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Abstract

Due to its simplicity and efficiency, the Barzilai and Borwein (BB) gra-
dient method has received various attentions in different fields. This paper
presents a new analysis of the BB method for two-dimensional strictly con-
vex quadratic functions. The analysis begins with the assumption that
the gradient norms at the first two iterations are fixed. We show that
there is a superlinear convergence step in at most three consecutive steps.
Meanwhile, we provide a better convergence relation for the BB method.
The influence of the starting point and the condition number to the con-
vergence rate is comprehensively addressed.

Keywords. unconstrained optimization, Barzilai and Borwein gra-
dient method, quadratic function, R-superlinear convergence, condition
number.

1 Introduction

Consider the problem of minimizing a strictly convex quadratic,

min f(x) =
1

2
xTAx− bTx, (1.1)

where A ∈ Rn×n is a real symmetric positive definite matrix and b ∈ Rn. The
Barzilai and Borwein (BB) method for solving (1.1) takes the negative gradient
as its search direction and updates the solution approximation iteratively by

xk+1 = xk − αk gk, (1.2)

where gk = ∇f(xk) and αk is determined by the information achieved at the
points xk−1 and xk. Specifically, denote sk−1 = xk−xk−1 and yk−1 = gk−gk−1.
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Since the matrix Dk = α−1k I, where I is the identity matrix, can be regarded as
an approximation to the Hessian of f at xk, Barzilai and Borwein (1988) chose
the stepsize αk such that Dk has certain quasi-Newton property:

Dk = arg min
D=α−1I

‖Dsk−1 − yk−1‖, (1.3)

where and below ‖ · ‖ means the two norm, yielding

αk =
sTk−1sk−1

sTk−1yk−1
. (1.4)

Comparing with the classical steepest descent (SD) method by Cauchy (1847),
which takes the stepsize as the exact one-dimensional minimizer along xk−αgk,

αSDk = arg min
α>0

f(xk − αgk), (1.5)

the BB method often requires less computational work and speeds up the con-
vergence greatly. Consequently, due to its simplicity and efficiency, the BB
method has been extended or utilized in many occasions or applications. To
mention just a few of them, Raydan (1997) proposed an efficient global Barzilai
and Borwein algorithm for unconstrained optimization by combining the tra-
ditional nonmonotone line search by Grippo et al. (1986). The algorithm of
Raydan was further generalized by Birgin et al. (2000) for the minimization
of differentiable functions on closed convex sets, yielding an efficient projected
gradient methods. Efficient projected algorithm based on BB-like methods have
also been designed (see Serafini et al. (2005) and Dai and Fletcher (2006)) for
special quadratic programs arising from training support vector machine, that
has a singly linear constraint in addition to box constraints. The BB method
has also received much attentions in finding sparse approximation solutions to
large underdetermined linear systems of equations from signal/image processing
and statics (for example, see Wright et al. (2009)).

Several attentions have also been paid to theoretical properties of the BB
method in spite of the potential difficulties due to its heavy nonmonotone be-
haviors. These analysis proceed in the unconstrained quadratic case (this is also
the case in this paper). Specifically, Barzilai and Borwein (1988) presents an in-
teresting R-superlinear convergence result for their method when the dimension
is only two. For the general n-dimensional strong convex quadratic function,
the BB method is also convergent (See Raydan (1993)) and the convergence
rate is R-linear (see Dai and Liao (2002)). A further analysis on the asymptotic
behaviors of BB-like methods can be found in Dai and Fletcher (2005).

In this paper, we focus on the analysis of the BB method for two-dimensional
quadratic functions. Though simple, the dimension of two has a special meaning
to the BB method. As was just mentioned, the BB method is significantly
faster than the SD method in practical computations, but there is still lack
of theoretical evidences showing that the BB method is better than the SD
method in the any-dimensional case. Nevertheless, the notorious zigzagging
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phenomenon of the SD method is well known to us; namely, the search directions
in the SD method usually tend to two orthogonal directions when applied to
any-dimensional quadratic functions. Unlike the SD method, however, the BB
method will not produce zigzags due to its R-superlinear convergence in the
two-dimensional case. This explains to some extent the efficiency of the BB
method over the SD method.

