push the
iterations {xk} tend to the eight vertices of a regular octagon. This is very
helpful in simplifying the construction of the examples and we can focus our
attention on the choice of the parameter t, that answers for the decay of the
last two components of δk and the first two components of gk. (2) To enable
the BFGS method to generate those prefixed steps, investigate the consistency
conditions on the steps {δk} and gradients {gk}. With the prefixed forms of
{δk} and {gk}, we show in §2.2 that the unit stepsize is indispensable, whereas
this stepsize is usually used as the first trial stepsize in the implementation of
quasi-Newton methods. Four more consistency conditions on {δk} and {gk}
are obtained in §2.3 by expressing the vectors Hk+1γk, Hk+1gk+1, Hk+1gk+2

and Hk+1gk+3 by some δk’s and gk’s instead of considering the quasi-Newton
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matrix Hk+1 itself. (3) Choose the parameters in some way to satisfy the con-
sistency conditions and other necessary conditions on the objective function. As
seen in §2.4, the first three consistency conditions are actually corresponding to
some under-determined linear system. Substituting its general solution by the
Cramer’s rule into the fourth consistency condition, we are led to a nonlinear
equation from which the exact value can be obtained for the decay parameter t.
By suitably choosing the other parameters, we can express all the quasi-Newton
updating matrices including the initial choice for H1 in §2.5. (4) Construct a
suitable objective function f whose gradients are the preassigned values; name-
ly, ∇f(xk) = gk for all k ≥ 1 and the line search has the desired properties.
This will be done in the whole third section. To make full use of symmetrical
and cyclic properties of the steps {δk} and {gk}, we carefully choose a special
form of the objective function. In addition, the introduction of element func-
tion φ in §3.4 helps us greatly to convexify the line search function and finally
complete the perfect example that meets all the requirements (a), (b) and (c).
Some concluding remarks are given in the last section.

2 Looking for Consistent Steps and Gradients

2.1 The Forms of Steps and Gradients

Consider the case of four dimension. Inspired by [21], [3] and [14], we assume
that the steps {δk} have the following form:

δ1 = (η1, ξ1, γ1, τ1)T ; δk+1 = M δk (k ≥ 1), (2.1)

where M is the 4× 4 matrix defined by

M =


(

cos θ1 − sin θ1
sin θ1 cos θ1

)
0

0 t

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
 . (2.2)

In the above, t is a parameter satisfying 0 < |t| < 1. This parameter answers
for the decay of the last two components of the steps {δk}. The angles θ1 and
θ2 are chosen so that θ1 = 2π

m1
and θ2 = 2π

m2
for some positive integers m1 and

m2. Specifically, we choose in this paper

θ1 =
1

4
π, θ2 =

3

4
π. (2.3)

Consequently, the first two components of the steps {δk} turn to the same after
every eight iterations, and the last two components will shrink at a factor of t8

after every eight iterations. Further, we can see that the iterations {xk} will
tend to turn around the eight vertices of some regular octagon (see §3.1 for more
details).

Accordingly, the gradients {gk} are assumed to be of the form

g1 = (l1, h1, c1, d1)T ; gk+1 = P gk (k ≥ 1), (2.4)
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where

P =

 t

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
0

0

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
 . (2.5)

Since 0 < |t| < 1, we see that the first two components of {gk} vanish, whereas
the last two components of the gradient {gk}, turn to the same after eight
iterations. It follows that none of the cluster points generated by the BFGS
method are stationary points.

2.2 Unit Stepsizes

It is well known that the unit stepsize is usually used as the first trial stepsize in
practical implementations of the BFGS method. Under suitable assumptions on
f , the unit stepsize will be accepted by the line search as the iterates tend to the
solution and will enable a superlinear convergence step (see [5], for example).
In the following, we are going to show that if the line search satisfies

gTk+1δk = 0, for all k ≥ 1, (2.6)

and if the steps generated by the BFGS method have the form (2.1)-(2.2) and
the gradients have the form (2.4)-(2.5), then the use of unit stepsizes is also
indispensable.

To begin with, we see that the line search condition (2.6), the secant equation
(1.3) and the definition of the search direction

Hk+1gk+1 = −α−1k+1δk+1 (2.7)

indicate that

δTk+1γk = −αk+1g
T
k+1Hk+1γk = −αk+1g

T
k+1δk = 0. (2.8)

The above relation (2.8) is sometimes called as the conjugacy condition in the
context of nonlinear conjugate gradient methods.

By multiplying the BFGS updating formula (1.5) with gk+1 and using (2.6),

Hk+1gk+1 = Hkgk+1 −
γTkHkgk+1

δTk γk
δk,

which with (2.7) gives

Hkgk+1 = −α−1k+1δk+1 +
γTkHkgk+1

δTk γk
δk. (2.9)

Multiplying (2.9) by gTk and noticing gTkHkgk+1 = 0, we get that

0 = −α−1k+1g
T
k δk+1 +

γTkHkgk+1

δTk γk
gTk δk = −α−1k+1g

T
k δk+1 − γTkHkgk+1.
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Thus γTkHkgk+1 = −α−1k+1g
T
k δk+1 = −α−1k+1g

T
k+1δk+1. Hence, by (2.9),

Hkgk+1 = −α−1k+1δk+1 − α−1k+1

gTk+1δk+1

δTk γk
δk. (2.10)

It follows from (2.10) and (2.7) with k replaced by k − 1 that

Hkγk = −α−1k+1δk+1 +

[
α−1k − α

−1
k+1

gTk+1δk+1

δTk γk

]
δk. (2.11)

Further, substituting this into the BFGS updating formula (1.5) yields

Hk+1 = Hk + α−1k+1

δkδ
T
k+1 + δk+1δ

T
k

δTk γk
+

[
1− α−1k + α−1k+1

gTk+1δk+1

δTk γk

]
δkδ

T
k

δTk γk
.

(2.12)
The above new updating formula requires the quantity δk+1, that depends on
Hk+1 itself, and hence has theoretical meanings only.

Lemma 2.1. Assume that (2.6) holds. Then for all k ≥ 1 and i ≥ 0, the vector
Hkgk+i + α−1k+iδk+i belongs to the subspace spanned by δk, δk+1, . . ., δk+i−1;
namely,

Hkgk+i + α−1k+iδk+i ∈ Span{δk, δk+1, . . . , δk+i−1}. (2.13)

Proof. For convenience, we write (2.12) as

Hk+1 = Hk + V (sk, sk+1), (2.14)

where V (sk, sk+1) means the rank-two matrix in the right hand of (2.12). There-
fore we have for all i ≥ 1,

Hk+i = Hk +

i∑
j=1

V (sk+j−1, sk+j). (2.15)

The statement follows by multiplying the above relation with gk+i and using
(2.7) with k replaced by k + i− 1 and gTk+iδk+i−1 = 0. Q.E.D.

Lemma 2.2. To construct a desired example with Det (S1) 6= 0, we must have
that

αk = 1, for all k ≥ 4.

