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Abstract The linear conjugate gradient method is an optimal method for convex quadratic minimization

due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and

Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for large-

scale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line

search at each iteration and the loss of conjugacy property of the search directions in various occasions. On

the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called

asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically

be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis

of the subspace minimization conjugate gradient method by Yuan and Stoer (1995). Specifically, if choosing

the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient

Barzilai-Borwein conjugate gradient (BBCG) methods. The initial numerical experiments show that one of the

variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG

method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for

large-scale nonlinear optimization.
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1 Introduction

Conjugate gradient methods are a class of important methods for solving unconstrained optimization

problem

min f(x), x ∈ R
n, (1.1)

especially if the dimension n is large. They are of the form

xk+1 = xk + αkdk, (1.2)

where αk is a stepsize obtained by a line search and dk is the search direction defined by

dk =

{

−gk, for k = 1,

−gk + βkdk−1, for k > 2.
(1.3)
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In the above, βk is the so-called conjugate gradient parameter and gk denotes ∇f(xk). In general, if the

objective function is quadratic, namely,

q(x) =
1

2
xTAx+ bTx, x ∈ R

n, (1.4)

where A ∈ Rn×n is a symmetric and positive definite matrix and b ∈ Rn, and if the line search is exact,

namely,

αk = argmin
α>0

f(xk + αdk), (1.5)

the choice of βk should be such that the corresponding method (1.2)–(1.3) reduces to the linear conjugate

gradient method and keeps the finite termination property. Some well-known choices for βk are Fletcher

and Reeves [10], Polak et al. [20, 21], Dai and Yuan [9], and Hestenes and Stiefel [15] ones, and are

given by

βFR
k =

‖gk‖2

‖gk−1‖2
, βPRP

k =
gT
k yk−1

‖gk−1‖2
, βDY

k =
‖gk‖2

dT
k−1yk−1

, βHS
k =

gT
k yk−1

dT
k−1yk−1

, (1.6)

respectively, where yk−1 = gk − gk−1 and ‖ · ‖ means the Euclidean norm. In recent years, more efficient

formulae have been proposed for the conjugate gradient parameter, including [6, 7, 13, 26] among many

others. See [3, 14] for recent surveys on nonlinear conjugate gradient methods.

It is well known that the linear conjugate gradient method is an optimal method for convex quadratic

minimization due to the Krylov subspace minimization property (for example, see [24]). The proposi-

tion of limited-memory BFGS method [17] and Barzilai-Borwein gradient method [1], however, heavily

restricted the use of conjugate gradient method for large-scale nonlinear optimization. This is, to the

great extent, due to the requirement of a relatively exact line search at each iteration and the loss of

conjugacy property of the search directions in various occasions. The efficient conjugate gradient codes,

either CG Descent by Hager and Zhang [13] or CGOPT by Dai and Kou [6], require the calculations of

approximately two stepsizes per line search. On the contrary, the limited-memory BFGS method and the

Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line search property;

namely, the trial stepsize in the method will asymptotically be accepted by the line search when the

iteration is close to the solution (see [8, 16, 23]). Therefore the following question is intriguing: Does

there exist some conjugate gradient method which also has the asymptotical one stepsize per line search

property?

To provide a partial answer to this question, we are specially interested in the conjugate gradient

method by Yuan and Stoer [25]. As it is known, a remarkable property of the linear conjugate gradient

method is that, if the objective function is given in (1.4) and if the exact line search (1.5) is used, then

for k = 1, 2, . . . , each iteration xk+1 is the minimizer of the objective function over the Krylov subspace,

namely,

xk+1 = argmin{q(x) : x ∈ x1 + Span{d1,d2, . . . ,dk}}. (1.7)