Our analysis begins with the assumption that the gradient norms at the
first two iterations are fixed (see Section 2). We show that there is a superlinear
convergence step in at most three consecutive steps. This sharpens the previous
analysis by Barzilai and Borwein (1988) and Yuan (1993), which only indicates
that in at most four consecutive steps, there is a superlinear convergence step.
Meanwhile, we provide a better convergence relation, namely, (2.13), for the
BB method. The influence of the condition number to the convergence rate is
presented in Section 3. We find that the convergence rate of the BB method
is related to both the starting point and the problem condition. Some remarks
are also made at the end of Section 3.

2. A new analysis on the BB method

We focus on the BB method for the quadratic function (1.1) with n = 2.
In this case, since the method is invariant under translations and rotations, we
assume that

A =

[
1

λ

]
, b = 0, (2.1)

where λ ≥ 1, as in Barzilai and Borwein (1988). Assume that x1 and x2 are
given with

g
(i)
1 6= 0, g

(i)
2 6= 0, for i = 1 and 2. (2.2)

To analyze ‖gk‖ for all k ≥ 3, we denote gk = (g
(1)
k , g

(2)
k )T and define

qk =

(
g
(1)
k

)2
(
g
(2)
k

)2 . (2.3)

Then it follows that

‖gk‖2 =
(
g
(2)
k

)2(
1 + qk

)
,

αk =
sTk−1sk−1

sTk−1yk−1
=

gTk−1gk−1

gTk−1Agk−1
=

1 + qk−1
λ+ qk−1

.

Noticing that xk+1 = xk − αk gk and gk = Axk, we have that

gk+1 = (I − αkA)gk.

3



Writing the above relation in componentwise form,(
g
(1)
k+1

g
(2)
k+1

)
=

([
1

1

]
− 1 + qk−1
λ+ qk−1

[
1

λ

])(
g
(1)
k

g
(2)
k

)

=

[
(λ−1)
λ+qk−1

(1−λ)qk−1

λ+qk−1

](
g
(1)
k

g
(2)
k

)
.

Therefore we get for all k ≥ 2,
(
g
(1)
k+1

)2
=

(λ− 1)2

(λ+ qk−1)2

(
g
(1)
k

)2
,

(
g
(2)
k+1

)2
=

(λ− 1)2 q2k−1
(λ+ qk−1)2

(
g
(2)
k

)2
.

(2.4)

In the case that λ = 1, which means that the object function has sphere con-
tours, the method will take a unit stepsize α2 = 1 and give the exact solution at

the third iteration. If g
(1)
2 = 0 but g

(2)
2 6= 0, we have that q2 = 0 and hence by

(2.4) that g
(1)
k = 0 for k ≥ 3 and g

(2)
4 = 0, which means that the method gives

the exact solution in at most four iterations. This is also true if g
(2)
2 = 0 but

g
(1)
2 6= 0 due to symmetry of the first and second components. If g

(1)
1 = 0 but

g
(2)
1 6= 0, we have that q1 = 0 and g

(2)
3 = 0. Then by considering x2 and x3 as

two starting points, we must have gk = 0 for some k ≤ 5. The symmetry works

for the case that g
(2)
1 = 0 but g

(1)
1 6= 0. Thus we may assume that λ > 1 and

the assumption (2.2) holds, for otherwise the method has the finite termination
property.

Now, substituting (2.4) into the definition of qk+1, we can obtain the follow-
ing recurrence relation

qk+1 =
qk
q2k−1

. (2.5)

In other words, the positive sequence {qk} only depends upon the initial values
q1 and q2. If the starting points x1 and x2 are given, then g1 and g2 are
fixed and so are q1 and q2. However, as λ increases, λ−1

λ+qk−1
is closer to 1 from

the left side and hence (g
(1)
k )2 and (g

(2)
k )2 become bigger. If q1 and q2 were

unchangeable, we would be able to draw from the relation (2.4) the conclusion
that the convergence of the BB method becomes slow as the problem becomes
more ill-conditioning. As analyzed in Section 3, however, this is not the case
since q1 and q2 are closely related to the starting point and the condition number
λ.