Proof. Define the following matrices

Gk =
[
γk−1 gk gk+1 gk+2

]
,

Sk =
[
δk−1 δk δk+1 δk+2

]
.
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By Hkγk−1 = δk−1 and Lemma 2.1, we can get that

Det(Hk) Det(Gk) = Det
[
Hkγk−1 Hkgk Hkgk+1 Hkgk+2

]
= Det

[
δk−1 − α−1k δk − α−1k+1δk+1 − α−2k+2δk+2

]
= −α−1k α−1k+1α

−1
k+2Det(Sk).

(2.16)
Replacing k with k + 1 in the above yields

Det(Hk+1) Det(Gk+1) = −α−1k+1α
−1
k+2α

−1
k+3Det(Sk+1). (2.17)

On the other hand, due to the special forms of {gk} and {δk}, we know that
Gk+1 = PGk and Sk+1 = MSk. Hence

Det(Gk+1) = Det(P ) Det(Gk) = t2 Det(Gk),

Det(Sk+1) = Det(M) Det(Sk) = t2 Det(Sk).
(2.18)

Due to the basic determinant relation of the BFGS update, (2.6) and (2.7), it
is not difficult to see that

Det(Hk+1) =
δTkH

−1
k δk

δTk γk
Det(Hk) = αkDet(Hk). (2.19)

If Det(S1) 6= 0, (2.16) with k = 1 implies that Det(G1) 6= 0. Then by (2.18),

Det(Gk) 6= 0, Det(Sk) 6= 0, for all k ≥ 1. (2.20)

Dividing (2.17) by (2.16) and using the above relations, we then obtain

αk+3 = 1.

So the statement holds due to the arbitrariness of k ≥ 1. Q.E.D.

The deletion of the first finite iterations does not influence the whole exam-
ple. Thus we will ask our counter-example to satisfy

Det(S1) 6= 0 (2.21)

and
αk ≡ 1. (2.22)

In this case, the updating formula (2.12) of Hk can be simplified as

Hk+1 = Hk +
δkδ

T
k+1 + δk+1δ

T
k

δTk γk
−

gTk+1δk+1

gTk δk

δkδ
T
k

δTk γk
. (2.23)
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2.3 Consistency Conditions

Now we ask what else conditions, besides the requirement of unit stepsizes, have
to be satisfied by the parameters in the definitions of {gk} and {δk} so that
the steps {sk; k ≥ 1} can be generated by the BFGS update. Our early idea
is based on the observation on the updating formula (1.5) that Hk+1 is linear
with Hk and the linear system

H8j+9 = diag(t−4E2, t
4E2)H8j+1 diag(t−4E2, t

4E2), (2.24)

where E2 is the two-dimensional identity matrix. However, this way seems to
be quite complicated.

Notice that the dimension is n = 4 and by Lemma 2.2, the assumption (2.21)
implies (2.20). Then the matrix Hk+1 can be uniquely defined by the equations
given by Hk+1γk, Hk+1gk+1, Hk+1gk+2 and Hk+1gk+3. As a matter of fact,
we have that

Hk+1γk = δk (the secant equation), (2.25)

Hk+1gk+1 = −δk+1 ( by (2.7) and αk ≡ 1), (2.26)

Hk+1gk+2 = −δk+2 +
gTk+2δk+2

gTk+1δk+1
δk+1 (by (2.10) and αk ≡ 1), (2.27)

Hk+1gk+3 = −δk+3 +

(
gTk+3δk+3

gTk+2δk+2
+

gTk+3δk+1

gTk+1δk+1

)
δk+2

−

(
gTk+2δk+2

gTk+1δk+1

)(
gTk+3δk+1

gTk+1δk+1

)
δk+1. (2.28)

The last equality is obtained by multiplying (2.23) by gk+2, using (2.27) and
finally replacing k with k + 1.

Relations (2.25)-(2.28) provide a system of 16 equations, while the symmetric
matrix Hk+1 only has 10 independent entries. How to ensure that this linear
system has a symmetric solution Hk+1? We have the following general lemma.

Lemma 2.3. Assume that {u1,u2, . . . ,un} and {v1,v2, . . . ,vn} are two sets
of n-dimensional linearly independent vectors. Then there exists a symmetric
matrix H ∈ Rn×n satisfying

Hui = vi, i = 1, 2, . . . , n (2.29)

if and only if
uTi vj = uTj vi, ∀ i, j = 1, 2, . . . , n. (2.30)

Proof. The “only if” part. If H = HT satisfies (2.29), we have for all i, j =
1, 2, . . . , n, uTi vj = uTi Huj = uTi H

Tuj = (Hui)
Tuj = vTi uj .

The “if” part. Assume that (2.30) holds. Defining the matrices

U = (u1 u2 . . . un) , V = (v1 v2 . . . vn) , (2.31)
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direct calculations show that

UTHU = UTV =


uT1 v1 uT1 v2 · · · uT1 vn
uT2 v1 uT2 v2 · · · uT2 vn
· · · · · · · · · · · ·
uTnv1 uTnv2 · · · uTnvn

 := A. (2.32)

By (2.30), A is symmetric. So H = U−TAU−1 satisfies H = HT and (2.29).
This completes our proof. Q.E.D.

By the above lemma, the following six conditions are sufficient for the linear
system (2.25)-(2.28) to allow a symmetric solution matrix Hk+1.

gTk+1(Hk+1yk) = (Hk+1gk+1)Tyk,

gTk+2(Hk+1yk) = (Hk+1gk+2)Tyk,

gTk+3(Hk+1yk) = (Hk+1gk+3)Tyk,

gTk+2(Hk+1gk+1) = (Hk+1gk+2)Tgk+1,

gTk+3(Hk+1gk+1) = (Hk+1gk+3)Tgk+1,

gTk+3(Hk+1gk+2) = (Hk+1gk+3)Tgk+2.

Further, considering the whole sequence of {Hk+1; k ≥ 1} and combining the
line search condition gTk+1δk = 0, we can deduce the following four consistency
conditions, which should be satisfied for all k ≥ 1,

gTk+1δk = 0, (2.33)

δTk+1yk = 0, (2.34)

gTk+2δk = −δTk+2yk, (2.35)

gTk+3δk = −δTk+3yk +

(
gTk+3δk+3

gTk+2δk+2
+

gTk+3δk+1

gTk+1δk+1

)
δTk+2yk. (2.36)

The positive definiteness of the matrix Hk+1 will be further considered in §2.5.

2.4 Choosing The Parameters

In this subsection we focus on how to choose the decay parameter t and suitable
vectors δ1 and g1 such that the consistency conditions (2.33), (2.34), (2.35) and
(2.36) hold with k = 1. Due to the special structure of this example, we then
know that the consistency conditions hold for all k ≥ 2.