However, this result is not realistic for nonlinear objective functions in which situation inexact line searches

are often utilized. In fact, even for quadratic objective functions, the conjugacy property of the search

directions may be harmful if the line search is exact, as argued by Yuan and Stoer [25]. Based on these

considerations, for the general unconstrained problem (1.1), Yuan and Stoer [25] proposed a conjugate

gradient method that computes search directions by minimizing an approximate quadratic model in the

two-dimensional subspace spanned by the current gradient and the previous search direction. As the

essence of nonlinear optimization is to minimize some merit function by achieving a certain descent

gradually, we think that the method by Yuan and Stoer [25] has its intrinsic advantage, but such a

method has not received much attention since its proposition in 1995. To emphasize the importance

of this method, we shall call this method simply by subspace minimization conjugate gradient (SMCG)

method. In this paper, we shall give some new analysis of the SMCG method and focus on how to choose

the parameter in the method. Specifically, if we choose the parameter in the method by combining

the Barzilai-Borwein idea, we shall call the corresponding method by the BBCG method. The initial

numerical experiments show that one of the BBCG variants, BBCG3, is specially efficient among some



Dai Y H et al. Sci China Math August 2016 Vol. 59 No. 8 1513

others without line searches. This implies that the BBCG method might enjoy the asymptotical one

stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.

This paper is organized as follows. In the next section, we review the SMCG method proposed by

Yuan and Stoer [25]. In Section 3, we present some new theoretical properties of the SMCG method.

In Section 4, we consider how to choose the parameter ρk by combining the Barzilai-Borwein idea and

present some preliminary numerical results. In Section 5, we discuss how to choose the parameter ρk by

some other ideas. Conclusions and discussions are made in the last section.

2 A review of the SMCG method

In this section, we review the SMCG method, which was early due to Yuan and Stoer [25].

Assume that Bk is some approximation of the function Hessian at xk and denote sk−1 = αk−1dk−1 =

xk − xk−1. Consider the following quadratic approximate function:

qk(d) = gT
k d+

1

2
dTBkd (2.1)

in the two-dimensional subspace

Ωk = Span{gk,dk−1}. (2.2)

We are particularly interested in choosing the next search direction via the following subproblem:

min
d∈Ωk

qk(d). (2.3)

Consider the general case that gk and dk−1 are not collinear, namely, dim(Ωk) = 2. In this case,

substituting d = µ gk + ν sk−1 into (2.3) yields

min
(µ,ν)∈R

(

‖gk‖2

gT
k sk−1

)T(

µ

ν

)

+
1

2

(

µ

ν

)T



gT
k Bkgk gT

k Bksk−1

sTk−1Bkgk sTk−1Bksk−1





(

µ

ν

)

. (2.4)

Remembering that Bk is an approximation to the Hessian ∇2f(xk) and because ∇2f(xk)sk−1 ≈ yk−1,

it is natural to ask Bk to satisfy the quasi-Newton equation

Bksk−1 = yk−1. (2.5)

Assuming that the value

ρk ≈ gT
k Bkgk (2.6)

has been estimated in some way, we consider the following prediction quadratic function:

qpred(µ, ν) =

(

‖gk‖
2

gT
k sk−1

)T(

µ

ν

)

+
1

2

(

µ

ν

)T



ρk gT

k yk−1

yT
k−1gk sTk−1yk−1





(

µ

ν

)

(2.7)

and further, the prediction subproblem

min
(µ,ν)∈R

qpred(µ, ν). (2.8)

If ρk satisfies

∆k = ρk s
T
k−1yk−1 − (gT

k yk−1)
2 > 0, (2.9)

which is always true if the approximation Hessian Bk is positive definite in the convex quadratic case, it

is easy to get the unique solution of (2.8),

(

µ∗
k

ν∗k

)

=
1

∆k




gT
k yk−1 g

T
k sk−1 − sTk−1yk−1 ‖gk‖2

gT
k yk−1 ‖gk‖2 − ρk g

T
k sk−1



 . (2.10)
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Consequently, the search direction dk is given by

dk = µ∗
k gk + ν∗k sk−1

=
1

∆k
[(gT

k yk−1 g
T
k sk−1 − sTk−1yk−1 ‖gk‖

2) gk + (gT
k yk−1 ‖gk‖

2 − ρk g
T
k sk−1) sk−1]. (2.11)