To proceed with our analysis, we denote Mk = ln qk. It follows from the
recurrence relation (2.5) that

Mk+1 = Mk − 2Mk−1, (2.6)
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which implies the analytical expression of Mk,

Mk =
√

2
k
τ cos

(
φ+ k arctan(

√
7)
)
, (2.7)

where τ is some constant only related to q1 and q2. If it happens that

(g
(1)
i )2 = (g

(2)
i )2 for i = 1 and 2, (2.8)

we know from (2.4) and (2.5) that qk ≡ 1 and (g
(1)
k )2 = (g

(2)
k )2 for all k ≥ 1,

which indicates that the method is identical to the SD method and the generated
gradient norm sequence {‖gk‖} is only linearly convergent with factor (λ −
1)/(λ + 1). In this case, the value of τ in (2.7) is zero. In the following, we
assume that (2.8) does not hold and hence τ 6= 0. Further, without loss of
generality, we assume that τ > 0.

To improve the result of Barzilai and Borwein (1988), we analyze the whole
gradient norm ‖gk‖ from the beginning (previously, the second component of

gk, that is g
(2)
k , was analyzed at the first stage). As a matter of fact, we have

from (2.4) that

‖gk+1‖2 =
1 + qk+1

1 + qk

(λ− 1)2 q2k−1
(λ+ qk−1)2

‖gk‖2

=
(λ− 1)2 (qk + q2k−1)

(1 + qk)(λ+ qk−1)2
‖gk‖2

4
= (λ− 1)2 rk ‖gk‖2, (2.9)

where

rk =
qk + q2k−1

(1 + qk)(λ+ qk−1)2
.

Notice that the quantity rk has the following properties:
(i) rk ≤ 1 for all k ≥ 1;
(ii) If qk < 1 and qk−1 < 1,

rk ≤
qk + q2k−1

λ2
≤ 2 max{qk, q2k−1};

(iii) If qk > 1 and qk−1 > 1,

rk =
q−1k + q−2k−1

(1 + q−1k )(1 + λq−1k−1)2
≤ 2 max{q−1k , q−2k−1}.

Using the above properties of rk, we have from (2.9) that

‖gk+1‖2 ≤ 2(λ− 1)2 uk ‖gk‖2,

where

uk =


max{qk, q2k−1}, if qk < 1 and qk−1 < 1;

max{q−1k , q−2k−1}, if qk > 1 and qk−1 > 1;
1
2 , otherwise.
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Consequently,

‖gk+3‖2 ≤ 8(λ− 1)6

 2∏
j=0

uk+j

 ‖gk‖2. (2.10)

Denoting

hk+j = cos
(
φ+ (k + j) arctan(

√
7)
)
,

we can obtain from (2.10) and (2.7) that

‖gk+3‖2 ≤ 8(λ− 1)6 exp

τ √2
k

2∑
j=0

vk+j

 ‖gk‖2,
where for j = 0, 1, 2,

vk+j =


max

{√
2
j
hk+j ,

√
2
j+1

hk+j−1

}
, if hk+j < 0 and hk+j−1 < 0;

max
{
−
√

2
j
hk+j , −

√
2
j+1

hk+j−1

}
, if hk+j > 0 and hk+j−1 > 0;

0, otherwise.

Noticing that
∑2
j=0 vk+j is a univariant function with φ, we can verify that

max
φ∈[0, 2π]

2∑
j=0

vk+j = cos
(π

2
+ arctan(

√
7)
)

= −
√

14

4
(2.11)

(a strict proof can be found in the Appendix). Thus we can obtain

‖gk+3‖2 ≤ 8(λ− 1)6 exp

(
−
√

14

4
τ
√

2
k

)
‖gk‖2,

or, equivalently,

‖gk+3‖ ≤ 2
√

2(λ− 1)3 exp

(
−
√

14

8
τ
√

2
k

)
‖gk‖. (2.12)

A corollary of (2.12) is that ‖gk+3‖
‖gk‖ =

∏2
i=0

‖gk+i+1‖
‖gk+i‖ tends to zero as k →∞

and hence

lim
k→∞

min

{
‖gk+1‖
‖gk‖

,
‖gk+2‖
‖gk+1‖

,
‖gk+3‖
‖gk+2‖

}
= 0.