Define v = (∆1 ∆2 ∆3 ∆4)T , where

∆1 = l1η1 + h1ξ1, ∆2 = h1η1 − l1ξ1, ∆3 = c1γ1 + d1τ1, ∆4 = d1γ1 − c1τ1.
(2.37)

As will be seen, the first three consistent conditions provide an under-determined
linear system with v, from which we can get a general solution by the Cramer’s
rule. The substitution of v into the fourth condition (2.36), which is nonlinear,
yields a desired value for the decay parameter t.
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At first, the condition δT1 g2 = δT1 Pg1 = 0, that is (2.33) with k = 1, asks

[t cos θ1 − t sin θ1 cos θ2 − sin θ2]v = 0. (2.38)

The condition δT2 γ1 = δT1M
T (P − I)g1 = δT1 (tI −MT )g1 = 0, that is (2.34)

with k = 1, requires the vector v to satisfy

[t− cos θ1 − sin θ1 t(1− cos θ2) − t sin θ2]v = 0. (2.39)

The requirement (2.35) with k = 1, that is,

0 = δT1 g3 + δT3 γ1 = δT1 P
2g1 + δT1 (M2)T (P − I)g1

= δT1 [P 2 + tMT − (M2)T ]g1,

yields the equation[
t cos θ1 + (t2 − 1) cos 2θ1 t sin θ1 − (1 + t2) sin 2θ1
t2(cos θ2 − cos 2θ2) + cos 2θ2 t2(sin θ2 − sin 2θ2)− sin 2θ2

]
v = 0.

(2.40)

By (2.38), (2.39), (2.40) and the choices of θ1 and θ2, we see that {∆i} must
satisfy

√
2
2 t −

√
2
2 t −

√
2
2 −

√
2
2

t−
√
2
2 −

√
2
2 (1 +

√
2
2 )t −

√
2
2 t

√
2
2 t

√
2
2 t− (1 + t2) −

√
2
2 t

2 (
√
2
2 + 1)t2 + 1




∆1

∆2

∆3

∆4

 = 0.

(2.41)
By the Cramer’s rule, to meet (2.41), we may choose {∆i} as follows:

∆1 = ±
[
(2 +

√
2)t3 + (1 +

√
2)t+ 1

]
,

∆2 = ±
[
(2 +

√
2)t3 + (1 +

√
2)t− 1

]
,

∆3 = ±
[
−
√

2 t3 + 2t2 + (1−
√

2)t+ 1
]
,

∆4 = ±
[√

2 t3 − 2t2 + (1 +
√

2)t− 1
]
.

(2.42)

Since gT1 δ1 = ∆1 + ∆3 = ±2(t + 1)(t2 + 1) and 0 < |t| < 1, we choose all the
signs in (2.42) as − so that gT1 δ1 < 0.

We now want to substitute the general solution to the fourth consistent
condition (2.36). Noting that δT3 γ1 = −gT3 δ1 and gT4 δ4 = tgT3 δ3, we know that
(2.36) with k = 1 is equivalent to

gT4 δ1 + gT2 δ4 − gT1 δ4 + gT3 δ1

[
t+

gT4 δ2
gT2 δ2

]
= 0. (2.43)

Further, using gT2 δ2 = tgT1 δ1, gT4 δ2 = tgT3 δ1 and gT2 δ4 = tgT1 δ3, (2.43) can be
simplified as

gT1 δ1
[
gT4 δ1 − gT1 δ4 + t(gT3 δ1 + gT1 δ3)

]
+ (gT3 δ1)2 = 0. (2.44)
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Consequently, we obtain the following equation for the parameter t:

(t+ 1)2(t2 + 1)2
[
p2(t) + 2tp(t)− 2q(t)

]
= 0, (2.45)

where
p(t) = −(2 +

√
2)t2 + (2 +

√
2)t− 1,

q(t) = (2 + 3
√

2)t3 − (4 + 3
√

2)t2 + (3 + 2
√

2)t− 2
√

2.

Further calculations provide(
6 + 4

√
2
)−1 [

p2(t) + 2tp(t)− 2q(t)
]

=
[
t2 + (1−

√
2)t+ (1−

√
2
2 )
] [
t2 + (1− 3

√
2)t+ (−3 + 7

2

√
2)
]
.

Considering the requirement that t ∈ (−1, 1), one can deduce the following
quadratic equation from (2.45),

t2 +
(

1− 3
√

2
)
t+

(
−3 +

7

2

√
2

)
= 0. (2.46)

The above equation has a unique root of t in the interval (−1, 1),

t =
3
√

2− 1−
√

31− 20
√

2

2
. (2.47)

The numerical value of t is equal to 0.7973 approximately.
Therefore if we choose the above t and the vectors δ1 and g1 such that

(2.42) holds with minus sign, then the prefixed steps and gradients satisfy the
consistency conditions (2.33), (2.34), (2.35) and (2.36) for all k ≥ 1.

There are many ways to choose δ1 and g1 satisfying (2.42). Specifically, we
choose (

η1
ξ1

)
=

(√
2

0

)
,

(
c1
d1

)
=

(
0

−
√

2

)
. (2.48)

In this case, by (2.42) with minus signs and the definitions of ∆i’s, we can get
that (

γ1
τ1

)
=

(
(17− 8

√
2)t+ (−17 + 9

√
2)

(−17 + 9
√

2)t+ (17− 9
√

2)

)
,(

l1
h1

)
=

(
(−4− 13

√
2)t+ (−1 + 11

√
2)

(−4− 13
√

2)t+ (−1 + 12
√

2)

)
.

(2.49)

The initial step δ1 and the initial gradient g1 are then determined.

2.5 Quasi-Newton Updating Matrices

In this subsection we discuss the form of the BFGS quasi-Newton updating
matrices implied by (2.25)-(2.28) under the consistent conditions (2.33)-(2.36).
A byproduct is that, we will know how to choose the initial matrix H1 for the
example.

For this aim, we provide a follow-up lemma of Lemma 2.3.
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Lemma 2.4. Assume that (2.30) holds and the matrix H satisfies (2.29). If
further, the matrix A in (2.32) is positive definite, there must exist nonsingular
triangular matrices T1 and T2 such that

A = V TU = T−T1 T2. (2.50)

Further, denoting V̂ = V T1 = (v̂1, v̂2, . . . , v̂n) and the diagonal matrix T−11 T−12 =
diag(t1, t2, . . . , tn), we have that

H =

n∑
i=1

ti v̂iv̂
T
i . (2.51)

Proof. The truth of (2.50) is obvious by the Cholesky factorization of positive
definite matrices. Further, by (2.50) and the definition of V̂ , we get that

V̂ TU = T2.

Since HU = V , we obtain

H = V U−1 =
(
V̂ T−11

) (
T−12 V̂ T

)
= V̂

(
T−11 T−12

)
V̂ T ,

which with the definitions of v̂i’s and ti’s implies the truth of (2.51). Q.E.D.