One interesting property of the SMCG method is that, if the line search is exact, namely, gT
k sk−1 = 0,

the above direction is parallel to the Hestenes-Stiefel conjugate gradient direction independently of the

choice of ρk. As inexact line searches are usually used in practical calculations, two choices for ρk have

been suggested by Yuan and Stoer [25]. The first one is

ρk =
2(gT

k yk−1)
2

sTk−1yk−1

. (2.12)

It makes cos2 θk to take an average value 1
2
, where θk is the angle between the vector B

1
2

k gk and B
1
2

k sk−1.

The second one is

ρk =
sTk−1yk−1

‖sk−1‖2

(

‖gk‖
2 −

(gT
k sk−1)

2

‖sk−1‖2

)

+
(gT

k yk−1)
2

sTk−1yk−1

, (2.13)

which is derived by taking Bk to the scaled memoryless BFGS update, namely, setting

Bk =
sTk−1yk−1

‖sk−1‖2

(

I −
sk−1s

T
k−1

sTk−1sk−1

)

+
yk−1y

T
k−1

sTk−1yk−1

. (2.14)

3 Analysis of the SMCG method

In this section, we present some basic theoretical properties of the SMCG method. At first, we have the

following finite termination result.

Theorem 3.1. Consider the SMCG method for the convex quadratic function (1.4) with n = 2, where

A ∈ Rn×n is a symmetric and positive definite matrix and b ∈ Rn. Assume that x1 is the starting point

and that a Cauchy steepest descent step is taken at the first iteration. Then we must have that gj = 0

for some j 6 4.

Proof. Assume that gj 6= 0 for j = 1, 2, 3. Since the first step is a Cauchy steepest descent step, we

must have

gT
2 s1 = 0. (3.1)

By the definition of s2, for any value of ρ2, we know that s2 is A-conjugate to s1, namely,

sT2 As1 = 0, (3.2)

which with y2 = As2 shows that

yT
2 s1 = 0. (3.3)

Since the dimension of the problem is only 2 and y2 = g3 − g2, we know by (3.1) and (3.3) that g2, g3
and y2 are collinear and there must exist some real number a 6= 0 such that

y2 = a g3. (3.4)

Now we look at s3 = µ3g3 + ν3s2. By the definitions in (2.10), we have that

µ∗
3 =

gT
3 y2 g

T
3 s2 − sT2 y2 g

T
3 g3

∆3

=
a gT

3 g3 g
T
3 s2 − a sT2 g3 g

T
3 g3

∆3

= 0 (3.5)

and

ν∗3 = −
ρ3 g

T
3 s2 − gT

3 y2 g
T
3 g3

ρ3 sT2 y2 − (gT
3 y2)2

= −
ρ3 g

T
3 s2 − a (gT

3 g3)
2

a ρ3 sT2 g3 − a2 (gT
3 g3)

2
= −

1

a
. (3.6)
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Thus s3 = − 1
a s2. Therefore by this, y2 = As2 and (3.4), we obtain

g4 = g3 + y3 = g3 +As3 = g3 −
1

a
As2 = g3 −

1

a
y2 = 0, (3.7)

which concludes our proof.

Remark 3.2. The above theorem can be extended to the case that an exact line search is carried out

at any iteration. This is because in this case, the exactness of the line search implies that

gT
k+1sk = 0. (3.8)

The definition of sk+1 implies that sTk+1Ask = 0, which means that yT
k+1sk = 0. Since the problem

dimension is only n = 2, we know that gk+1, gk+2 and yk are collinear. Therefore we may again assume

that yk+1 = a gk+2 and then obtain the similar statement. This exposes the special property of the

SMCG method.