This means that the BB method has a Q-superlinear convergence step in at
most three consecutive steps. This sharpens the analysis in Barzilai and Bor-
wein (1988) and Yuan (1993), which only indicates that there is a superlinear
convergence step in at most four consecutive steps.
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For any positive integer k ≥ 2, we can write k = 3l + i0 for some integers
l ≥ 0 and i0 ∈ [2, 4]. Notice by (2.9) and rk ≤ 1 that ‖gk‖ ≤ (λ − 1)k−2‖g2‖
for any k ≥ 2. By this and (2.12), we can obtain

‖gk‖ ≤ (
√

2)3l(λ− 1)3l exp

(
−
√

14

8
τ

l−1∑
i=0

√
2
3i+i0

)
‖gi0‖

≤
√

2
3l

(λ− 1)3l+i0−2 exp

(
−
√

14

8
τ

l−1∑
i=0

√
2
3i+i0

)
‖g2‖

≤ (
√

2)3l(λ− 1)3l+i0−2 exp
(
−c1τ(

√
2
3l+i0 −

√
2
i0

)
)
‖g2‖

≤ (
√

2)k−1(λ− 1)k−2 exp
(
−c1τ(

√
2
k
− 4)

)
‖g2‖, (2.13)

where

c1 =

√
14 + 4

√
7

56
≈ 0.2558.

The relation (2.13) indicates that the gradient norm sequence {‖gk‖} is R-
superlinear convergent with order

√
2, which is the same as before. As shown in

Section 3, however, the convergence relation (2.13) improves the previous one
in Yuan (1993). This is because our analysis provides a R-superlinear factor of
exp(−c1τ), which is better than the previous one.

We sum up the above analysis into the following theorem.

Theorem 2.1. Consider the BB method for solving the quadratic function (1.1)
with n = 2 and (2.1). Suppose that g1 and g2 satisfy (2.2) but not (2.8).
Then the method is R-superlinearly convergent and gives the convergence rela-
tion (2.13).

Two assumptions have been used in the above theorem for the two starting
points x1 and x2. If the relation (2.2) does not hold, namely, if at least one
component of g1 and g2 is zero, there must be gk = 0 for some k ≤ 5 and the
method terminates finitely. In exact arithmetics, if (2.8) holds, we will have

that (g
(1)
k )2 = (g

(2)
k )2 for all k ≥ 1 and the method is only linearly convergent,

giving ‖gk+1‖ = λ−1
λ+1‖gk‖ for all k ≥ 1. In practical computations, this equality

will usually be destroyed due to the existence of the numerical errors. Therefore
we can always observe the superlinear convergence behavior of the BB method
numerically for the two-dimensional case.

3. Influence of x1 and λ to the convergence rate

To begin with, we notice by (2.6) that the sequence {Mk} is of the same re-
currence relation as the sequence {mk} in Yuan (1993) (see the relation (3.1.44)
there; a similar sequence is also defined in Barzilai and Borwein (1988)). Specif-
ically, by using the analytical expression of mk,

mk =
√

2
k
θ cos

(
φ+ k arctan(

√
7)
)
, (3.1)
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where θ is also assumed to be positive, the following convergence relation has
been established in Yuan (1993),

‖gk‖ ≤
√

2|t2|(λ− 1)k−2λ(2 cos( 3
2 arctan(

√
7)) θ (

√
2)k−8), (3.2)

where |t2| = |g(2)2 |. Further, the relation (3.1.41) in Yuan (1993) indicates that

λ2mk = (g
(1)
k )2/(g

(2)
k )2 = qk. It follows from this and the definition Mk = ln qk

that mk = Mk/(2 lnλ). Then by comparing the expressions (2.6) and (3.1), we
get the following relation between the values of τ and θ,

θ =
τ

2 lnλ
. (3.3)

Submitting this into the convergence relation (3.2), we obtain

‖gk‖≤
√

2 |t2| (λ− 1)k−2 exp
(
−c2 τ

√
2
k
)

(3.4)

where

c2 =
− cos( 3

2 arctan(
√

7))

16
=

√
8− 5

√
2

64
≈ 0.0151.