By the above lemma, we can express the form of Hk+1 determined by (2.25)-
(2.26) under the consistent conditions (2.33)-(2.36). At first, we make use of
the steps {δk+i; i = 0, 1, 2, 3} to introduce the following two vectors that are
orthogonal to γk and gk+1:

zk = −δTk+2γk
δTk γk

δk −
δTk+2gk+1

δTk+1gk+1

δk+1 + δk+2,

wk = −δTk+3γk
δTk γk

δk −
δTk+3gk+1

δTk+1gk+1

δk+1 + δk+3.

(2.52)

The vectors zk and wk are well defined because δTk γk = −δTk gk > 0 is positive
due to the descent property of δk. Direct calculations show that

zTk γk = zTk gk+1 = 0, wT
k γk = wT

k gk+1 = 0. (2.53)

Further, we use zk and wk to define the vector that is orthogonal to gk+2:

vk = −wT
k gk+2

zTk gk+2

zk + wk. (2.54)

By the choice of vk, it is easy to see that

vTk γk = vTk gk+1 = vTk gk+2 = 0. (2.55)
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Now we could express the matrix Hk+1 by

Hk+1 = −δkδ
T
k

δTk gk
−

δk+1δ
T
k+1

δTk+1gk+1

− zkz
T
k

zTk gk+2

− vkv
T
k

vTk gk+3

. (2.56)

Since δTk gk < 0 for all k ≥ 1, we know that the matrix Hk+1 is positive definite
if and only if zTk gk+2 < 0 and vTk gk+3 < 0. Direct calculations show that

zT1 g3 =
(
5808− 3348

√
2
)
t−
(
6912− 4280

√
2
)
< 0,

vT1 g4 =
(
− 88803 + 63514

√
2
)
t+
(
109307− 77868

√
2
)
< 0.

Therefore we know that the matrix H2 is positive definite. In addition, it
is difficult to build the relations δTk+1gk+1 = t δTk gk, zTk+1gk+3 = t zTk gk+2,

vTk+1gk+4 = tvTk gk+3, zk+1 = Mzk and vk+1 = M vk for all k ≥ 1. Thus we
have by (2.56) and δk+1 = M δk that

Hk+1 =
1

t
MHkM

T , (2.57)

holds for all k ≥ 2 and hence {Hk : k ≥ 2} are all positive definite.
With the above procedure, we can calculate the values of z1, v1 and H2.

Further, by (2.23), we can obtain the initial matrix H1 required by the example
of this paper.

H1 = H2 −
δ1δ

T
2 + δ2δ

T
1

δT1 γ1

+
gT2 δ2

gT1 δ1

δ1δ
T
1

δT1 γ1

:=
H̄1

87278
, (2.58)

where H̄1 is a symmetric matrix with entries

H̄1(1, 1) =
(
−3690− 13280

√
2
)
t+
(
79982− 13694

√
2
)
,

H̄1(1, 2) =
(
4474 + 1590

√
2
)
t−
(
1990 + 11308

√
2
)
,

H̄1(1, 3) =
(
1428 + 18496

√
2
)
t−

(
33966− 11118

√
2
)
,

H̄1(1, 4) =
(
−23256 + 952

√
2
)
t+
(
25092− 2108

√
2
)

H̄1(2, 2) =
(
−1954− 10928

√
2
)
t+
(
65266− 15580

√
2
)
,

H̄1(2, 3) = −10268
√

2 t−
(
5134− 10268

√
2
)
,

H̄1(2, 4) =
(
13600 + 5508

√
2
)
t−

(
12512 + 9996

√
2
)
,

H̄1(3, 3) =
(
78234− 415769

√
2
)
t+
(
235654 + 163183

√
2
)
,

H̄1(3, 4) =
(
−875432 + 576963

√
2
)
t+
(
943194− 626093

√
2
)
,

H̄1(4, 4) =
(
83606− 164543

√
2
)
t+
(
104210 + 49521

√
2
)
.

(2.59)

Direct calculations show that (2.57) also holds with k = 1 and hence H1 is a
positive definite matrix.
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3 Constructing A Suitable Objective Function

3.1 Recovering The Iterations and The Function Values

Denote the rotation matrices

R1 =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
, R2 =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
. (3.1)

If we write the steps {δk} and gradients {gk} into the forms

δ8j+i =


ηi
ξi
t8jγi
t8jτi

 , g8j+i =


t8j li
t8jhi
ci
di

 ; i = 1, . . . , 8, (3.2)

we have from (2.1), (2.2), (2.4) and (2.5) that(
ηi+1

ξi+1

)
= R1

(
ηi
ξi

)
,

(
γi+1

τi+1

)
= tR2

(
γi
τi

)
,(

li+1

hi+1

)
= tR1

(
li
hi

)
,

(
ci+1

di+1

)
= R2

(
ci
di

)
.

(3.3)

For simplicity, we want the iterations {xk} asymptotically to turn around
the eight vertices of some regular octagon Ω of the subspace spanned by the
first and second coordinates. More exactly, such a regular octagon Ω has the
origin as its center and its eight vertices Vi are given by Vi = (ai, bi, 0, 0)T with(

a1
b1

)
=

(
−
√
2
2

−1−
√
2
2

)
,

(
ai+1

bi+1

)
= R1

(
ai
bi

)
. (3.4)

Here we should note that if there is no confusion, we also regard that Ω and
Vi’s are defined in the subspace spanned by the first and second coordinates.
To this aim, we ask the iterations {xk} to be of the form

x8j+i =


ai
bi
t8jpi
t8jqi

 , (3.5)

where (
pi+1

qi+1

)
= tR2

(
pi
qi

)
. (3.6)

To decide the values of p1 and q1, noting that

x1 − V1 = x1 − lim
j→∞

x8j+1 = −
∞∑
i=0

δi,
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we have that (
p1
q1

)
= −

∞∑
i=0

(
γi
τi

)
= −(E2 − tR2)−1

(
γ1
τ1

)
, (3.7)

where again E2 is the two-dimensional identity matrix. Direct calculations show
that (

p1
q1

)
=

1

4633

(
(−15720 + 4019

√
2 )t+ (32931− 17534

√
2 )

(4376− 1977
√

2 )t+ (9563− 9433
√

2 )

)
. (3.8)

Now, let us assume that the limit of f(xk) is f∗. Since for any j, the first
two coordinates of {x8j+i} always keep the same as those of its limit Vi, we can
get that

f(x8j+i)− f∗ = t8j
(
ci
di

)T (
pi
qi

)
= t8j

[
Ri−12

(
c1
d1

)]T [
(tR2)i−1

(
p1
q1

)]
= t8j+i−1

(
c1
d1

)T (
p1
q1

)
= t8j+i−1(f(x1)− f∗),

where

f(x1)− f∗ = c1p1 + d1q1 =
( 3954− 4376

√
2 ) t+ ( 18866− 9563

√
2 )

4633
.

Now we see the value of gT8j+iδ8j+i. Direct calculations show that

gT8j+iδ8j+i =


t8j li
t8jhi
ci
di


T 

ηi
ξi
t8jγi
t8jτi

 = t8j


li
hi
ci
di


T 

ηi
ξi
γi
τi


= t8j+i−1(l1η1 + h1ξ1 + c1γ1 + d1τ1) = t8j+i−1gT1 δ1,

where

gT1 δ1 = l1η1 + h1ξ1 + c1γ1 + d1τ1 = (−44 + 13
√

2)t+ (40− 18
√

2).