Now, substituting (2.11) into the objective function in the prediction model (2.8), we can obtain the

predicted function reduction,

∆fpred,k =
1

2

[
(gT

k sk−1)
2

sTk−1yk−1

+
(‖gk‖2 sTk−1yk−1 − gT

k yk−1 g
T
k sk−1)

2

sTk−1yk−1 (ρksTk−1yk−1 − (gT
k yk−1)2)

]

. (3.9)

In the case of convex quadratic objective function, we know that the prediction model is an approximation

to the real model

min
(µ,ν)∈R

qreal(µ, ν), (3.10)

where

qreal(µ, ν) =

(

‖gk‖
2

gT
k sk−1

)T(

µ

ν

)

+
1

2

(

µ

ν

)T



gT
k Agk gT

k yk−1

yT
k−1gk sTk−1yk−1





(

µ

ν

)

. (3.11)

Noticing that

qreal(µ, ν) = qpred(µ, ν) +
1

2

(

µ

ν

)T



gT
k Agk − ρk gT

k yk−1

yT
k−1gk sTk−1yk−1





(

µ

ν

)

, (3.12)

we can obtain the real function reduction achieved by the direction (2.11),

∆freal,k = ∆fpred,k +
1

2

(ρk − gT
k Agk)(‖gk‖

2 sTk−1yk−1 − gT
k yk−1 g

T
k sk−1)

2

(ρksTk−1yk−1 − (gT
k yk−1)2)2

= ∆f
(1)

real,k +∆f
(2)

real,k, (3.13)

where

∆f
(1)

real,k =
1

2

(gT
k sk−1)

2

sTk−1yk−1

(3.14)

and

∆f
(2)

real,k =
1

2

(‖gk‖2 sTk−1yk−1 − gT
k yk−1 g

T
k sk−1)

2

(ρksTk−1yk−1 − (gT
k yk−1)2)sTk−1yk−1

(1 + τk), (3.15)

where

τk =
(ρk − gT

k Agk)s
T
k−1yk−1

ρksTk−1yk−1 − (gT
k yk−1)2

. (3.16)

From the relation (3.13), we can see that the real function reduction, ∆freal,k, achieved by the direction

(2.11) can be divided into two parts. If the directional derivative of the current gradient gk along the

previous search sk−1, namely, gT
k sk−1, is not so close to zero, then the first part ∆f

(1)

real,k is not so small
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and the SMCG method will gain enough remainder descent along the previous direction. Otherwise, if

the absolute value of gT
k sk−1 is small, we can show that the second part ∆f

(2)

real,k will not be so small and

the SMCG method will gain enough descent as well. This property comes from the basic construction of

the SMCG method. Following this line, we are able to establish the following linear convergence result.

Theorem 3.3. Consider the SMCG method for the convex quadratic function given by (1.4). Sup-

pose that

max

{

gT
k Agk,

(gT
k yk−1)

2

sTk−1yk−1

}

6 ρk 6 M ‖gk‖
2 (3.17)

for some number M < +∞ and all k > 1. Then we have that

∆f real
k >

1

2(
√

‖A‖2 +
√
M)2

‖gk‖
2, for all k > 1. (3.18)

Therefore the method is globally convergent and the convergence is Q-linear in the objective function value.

Proof. Denote the constant

c =
1

1 +
√

M
‖A‖2

∈ (0, 1). (3.19)

We divide into two cases:

|gT
k yk−1 g

T
k sk−1| > c ‖gk‖

2 sTk−1yk−1 (3.20)

and

|gT
k yk−1 g

T
k sk−1| < c ‖gk‖

2 sTk−1yk−1. (3.21)

In the case of (3.20), noticing that |gT
k yk−1| 6 ‖gk‖ ‖yk−1‖ and

sT
k−1yk−1

‖yk−1‖2
> 1

‖A‖2
, we have that

∆freal,k > ∆f
(1)

real,k >
c2 ‖gk‖4 sTk−1yk−1

2(gT
k yk−1)2

>
c2 ‖gk‖2 sTk−1yk−1

2‖yk−1‖2
>

c2

2‖A‖2
‖gk‖

2. (3.22)