It is obvious that our new estimate (2.13) is an improvement over (3.4).
We now analyze how the starting point x1 and the problem condition λ

influences the convergence rate of the BB method. To this aim, we assume that

the starting point x1 = (x
(1)
1 , x

(2)
1 )T is given and an SD step is taken during the

first iteration. Denoting

C =
(x

(1)
1 )2

(x
(2)
1 )2

, (3.5)

it is easy to see from gk = Axk and the definition of qk in (2.3) that

q1 =
C

λ2
. (3.6)

As the SD step provides the orthogonal condition gT2 g1 = 0 and the dimension
n is two, we can see that

q2 =
1

q1
. (3.7)

Recall that Mk = ln qk. By (2.7), we can obtain the following nonlinear system
of τ and φ, { √

2 τ cos
(
φ+ arctan(

√
7)
)

= ln q1

2 τ cos
(
φ+ 2 arctan(

√
7)
)

= ln q2.
(3.8)

Summing the two relations in this system and using (3.7), we can solve

φ = − arctan

√
7

7
.
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Then by the first relation in (3.8) and (3.6), we can obtain

τ =
2
√

14

7
ln
C

λ2
. (3.9)

In this special case, we give the following theorem by replacing this value to
(2.13) and using ‖g2‖ ≤ (λ− 1)‖g1‖ in Theorem 2.1. Since τ is assumed to be
positive in Section 2 without loss of generality, we need to change it to |τ | here
to deal with the case that the value of τ in (3.9) is likely to be negative. If C
is fixed, it is interesting to notice that the absolute value of θ in (3.3) tends to

the constant 2
√
14
7 when λ goes to infinity; namely, limλ→∞ |θ| = 2

√
14
7 .

Theorem 3.1. Consider the BB method for solving the quadratic function (1.1)

with n = 2 and (2.1). Suppose that the starting point x1 = (x
(1)
1 , x

(2)
1 )T is given

and an SD step is taken at the first iteration. If x
(1)
1 x

(2)
1 6= 0 and C 6= λ2, then

the method is R-superlinearly convergent and gives the convergence relation

‖gk‖ ≤
[√

2(λ− 1)
]k−1

exp

(
−1 + 2

√
2

14

∣∣∣∣ln C

λ2

∣∣∣∣ (√2
k
− 4
))
‖g1‖. (3.10)

If the starting point x1 is such that x
(1)
1 x

(2)
1 = 0, it is easy to see that the

BB method will give the solution in at most four iterations. If C = λ2, we will
have that qk = 1 and ‖gk+1‖ = λ−1

λ+1‖gk‖ for all k ≥ 1, which implies that the
method is only linearly convergent.

If C 6= λ2, the exponential term in (3.10) dominates the convergence rate
of the gradient norm. Consider the term

∣∣ln C
λ2

∣∣ as a function of λ, when C
is held fixed. This function is monotonically decreasing for λ2 ∈ (1, C) and
monotonically increasing in (C,∞) (here note that the first case may not happen
if C ≤ 1). Therefore we have the following statements:

(i) the convergence rate of ‖gk‖ is decreasing for λ2 ∈ (1, C);

(ii) the convergence rate of ‖gk‖ is increasing for λ2 ∈ (C, ∞).

Let us now consider the region of x1 such that the convergence rate of ‖gk‖ is
decreasing and increasing, respectively. At first, we see that for a fixed value of
λ, the value of

∣∣ln C
λ2

∣∣ is larger if C < λ2 becomes smaller or if C > λ2 becomes
bigger. This indicates that the convergence is faster when the starting point is
close to any of the two eigenvectors of the Hessian. Further, for a fixed value of
λ, we see that

(iii) when x1 ∈ Ω1(λ) = {x : |x(1)| > λ|x(2)| > 0}, the convergence rate of ‖gk‖
has a tendency to decrease with λ;

(iv) when x1 ∈ Ω2(λ) = {x : 0 < |x(1)| < λ|x(2)|}, the convergence rate of ‖gk‖
has a tendency to increase with λ.
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Then for any positive number l > 0, denoting the unit ball B(l) = {x : ‖x‖ ≤ l},
we can obtain

r(λ) :=
Measure of Ω1(λ) ∩ B(l)

Measure of Ω2(λ) ∩ B(l)
=

arctan 1
λ

π
2 − arctan 1

λ

. (3.11)

Since λ > 1, we have arctan 1
λ <

π
4 and hence r(λ) < 1. In addition,

lim
λ→∞

r(λ) = 0. (3.12)

Therefore we can conclude that the BB method has a greater possibility such
that it converges faster as the problem condition increases and this possibility
tends to one when λ goes to infinity.