Therefore

f(x8j+i+1)− f(x8j+i)

α8j+ig
T
8j+iδ8j+i

=
(f(x8j+i+1)− f∗)− (f(x8j+i)− f∗)

gT8j+iδ8j+i

=
(t8j+i − t8j+i−1)(f(x1)− f∗)

t8j+i−1gT1 δ1

=
(t− 1)(f(x1)− f∗)

gT1 δ1
≈ 2.6483E− 02. (3.9)
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The above relation, together with gT8j+i+1δ8j+i = 0, implies that the stepsize
α8j+i = 1 can be accepted by the Wolfe line search, the Armijo line search and
the Goldstein line search with suitable line search parameters.

3.2 Seeking A Suitable Form for The Objective Function

We now consider how to construct a smooth function f such that its gradient
at any point x8j+i given in (3.5) are the one given in (3.2); namely,

∇f(x8j+i) = g8j+i, for all j ≥ 0 and i = 1, . . . , 8. (3.10)

To this aim, we assume that f is of the form

f(x1, x2, x3, x4) = λ(x1, x2)x3 + µ(x1, x2)x4, (3.11)

where λ and µ are two-dimensional functions to be determined. Since the func-
tion (3.11) is linear with x3 and x4, we know that f has no lower bound in Rn.
Consequently, for the sequence {xk} generated by some optimization method
for the minimization of this function, it is expected that f(xk) tends to −∞,
but this will not happen in our examples.

With the prefixed form (3.11), we have that

∇f(x1, x2, x3, x4) =


∂λ
∂x1

x3 + ∂µ
∂x1

x4
∂λ
∂x2

x3 + ∂µ
∂x2

x4
λ(x1, x2)
µ(x1, x2)

 . (3.12)

Comparing the last two components of the right hand vector in (3.12) with the
gradients in (3.2), we must have that

λ(Vi) = ci, µ(Vi) = di. (3.13)

Consequently, by (2.48) and (3.3), we can obtain the concrete values of λ and
µ at the eight vertices of Ω, which are listed in the second and third rows in
Table 3.1.

Further, for each i, let Ji be the Jacobian of (λ, µ) at vertex Vi and denote

Ji =

(
∂λ
∂x1

∂µ
∂x1

∂λ
∂x2

∂µ
∂x2

)∣∣∣∣∣
Vi

, J1 =

(
ω1 ω2

ω3 ω4

)
. (3.14)

The comparison of the first two components of the right hand vector in (3.12)
with the gradients in (3.2) leads to the relation

Ji

(
pi
qi

)
=

(
li
hi

)
. (3.15)

To be such that (3.15) always holds, we ask Ji+1 and Ji to meet the condition

Ji+1 = R1JiR
T
2 (3.16)
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for all i ≥ 1. In this case, if (3.15) holds for some i, we have by this, (3.6) and
(3.3) that

Ji+1

(
pi+1

qi+1

)
= (R1JiR

T
2 )(tR2)

(
pi
qi

)
= tR1Ji

(
pi
qi

)
= tR1

(
li
hi

)
=

(
li+1

hi+1

)
,

which means that (3.15) holds with i+ 1. Therefore by the induction principle,
to be such that (3.15) holds for all i ≥ 1, it remains to choose J1 such that
(3.15) holds with i = 1. Noticing that there are still two degrees of freedom, we
ask the special relations

ω2 = ω3, ω4 = −ω1. (3.17)

Then the values of ω1 and ω3 can be solved from (3.15) with i = 1 and (3.17),

ω1 =
(163 + 106

√
2) t− (195 + 129

√
2)

34
, ω3 =

(57 + 33
√

2) t+ (53 + 45
√

2)

34
.

(3.18)
Therefore if we choose J1 to be the one in (3.14) with the values in (3.17) and
(3.18) and ask the relation (3.16) for all i ≥ 1, then we will have (3.15) for all
i ≥ 1.

Now, using (3.13), (3.16) and (3.17), we can list the function values and
gradients of λ and µ at the vertices Vi’s of the octagon Ω into Table 3.1.

V1 V2 V3 V4 V5 V6 V7 V8
λ 0 1 −

√
2 1 0 −1 −

√
2 −1

µ −
√

2 1 0 −1
√

2 −1 0 1
∂λ
∂x1

ω1 −ω1 ω1 -ω1 ω1 −ω1 ω1 −ω1
∂λ
∂x2

ω3 −ω3 ω3 −ω3 ω3 −ω3 ω3 −ω3
∂µ
∂x1

ω3 −ω3 ω3 −ω3 ω3 −ω3 ω3 −ω3
∂µ
∂x2

−ω1 ω1 -ω1 ω1 −ω1 ω1 −ω1 ω1

Table 3.1. Function values and gradients of λ and µ at Vi’s

By using the special choice of Ω and observing the values in Table 3.1, we
can ask the functions λ and µ to have the properties

µ(x1, x2) = λ(−x2, x1) (3.19)

and
λ(x1, x2) = −λ(−x1,−x2) (3.20)

for all (x1, x2) ∈ R2. Further, by (3.20), we could think of constructing the
function λ by a polynomial function with only odd orders.

In the next subsection, we will construct a simple function that only meets
the requirements (a) and (c) that are described in the first section. In §3.4, we
construct a complicated function that can meet all the requirements (a), (b)
and (c).
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3.3 A Simple Function that Meets (a) and (c)

If we ignore the convexity requirement (b) of the line search function, we can
construct a relatively simple function λ(x1, x2) to meet the interpolation condi-
tions listed in Table 3.1 and the function µ(x1, x2) is then given by (3.19).

In fact, we can check that the following function

λf (x1, x2)=(15− 21
2

√
2)x51 + (6− 9

2

√
2)(x41x2 + 2x21x

3
2) + (−15 + 10

√
2)x31

+(−1 +
√

2)(6x21x2 + x32) + ( 15
4 −

15
8

√
2)x1 − 9

8

√
2x2.

has values of 0, 1, −
√

2, 1 at vertices V1, V2, V3, V4, respectively, and zero
derivatives at all the vertices Vi’s. Further, we can check the following function

λg(x1, x2) = −3− 2
√

2

4
(2x21 − 1)[2x21 − (3 + 2

√
2)]x2

has zero function values at all the vertices Vi’s, but could be used to interpolate
the derivatives of λ(x1, x2) at Vi’s. Consequently, we know that

λ̄(x1, x2) = λf (x1, x2) + ω1λg(x1, x2) + ω3λg(−x2, x1) (3.21)

meets all the interpolation conditions required by λ(x1, x2) in Table 3.1. Conse-
quently, we could say that for the function defined by (3.11), (3.21) and (3.19),
the BFGS method with the Wolfe line search using the unit initial step does
not converge.