In the case of (3.21), we have that

∆freal,k > ∆f
(2)

real,k >
(‖gk‖2 sTk−1yk−1 − gT

k yk−1 g
T
k sk−1)

2

2(ρksTk−1yk−1 − (gT
k yk−1)2)sTk−1yk−1

>
(1− c)2(‖gk‖2 sTk−1yk−1)

2

2M ‖gk‖2 (sTk−1yk−1)2
>

(1− c)2

2M
‖gk‖

2. (3.23)

Substituting the value of c in (3.19) into (3.22) and (3.23), we know the truth of (3.18).

Denote the constant c1 = 1

2(
√

‖A‖2+
√
M)2

. Summing (3.18) for k = 1, . . . ,K, we get that

f(x1)− f(xK+1) =

K∑

k=1

∆freal,k > c1

K∑

k=1

‖gk‖
2. (3.24)

Letting K tend to infinity and noticing that limk→∞ f(xK+1) > −∞, we can get from the above rela-

tion that
∑

k>1

‖gk‖
2 < +∞, (3.25)

which implies that limk→∞ ‖gk‖ = 0 and hence the method is globally convergent.

Furthermore, the relation (3.18) can be rewritten as

f(xk)− f(xk+1) > c1‖gk‖
2. (3.26)

In addition, for the convex quadratic function in (1.4), it is easy to verify that f(xk)−f(x∗) = gT
k A

−1gk,

where x∗ is the solution of (1.4). Hence we have for all k > 1,

f(xk)− f(x∗) 6 c2‖gk‖
2, (3.27)
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where c2 = 1
λmin(A)

and λmin(A) is the minimal eigenvalue of the matrix A. Combining (3.26) and (3.27),

we can obtain

[f(xk)− f(x∗)]− [f(xk+1)− f(x∗)] > c1‖gk‖
2
>

c1
c2
[f(xk)− f(x∗)]. (3.28)

It follows that

f(xk+1)− f(x∗) 6

(

1−
c1
c2

)

[f(xk)− f(x∗)], (3.29)

which implies that the method is Q-linear in the objective function value.

If ρk satisfies (3.17), we can prove that the direction dk satisfies the sufficient descent condition

dT
k gk 6 −

1

M
‖gk‖

2. (3.30)

As a matter of fact, we have by direct calculations that

dT
k gk = −

‖gk‖4

∆k

[

sTk−1yk−1 − 2gT
k yk−1

gT
k sk−1

‖gk‖2
+ ρk

(
gT
k sk−1

‖gk‖2

)2]

. (3.31)

Denote the term in the square brackets of (3.31) by ηk and treat it as a one variable function of
gT
k
sk−1

‖gk‖2 .

By taking minimization, we can get that

ηk >
∆k

ρk
. (3.32)

Thus by this and (3.31), we obtain

dT
k gk 6 −

‖gk‖4

ρk
. (3.33)

The above relation and (3.17) implies the truth of the sufficient descent condition (3.30). The sufficient

descent condition is quite useful for the extension of the SMCG method to general nonlinear optimization.

Nevertheless, we shall not go further in this issue in this paper.

Now let us focus on the condition (3.17). For the convex quadratic case, we have that gT
k Agk

6 ‖A‖2‖gk‖2 and
(gT

k
yk−1)

2

sT
k−1yk−1

6
‖yk−1‖2

sT
k−1yk−1

‖gk‖2 6 ‖A‖2‖gk‖2. Thus the condition (3.17) is valid provided

that M > ‖A‖2. For general nonlinear optimization, we need pay special attention on this condition so

that there exists some suitable ρk.

