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Abstract. Conjugate gradient methods are widely used for unconstrained optimization,
especially large scale problems. The strong Wolfe conditions are usually used in the analyses and
implementations of conjugate gradient methods. This paper presents a new version of the conjugate
gradient method, which converges globally, provided the line search satisfies the standard Wolfe con-
ditions. The conditions on the objective function are also weak, being similar to those required by
the Zoutendijk condition.
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1. Introduction. Our problem is to minimize a function of n variables

f(x),(1.1)

where f is smooth and its gradient g(x) is available. Conjugate gradient methods for
solving (1.1) are iterative methods of the form

xk+1 = xk + αkdk,(1.2)

where αk > 0 is a steplength and dk is a search direction. Normally the search
direction at the first iteration is the steepest descent direction, namely, d1 = −g1.
The other search directions can be defined recursively:

dk+1 = −gk+1 + βkdk.(1.3)

βk ∈ < is so chosen that (1.2)–(1.3) reduces to the linear conjugate gradient method
if f(x) is a strictly convex quadratic function and if αk is the exact one-dimensional
minimizer. Well-known formulas for βk are the Fletcher–Reeves (FR), Polak–Ribière–
Polyak (PRP), and Hestenes–Stiefel (HS) formulas (see [6]; [10], [11]; and [7], respec-
tively) and are given by

βFRk = ‖gk+1‖2/‖gk‖2,(1.4)

βPRPk = gTk+1yk/‖gk‖2,(1.5)

βHSk = gTk+1yk/d
T
k yk,(1.6)

where yk = gk+1 − gk and ‖ · ‖ denotes the Euclidean norm.
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The global convergence properties of the FR, PRP, and HS methods without
regular restarts have been studied by many authors, including Zoutendijk [15], Al-
Baali [1], Liu, Han, and Yin [9], Dai and Yuan [2], Powell [12], Gilbert and Nocedal
[8], and Dai and Yuan [4]. To establish the convergence results of these methods, it is
normally required that the steplength αk satisfy the following strong Wolfe conditions:

f(xk)− f(xk + αkdk) ≥ −δαkgTk dk,(1.7)

|g(xk + αkdk)
T dk| ≤ −σgTk dk,(1.8)

where 0 < δ < σ < 1. Some convergence analyses even require the αk be computed
by the exact line search, namely,

f(xk + αkdk) = min
α>0

f(xk + αdk).(1.9)

On the other hand, many other numerical methods for unconstrained optimization
are proved to be convergent under the standard Wolfe conditions (1.7) and

g(xk + αkdk)
T dk > σgTk dk.(1.10)

For example, see Fletcher [5]. Hence it is interesting to investigate whether there exists
a conjugate gradient method that converges under the standard Wolfe conditions.

In this paper, we give a new formula for βk. It is shown that this new conjugate
gradient method is globally convergent as long as the standard Wolfe conditions (1.7)
and (1.10) are satisfied. Moreover, the conditions on the objective function are also
weaker than the usual ones.

2. New formula for βk. One motivation for our new formula for βk is the
descent property of the conjugate descent method (see Fletcher [5]), which uses

βCDk = ‖gk+1‖2/(−dTk gk).(2.1)

It can be shown that the conjugate descent method always produces a descent direc-
tion if the strong Wolfe conditions are satisfied. We try to find a conjugate gradient
method which generates descent directions provided the standard Wolfe conditions
are satisfied. Suppose the current search direction dk is a descent direction, namely,
dTk gk < 0. Now we need to find a βk that defines a descent direction dk+1. This
requires that

−‖gk+1‖2 + βkg
T
k+1dk < 0.(2.2)

We assume that βk > 0. Denote τk = ‖gk+1‖2/βk. The above inequality is equivalent
to

τk > gTk+1dk.(2.3)

Therefore, we can let τk = dTk yk, giving our new formula

βk = ‖gk+1‖2/dTk yk.(2.4)

This formula is well defined because line search condition (1.10) implies dTk yk > 0.
If line searches are exact, the above formula is the same as the FR formula (1.4).
Therefore we see that (2.4) corresponds to a nonlinear conjugate gradient method.
It is interesting to note that (2.4) has the same numerator as the FR formula (1.4)
and has the same denominator as the HS formula (1.6). Now we can define the new
method, as follows.
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Algorithm 2.1 (A new CG method).
Step 1. Given x1 ∈ <n, d1 = −g1, k := 1, if g1 = 0, then stop.
Step 2. Compute an αk > 0 satisfying (1.7) and (1.10).
Step 3. Let xk+1 = xk + αkdk. If gk+1 = 0, then stop.
Step 4. Compute βk by (2.4) and generate dk+1 by (1.3),

k := k + 1, go to Step 2.
It follows from (1.3) and (2.4) that

gTk+1dk+1 =
‖gk+1‖2
dTk yk

gTk dk = βkg
T
k dk.(2.5)

The above relation can be rewritten as

βk =
gTk+1dk+1

gTk dk
.(2.6)

This formula is very important in our convergence analysis.

3. Convergence of the new method. In this section, we establish a conver-
gence theorem for Algorithm 2.1. We assume that the objective function satisfies the
following conditions.

Assumption 3.1. (1) f is bounded below on <n and is continuously differentiable
in a neighborhood N of the level set L = {x ∈ <n : f(x) ≤ f(x1)}; (2) the gradient
∇f(x) is Lipschitz continuous in N , i.e., there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for any x, y ∈ N .(3.1)

Under Assumption 3.1, we give a useful lemma which was essentially proved by
Zoutendijk [15] and Wolfe [13, 14].