Observing that

Ψi(α) = tΨi(α), Ψ′i(α) = tΨ′i(α) at α = 0, 1,

we ideally wish there is the following relation between Ψi(α) and Ψi+1(α):

Ψi+1(α) = tΨi(α), for all α ≥ 0 (3.22)

so that the neighboring line search functions only differ up to a constant mul-
tiplier of t. However, the choice (3.21) of λ̄(x1, x2) does not lead to (3.22).
Nevertheless, we can propose the following compensation function

λc(x1, x2) = x1
[
x21 + x22 − (2 +

√
2)
]2

and define

λ̂(x1, x2) = λ̄(x1, x2) + c̄1λc(x1, x2) + c̄2λc(−x2, x1), (3.23)

where

c̄1 =
(−39 + 15

√
2)t− (2529− 1756

√
2)

272 ,

c̄2 =
(−65 + 8

√
2)t+ (681− 462

√
2)

272 .
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In this case, the relation (3.22) will always hold and the corresponding line
search function at the first iteration is

Ψ̂1(α) =

6∑
i=0

ρi α
i, (3.24)

where

ρ6 =
(−3186 + 2233

√
2)t+ (3414− 2398

√
2)

2 ,

ρ5 =
(40347402− 28052171

√
2)t− (44367385− 31014036)
9266 ,

ρ4 =
(−18674096 + 12804379

√
2)t+ (20961677− 14552090

√
2)

4633 ,

ρ3 =
(12350618− 8366705

√
2)t− (13736673− 9508816

√
2)

9266 ,

ρ2 =
(−211982 + 366273

√
2)t+ (40258− 176758

√
2)

9266 ,

ρ1 = gT1 δ1 = (−44 + 13
√

2)t+ (40− 18
√

2),

ρ0 = f(x1) =
(3954− 4376

√
2)t+ (18866− 9563

√
2)

4633 .

To sum up at this stage, for the function (3.11) with λ(x1, x2) given in (3.21)
or (3.23) and µ(x1, x2) = λ(−x2, x1), if the initial point is x1 = (a1, b1, p1, q1)T

(see (3.4), (3.8), (2.47) for their values) and if the initial matrix is H1 given
by (2.58) and (2.59), then the BFGS method (1.2) and (1.5) with αk ≡ 1
will generate the iterations in (3.5) whose gradients are given by (2.4)-(2.5).
Therefore the method will asymptotically cycle around the eight vertices of a
regular octagon without approaching a stationary point or pushing f(xk) →
−∞.

3.4 A Complicated Function that Meets (a), (b) and (c)

To meet the requirement (b), this subsection gives a further compensation to the

function λ̂(x1, x2) in (3.23) such that each line search function Ψk(α) is strongly
convex.

To this aim, we consider the straight line connecting x8j+i and x8j+i+1:

li(α) = x8j+i + α δ8j+i =


ai + αηi
bi + α ξi

t8j(pi + αγi)
t8j(qi + α τi)

 . (3.25)

By (3.12), the line search function at the (8j + i)-th iteration is

Ψ8j+i(α) = t8j
[
λ(ai+αηi, bi+α ξi)

(
pi+αγi

)
+µ(ai+αηi, bi+α ξi)

(
qi+α τi

)]
.

(3.26)

20



To be such that each line search function is a strongly convex function that
has the unique minimizer α = 1, we firstly construct Ψ1(α) as follows

Ψ1(α) = ζ1(α− 1)38 + ζ2(α− 1)2 + ζ3, (3.27)

where

ζ1 =
(173256− 38127

√
2)t+ (−138064 + 48586

√
2)

166788 ≈ 1.5468E − 1,

ζ2 =
(377472− 359709

√
2)t+ (−712544 + 577958

√
2)

166788 ≈ 1.0405E − 3,

ζ3 =
(−11344 + 6675

√
2)t+ (42494− 26967

√
2)

4633 ≈ 6.1270E − 1.

Due to our special construction, we know from (3.3) and |t| < 1 that the third
and fourth components of {xk} tend to zero. This with the general function
form (3.11) implies that the limit of f(xk) is f∗ = 0. So the above Ψ1 is
constructed such that

Ψ1(0) = f(x1), Ψ1(1) = f(x2), Ψ′1(0) = gT1 δ1, Ψ′1(1) = gT2 δ1 = 0, (3.28)

where the values of f(x1), f(x2) and gT1 δ1 are given in §3.1 and by f∗ = 0. In
addition, the positiveness of ζi’s implies that Ψ1 is strongly convex. Thus we
see that Ψ1 is a desired strongly convex function that takes α = 1 as the unique
minimizer. A reason why we choose a polynomial (3.27) of degree 38 will be
explained in the last section.

To utilize the function λ̂(x1, x2) in (3.23), we firstly develop the following
relation between (3.27) and (3.24),

Ψ1(α) = Ψ̂1(α) +

4∑
i=0

[
α (α− 1)

]4i+2
7∑
j=0

σ8i+j α
j , (3.29)

where σi = 0 (i = 39, . . . , 35) and

σ34 = ζ1, σ33 = −20ζ1, σ32 = 190ζ1,
σ31 = −1140ζ1, σ30 = 9405ζ1, σ29 = −41724ζ1,
σ28 = 134406ζ1, σ27 = −346104ζ1, σ26 = 735471ζ1,
σ25 = −1307504ζ1, σ24 = 1961256ζ1, σ23 = −2496144ζ1,
σ22 = 12688732ζ1, σ21 = −28289632ζ1, σ20 = 38155344ζ1,
σ19 = −37442160ζ1, σ18 = 30421755ζ1, σ17 = −21474180ζ1,
σ16 = 13123110ζ1; σ15 = −6906900ζ1, σ14 = 30735705ζ1,
σ13 = −55057860ζ1, σ12 = 51389130ζ1, σ11 = −28048800ζ1,
σ10 = 10518300ζ1, σ9 = −3365856ζ1, σ8 = 906192ζ1,
σ7 = −201376ζ1, σ6 = 841464ζ1, σ5 = −1357056ζ1,
σ4 = 1041600ζ1, σ3 = −376992ζ1, σ2 = 58905ζ1 − ρ6,
σ1 = −7140ζ1 − ρ5 + 4ρ6, σ0 = 630ζ1 − ρ4 + 3ρ5 − 6ρ6.
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Secondly, noting that the following relations hold for all i ≥ 1,(
ai+1 + αηi+1

bi+1 + α ξi+1

)
= R1

(
ai + αηi
bi + α ξi

)
,

(
pi+1 + αγi+1

qi+1 + α τi+1

)
= tR2

(
pi + αγi
qi + α τi

)
,

we look for some element functions φ(x1, x2) that satisfy for all (x1, x2) ∈ R2,(
φ(x̄1, x̄2)
φ(−x̄2, x̄1)

)
= R2

(
φ(x1, x2)
φ(−x2, x1)

)
, where

(
x̄1
x̄2

)
= R1

(
x1
x2

)
. (3.30)

There are a lot of possibilities for the choice of φ(x1, x2). The following are
some of them required in this paper.