To some extent, the analysis in the previous paragraph is similar to the
one in Nocedal et al. (2002) for the SD method in the two-dimensional case,
although the latter is only linearly convergent. As was shown from Figure 12 in
Nocedal et al. (2002) and the related discussions, for a fixed starting point, the
convergence rate of the SD method improves when the condition number tends
to infinity. The analysis for either the BB method or the SD method in the two-
dimensional case is not typical. It remains under investigation how the problem
condition influences the convergence of the BB method for higher-dimensional
problems.

4. Appendix

The function
∑2
j=0 vk+j is a periodic function with φ and the period is just

π. To establish the relation (2.11), we prove the following equivalent lemma.

Lemma 4.1. Denote c = arctan(
√

7), h̄j = cos(ψ + j c) and

v̄j =


max

{√
2
j
h̄j ,
√

2
j+1

h̄j−1

}
, if h̄j < 0 and h̄j−1 < 0;

max
{
−
√

2
j
h̄j , −

√
2
j+1

h̄j−1

}
, if h̄j > 0 and h̄j−1 > 0;

0, otherwise.

Define w(ψ) =
∑2
j=0 v̄j. Then we have that

max
ψ∈[0, π]

w(ψ) = cos
(π

2
+ c
)

= −
√

14

4
.

Proof. Denote

I1 = [0, π2 − c], I2 = [π2 − c,
3
2π − 3c],

I3 = [ 32π − 3c, π2 ], I4 = [π2 ,
3
2π − 2c],

I5 = [ 32π − 2c, π2 + c], I6 = [π2 + c, π].
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Then we have

v̄0 =


−
√

2 cos(ψ − c), for ψ ∈ I1;
− cosψ, for ψ ∈ I2 ∪ I3;
0, for ψ ∈ I4 ∪ I5;√

2 cos(ψ − c), for ψ ∈ I6,

v̄1 =


−
√

2 cos(ψ + c), for ψ ∈ I1;
0, for ψ ∈ I2 ∪ I3;
2 cosψ, for ψ ∈ I4;√

2 cos(ψ + c), for ψ ∈ I5 ∪ I6
and

v̄2 =


0, for ψ ∈ I1;

2
√

2 cos(ψ + c), for ψ ∈ I2;
2 cos(ψ + 2c), for ψ ∈ I3 ∪ I4;
0, for ψ ∈ I5 ∪ I6.

Therefore

w(ψ) =



−
√

2(cos(ψ − c) + cos(ψ + c)), for ψ ∈ I1;

− cosψ + 2
√

2 cos(ψ + c), for ψ ∈ I2;
− cosψ + 2 cos(ψ + 2c), for ψ ∈ I3;
2(cosψ + cos(ψ + 2c)), for ψ ∈ I4;√

2 cos(ψ + c), for ψ ∈ I5;√
2(cos(ψ − c) + cos(ψ + c)), for ψ ∈ I6.

We plot the function w(ψ) over [0, π] as in Figure 1. By some one-dimensional
calculus, it is easy to verify that w(ψ) has the properties:

(i) it is monotonically increasing on intervals I1, I3 and I5;
(ii) it is monotonically decreasing on intervals I2 and I6;
(iii) it is convex on the interval I4.

Consequently, we have that

max
ψ∈[0,π]

w(ψ) = max
{
w(
π

2
− c), w(

π

2
), w(

π

2
+ c)

}
= −
√

14

4
,

which completes the proof. Q.E.D.

Acknowledgement. The author is very grateful to Professor Roger Fletch-
er in Dundee University and Professor Ya-xiang Yuan in Chinese Academy of
Sciences for their valuable comments on this manuscript. He also thanks the
two anonymous referees for their useful comments on an early version of this
manuscript, particularly for those critical comments on how the problem con-
dition influences the convergence of the BB method.

11



Figure 1: Function w(ψ) over [0, π]
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