Lemma 3.2. Suppose that x1 is a starting point for which Assumption 3.1 is
satisfied. Consider any method of the form (1.2), where dk is a descent direction and
αk satisfies the standard Wolfe conditions (1.7) and (1.10). Then we have that

∑
k≥1

(gTk dk)
2

‖dk‖2 <∞.(3.2)

Proof. It follows from (1.10) that

dTk yk = dTk (gk+1 − gk) ≥ (σ − 1)gTk dk.(3.3)

On the other hand, the Lipschitz condition (3.1) implies

(gk+1 − gk)T dk ≤ αkL‖dk‖2.(3.4)

The above two inequalities give

αk ≥ σ − 1

L
· g

T
k dk
‖dk‖2 ,(3.5)

which with (1.7) implies that

fk − fk+1 ≥ c (g
T
k dk)

2

‖dk‖2 ,(3.6)
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where c = δ(1 − σ)/L. Summing (3.6) and noting that f is bounded below, we see
that (3.2) holds, which concludes the proof.

Theorem 3.3. Suppose that x1 is a starting point for which Assumption 3.1
holds. Let {xk, k = 1, 2 . . .} be generated by Algorithm 2.1. Then the algorithm either
terminates at a stationary point or converges in the sense that

lim inf
k→∞

‖gk‖ = 0.(3.7)

Proof. If the algorithm does not terminate after finite many iterations, we have
that

‖gk‖ > 0 for all k.(3.8)

First we show all search directions are descent, namely,

gTk dk < 0(3.9)

for all k. The above inequality is obvious for k = 1. Now we prove it for all k ≥ 1 by
induction. Assume (3.9) holds for k. It follows from the line search conditions that

dTk yk ≥ (σ − 1)dTk gk > 0.(3.10)

The above inequality and (2.5) imply that (3.9) holds for k+1. This shows that (3.9)
is true for all k ≥ 1.

We now rewrite (1.3) as

dk+1 + gk+1 = βkdk.(3.11)

Squaring both sides of the above equation, we get

‖dk+1‖2 = β2
k‖dk‖2 − 2gTk+1dk+1 − ‖gk+1‖2.(3.12)

Dividing both sides by (gTk+1dk+1)
2 and applying (2.6), we obtain that

‖dk+1‖2
(gTk+1dk+1)2

=
‖dk‖2

(gTk dk)
2
− 2

gTk+1dk+1
− ‖gk+1‖2

(gTk+1dk+1)2

=
‖dk‖2

(gTk dk)
2
−
(

1

‖gk+1‖ +
‖gk+1‖
gTk+1dk+1

)2

+
1

‖gk+1‖2

≤ ‖dk‖2
(gTk dk)

2
+

1

‖gk+1‖2 .(3.13)

Because ‖d1‖2/(gT1 d1)
2 = 1/‖g1‖2, (3.13) shows that

‖dk‖2
(gTk dk)

2
≤

k∑
i=1

1

‖gi‖2(3.14)

for all k. If the theorem is not true, there exists a constant c > 0 such that

‖gk‖ ≥ c for all k.(3.15)
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Therefore it follows from (3.14) and (3.15) that

‖dk‖2
(gTk dk)

2
≤ k

c2
,(3.16)

which implies that ∑
k≥1

(gTk dk)
2

‖dk‖2 =∞.(3.17)

Relation (3.17) contradicts the Zoutendijk condition (3.2). This contradiction shows
that the theorem is true.

4. Discussion. It is shown in the previous section that the new conjugate gra-
dient method converges under the standard Wolfe line search conditions. It should
be noted that our assumption that the objective function is bounded below is weaker
than the usual assumption that the level set

{x ∈ <n : f(x) ≤ f(x1)}(4.1)

is bounded.
From the proof of Theorem 3.3, we can see that the equivalent form (2.6) of the

formula (2.4) plays an important role in the convergence analysis. Relation (2.6)
enables us to establish the recurrence relation (3.13), which is about the sequence
of the reciprocal {(gTk dk)2/‖dk‖2}. The term (gTk dk)

2/‖dk‖2 is exactly the one that
appears in the Zoutendijk condition (3.2). This makes our convergence analysis very
simple. It is known that to obtain the convergence of the FR, PRP, and HS methods,
one normally has to consider two sequences. For example, Al-Baali [1] considered the
sequences {‖dk‖2} and {gTk dk/‖gk‖2} for the FR method, and Gilbert and Nocedal
[8] considered {‖dk‖2} and {gTk dk} for the PRP and HS methods.

It is also worth noting that Al-Baali [1] and Gilbert and Nocedal [8] proved or
required the sufficient descent condition, namely,

gTk dk ≤ −c‖gk‖2 for some c > 0 and for all k ≥ 1.(4.2)

However, our method does not guarantee this inequality. But if the strong Wolfe line
search conditions are satisfied at every iteration, we have that

lk =
gTk+1dk

gTk dk
∈ [−σ, σ].(4.3)

Formula (2.5) can be rewritten as

gTk+1dk+1 =
1

lk − 1
‖gk+1‖2.(4.4)

The above two relations show that (4.2) holds with c = 1/(1 + σ). This indicates
that our method also has the sufficient descent property (4.2) if the strong Wolfe line
search conditions are used.

Dai and Yuan [3] considered a class of methods that use

βk ∈ [(σ − 1)/(1 + σ), 1]β̄k,(4.5)

where β̄k is given by (2.4). It is shown in [3] that Algorithm 2.1 is still convergent if,
in Step 4, βk computed by (2.4) is replaced by any βk, satisfying (4.5).
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