φ1(x1, x2) = x31 − 3x1x
2
2, φ3(x1, x2) = x31x

2
2 − x1x42,

φ5(x1, x2) = x51 − 5x31x
2
2, φ7(x1, x2) = x51x

2
2 − x1x62.

(3.31)

We take φ1 as an illustrative example. In fact, for any (x1, x2) ∈ R2, (x̄1, x̄2)T =
R1(x1, x2)T means that

x̄1 =

√
2

2
(x1 − x2), x̄2 =

√
2

2
(x1 + x2).

Therefore we have that(
φ(x̄1, x̄2)
φ(−x̄2, x̄1)

)
=

(
x̄1(x̄21 − 3x̄22)
x̄2(3x̄21 − x̄22)

)
=

(√
2
4 (x1 − x2)((x1 − x2)2 − 3(x1 + x2)2)√
2
4 (x1 + x2)(3(x1 − x2)2 − (x1 + x2)2)

)

=

(
−
√
2
2 (x1 − x2)(x21 + 4x1x2 + x22)√
2
2 (x1 + x2)(x21 − 4x1x2 + x22)

)

=

(
−
√
2
2 [(x31 − 3x1x

2
2) + (3x21x2 − x32)]√

2
2 [(x31 − 3x1x

2
2)− (3x21x2 − x32)]

)

=

(
−
√
2
2 [φ(x1, x2) + φ(−x2, x1)]√
2
2 [φ(x1, x2)− φ(−x2, x1)]

)
= R2

(
φ(x1, x2)
φ(−x2, x1)

)
.

So φ1(x1, x2) is a desired element function. Similarly, we can check that the
other φi’s in (3.31) have the same property. In addition, it is easy to see that if
φ(x1, x2) has the property (3.30), then φ(−x2, x1) keeps the same property. So
we also consider the following element function

φ2i(x1, x2) = φ2i−1(−x2, x1), for i = 1, 2, 3.

Thirdly, we consider the linear combination of φi(i = 1, . . . , 8) and define

λφ(x1, x2) =

8∑
i=1

νi φi(x1, x2). (3.32)
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Meanwhile, we define µφ(x1, x2) = λφ(−x2, x1). For any vector κ = (κ0, . . . κ7)T

in R8, we are going to claim that there exists a unique solution of ν :=
(ν1, . . . , ν8)T such that the related functions λφ and µφ satisfy

λφ(a1+αη1, b1+α ξ1)
(
p1+αγ1

)
+µφ(a1+αη1, b1+α ξ1)

(
q1+α τ1

)
=

7∑
i=0

κi α
i.

(3.33)
In fact, it is easy to see that the above relation leads to a linear system of ν:

W ν = κ. (3.34)

Direct calculations show that

W =
(
W1 +W2

√
2
)
t+ (W3 +W4

√
2
)
, (3.35)

where Wi (i = 1, . . . , 4) are given in the Appendix.
By further calculations, we know that

Det(W ) =
(
c̄3 + c̄4

√
2
)
t+
(
c̄5 + c̄6

√
2
)
6= 0,

where

c̄3 = −27257845112258321913344128791249391071037800448,

c̄4 = −19354403625460153870213404828142913697757847552,

c̄5 = 21709509966956378375726991567920438736281239552,

c̄6 = 15449462608361267330121261246186521297040162816.

Hence W is nonsingular and (3.34) is a nonsingular linear system. Therefore for
any vector κ ∈ R8, there exists a unique ν or λφ such that the relation (3.33)
holds. For convenience, we denote such λφ by λφ,κ.

Denoting the following vectors related to the coefficients {σi; i = 0, . . . , 39}
in (3.29),

κi = (σ8i, . . . , σ8i+7)T , i = 0, . . . , 4,

and noticing that for any point x = (x1, x2, x3, x4)T in the line li(α) (i any),

x21 + x22 − (2 +
√

2) = 2α (α− 1), (3.36)

we can finally present the desired function of λ:

λ(x1, x2) = λ̂(x1, x2) +

4∑
i=0

[
x21 + x22 − (2 +

√
2)

2

]4i+2

λφ,κi
(x1, x2). (3.37)

Thus by the choice of λ̂(x1, x2) in (3.23), the relation (3.36), the definitions of
κi and λφ,κi

and the relation (3.29), we know that the function (3.11) with
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λ(x1, x2) given in (3.37) and µ(x1, x2) = λ(−x2, x1) not only satisfies those
necessary interpolation conditions but gives the line search function

Ψi+1(α) = ti Ψ1(α), for any i ≥ 0, (3.38)

where Ψ1(α) is given by (3.27).
Since the polynomial function λ(x1, x2) in (3.37) is of order 43, we see that

the final objective function in (3.11) is a polynomial of order 44 and hence is
infinitely times differentiable. The line search functions, which are given by
(3.38) and (3.27), is strongly convex and has the unit stepsize as its unique
minimizer. The requirement (b) is then satisfied.

In summary, for the function (3.11) with λ(x1, x2) given in (3.37) and
µ(x1, x2) = λ(−x2, x1), if the initial point is x1 = (a1, b1, p1, q1)T (see (3.4),
(3.8), (2.47) for their values) and if the initial matrix is H1 given by (2.58) and
(2.59), then the BFGS method (1.2) and (1.5) with αk ≡ 1 will generate the it-
erations in (3.5) whose gradients are given by (2.4)-(2.5). Therefore the method
will asymptotically cycle around the eight vertices of a regular octagon without
approaching a stationary point or pushing f(xk)→ −∞. This counter-example
is perfect in the sense that all the requirements (a), (b) and (c) are satisfied.

4 Concluding Remarks

No matter whether the simple example(s) in §3.3 or the complicated example in
§3.4, we can see that the BFGS method with unit stepsizes produces the same
iterations {xk} and simultaneously, their objective functions provide the same
gradients {gk}. As analyzed in §3.1, the unit stepsize is acceptable by the Wolfe
line search, the Armijo line search or the Goldstein line search. If we do not
impose the convexity on the line search function Ψk(α) for all k, it is possible
for us to construct a relatively simple polynomial example shown in §3.3. The
examples have the dimension 4, but can be used to show that the BFGS method
may also fail for general functions when n ≥ 5 since four-dimensional functions
can be regarded as special cases of higher-dimensional functions. In the case
that n ≥ 5, we can just take the same objective function and ask the starting
point x1 to have zero components except the first four. Then for all k, the first
four components of xk remain the same as in the example and its components
from the fifth will be always zero.

The counter-example in §3.4 is perfect in stepsize choices and function prop-
erties. However, it is still not perfect in the sense that the objective function
is very complicated with large numbers and some coefficients are expressed by
nonsingular linear systems. Here we provide the reason why a polynomial (3.27)
of degree 38 is used to guarantee the strong convexity of Ψ1(α). Equivalently,
the problem of finding a strictly convex polynomial that satisfies (3.28) (in this
case Ψ′′1(α) is nonnegative for all α ∈ R) can be transferred to the feasibility
problem of some semi-definite program (SDP). This is because, by Shor [25], if
n = 1, a polynomial is nonnegative if and only if it can be written into a sum
of squares (s.o.s.); further, by Lasserre [12], for an any-dimensional polynomial,
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it has the form of s.o.s. if and only if the coefficient matrix, which is formed
when lifting the outer product of the vector of monomials and its transpose into
the matrix variable, is semi-definite. The other interpolation conditions can
be treated as linear constraints. However, even when we chose some relatively
high numbers for the order of the desired polynomial, our numerical calcula-
tions showed that the corresponding SDP feasibility problems have no solution.
This is not expected since there are many freedoms in these polynomials, but
there are only four interpolation conditions in (3.28). Instead, we considered
the following simple form for Ψ1(α) with variable but even p.

Ψ1(α) = c̄1(α− 1)p + c̄2(α− 1)2 + ζ3, (4.1)

where c̄1 and c̄2 are parameters and ζ3 is the same constant in (3.27). With this
form, it can be deduced from (3.28), f∗ = 0 and the calculations in §3.1 that

1

p
≤ Ψ1(1)−Ψ1(0)

Ψ′1(0)
=
f(x2)− f(x1)

gT1 δ1
≈ 2.6483E− 02. (4.2)

Since the reciprocal of 2.6483E−02 is about 37.76, we choose p to be the least
even integer, that is 38, to meet the condition (4.2).

In spite of the existence of large numbers, we have observed the cycle exactly
predicted by the simple example in §3.3 (with the function λ̂(x1, x2) given by
(3.23)), thanks to the powerful symbolic computation software MAPLE. With
such software, it is also possible to observe how numerical errors affect the ex-
ample. When the machine error is set to 10−64 (this is possible in MAPLE), we
found that the cycle can go on for ten rounds and during the rounds, the itera-
tions really tend to the eight vertices of the octagon according to the predicted
way. Influenced by the numerical errors, however, the iterations jump out from
the cycle during the eleventh round.

For quasi-Newton methods, there is global convergence if the norms of the
matrix Hk and its inverse are uniformly bounded for all k, in which case the
angle between the quasi-Newton direction and the negative gradient must be
uniformly less than some angle strictly less than π/2. For our examples, with
the help of (2.2) and (2.57), we can see that the matrices {H8j+1; j = 1, 2, . . .}
satisfy the relation (2.24). Consequently, we have for all j ≥ 1,

H8j+1 = diag(t−4jE2, t
4jE2)H1 diag(t−4jE2, t

4jE2). (4.3)

By comparing H8j+1 and the right matrices in (4.3) but with the middle matrix
H1 replaced by λmin(H1)E4 and λmax(H1)E4, respectively, we can show that

λmax(H8j+1) ≥ t−8jλmin(H1), λmin(H8j+1) ≤ t8jλmax(H1), (4.4)

where λmax(·) and λmin(· · · ) mean the largest and smallest eigenvalues of the
matrix. Since t is the decay parameter that lies in the interval (0, 1), the
relation (4.4) implies that both ||H8j+1||2 and ||H−18j+1||2 tend to infinity at an
exponential rate. This analysis is also valid for {H8j+i; j = 1, 2, . . .} with other
i’s.
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The number of the cyclic points in the above example(s) is eight due to the
special choices of θ1 and θ2 in (2.3). This number of eight could be decreased
to seven since if

θ1 =
2

7
π, θ2 =

4

7
π,

the consistent conditions (2.33)-(2.36) also allow a nonzero solution of t, whose
numerical value is approximately 0.8642. However, it is difficult to obtain its
analytic expression. In addition, we found that the system (2.33)-(2.36) has no
solution of t in (−1, 1) for

θ1 =
i

6
π, θ2 =

j

6
π, where i, j is any integer in [1, 6],

which implies that the number of cyclic points cannot be decreased to six.
As mentioned in §1, if the stepsize is chosen to be the first local minimizer

along the line; namely, by (1.9), Powell [22] established the global convergence
of the BFGS method for general differentiable functions when n = 2. We ar-
gued there that it is difficult to extend Powell’s result to the case that n = 3.
Considerable attentions have also been drawn to the construction of a three-
dimensional example (see also Section 5 of Powell [22]). This construction is al-
most successful, but remains one condition always not satisfied. It is not known
yet whether the BFGS method with the specific line search (1.9) converges for
three-dimensional general differentiable functions.

Another direction of research is how to present a suitable modification of the
BFGS algorithm, with which global convergence can be established for general
nonconvex functions. A typical work of this kind is Li and Fukushima [13].
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Appendix. The matricies Wi (i = 1, . . . , 4) in the relation (3.35) are given in
the following sequentially.



−62168 −15364 −50467 −19383 −50467 −19383 −170784 −69850

325732 7844 164094 202386 412766 −356414 617846 774894

−993360 196008 −4160 −201438 −2561400 1153290 −149012 −1366496

921688 0 3698860 −613452 −114596 463300 −869492 −653360

−296512 −333576 −407704 890484 −2569920 −2316500 −168300 3018560

0 0 296512 −333576 1546864 1667880 1142176 −3712088

0 0 0 0 −593024 −667152 −1408432 2448120

0 0 0 0 0 0 593024 −667152


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

−38766 −23402 −34925 −15542 −34925 −15542 −120317 −50467

64624 102164 94362 165678 249426 −238058 422668 564826

94320 101688 144215 −260041 −1444145 928375 25696 −1083960

−563244 −500364 −488404 −117052 1201020 −648620 −1191110 3882

315044 315044 213118 206782 1009350 880270 1283770 1018070

0 0 −18532 −18532 −1700980 −1575220 −1143596 −1018308

0 0 0 0 630088 630088 463300 450628

0 0 0 0 0 0 −37064 −37064




66580 −22806 48866.5 −2955.5 48866.5 −2955.5 162176 −419

−305222 82838 −149974 −138071 −193910 377473 −543381 −565187

1072146 −156966 2300535 8467 135353 −905635 75885 1149501

−1085404 −74128 43774 654056 −3792690 −741280 700702 782668

333576 333576 444768 −845924 3017860 2409160 429750 −2916010

0 0 −296512 296512 −1948424 −1704944 −1357948 3555920

0 0 0 0 667152 667152 1482560 −2284872

0 0 0 0 0 0 −593024 593024




31153 16895 32221.5 2746 32221.5 2746 113309.5 2536.5

49886 −124014 −72850 −147478 −49206 243454 −360117 −438519

−280980 12822 −169365 304282 980815 −762350 −120120 1044365

632088 444768 −554550 465018 10702 509630 1166840 −228060

−315044 −315044 −194586 −93378 −1538890 −880270 −1213170 −445520

0 0 18532 −18532 1838668 1575220 1059760 467608

0 0 0 0 −630088 −630088 −426236 −149692

0 0 0 0 0 0 37064 −37064


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