Another remark related to Theorem 3.3 is as follows. Although the convergence theorem requires

that the quantity ρk

‖gk‖2 is bounded (see the relation (3.17)), we do not need to impose this condition on

our algorithms. This is a good property comparing with the gradient method xk+1 = xk − αkgk with

constant stepsize αk ≡ 1
2L , where L is the Lipschitz constant. It is well known that if the estimate to L

is too large, the method will be very slow; otherwise, if the estimate to L is too small, the method may

not converge at all. One intuitive explanation of such an advantage of the SMCG method is that, if it

does not provide a good estimate to the curvature along the gradient −gk, the method will provide a

compensation along the direction in the next iteration and receive a certain descent in the function value

due to the two-dimensional subspace minimization mechanism.

4 The Barzilai-Borwein conjugate gradient method

In this section, we discuss how to choose the parameter ρk in the SMCG method by combining the

Barzilai-Borwein idea.
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4.1 The Barzilai-Borwein gradient method

To find a new steplength for αk in the gradient method, which is of the form xk+1 = xk −αkgk, Barzilai

and Borwein [1] regards Dk = (1/αk) I as some approximation to the Hessian and asks Dk to satisfy

certain quasi-Newton property

min
αk∈R

‖Dksk−1 − yk−1‖2 (4.1)

or

min
αk∈R

‖sk−1 −D−1
k yk−1‖2. (4.2)

The solutions to (4.1) and (4.2) are

αBB1
k =

sTk−1sk−1

sTk−1yk−1

(4.3)

and

αBB2
k =

sTk−1yk−1

‖yk−1‖2
, (4.4)

respectively. To sum up, we see that the essence of the idea of Barzilai and Borwein [1] is to approximate

the Hessian by the matrix (1/αBB1
k ) I or (1/αBB2

k ) I.

Comparing with the steepest descent (SD) method, which was due to Cauchy in 1847, the Barzilai-

Borwein (BB) method often requires less computational work and speeds up the convergence greatly.

Due to its simplicity and efficiency, the BB method has been extended or generalized in many occasions

or applications. For example, Raydan [23] designed an efficient global Barzilai and Borwein algorithm

for unconstrained optimization by incorporating the nonmonotone line search by Grippo et al. [11]. It is

observed in [23] that the BB stepsize can always be accepted by the line search near the solution (see the

third paragraph in Section 4 of the paper).

Several attentions have been paid to theoretical properties of the BB method in spite of the potential

difficulties due to its heavy nonmonotone behaviour. For two-dimensional convex quadratic functions,

Barzilai and Borwein [1] presented an interesting R-superlinear convergence result for their method. For

general n-dimensional strong convex quadratic functions, the BB method is also convergent (see [22])

and the convergence rate is R-linear (see [8]). Furthermore, Dai and Liao [8] presented a theoretical

analysis for why the Barzilai-Borwein gradient method enjoys the asymptotical one stepsize per line

search property. More theoretical analysis and applications of the Barzilai-Borwein gradient method can

be found in Dai and Fletcher [5], Dai [4] and Hager et al. [12].

4.2 Choices of ρk based on the Barzilai-Borwein idea

To estimate the value of ρk in (2.6), we shall incorporate the idea of Barzilai-Borwein [1] in the SMCG

method and call the resulted method by BBCG method. As seen from the previous subsection, the

essence of the idea of Barzilai and Borwein [1] is to approximate the Hessian by the matrix (1/αBB1
k ) I or

(1/αBB2
k ) I. To incorporate the idea of Barzilai and Borwein [1] in the SMCG method, we then consider

to approximate the Hessian Bk by (1/αBB1
k ) I or (1/αBB2

k ) I in estimating the value ρk in (2.6). This

leads the following choices of ρk,

ρBBCG1
k =

sTk−1yk−1

sTk−1sk−1

‖gk‖
2 (4.5)

and

ρBBCG2
k =

‖yk−1‖2

sTk−1yk−1

‖gk‖
2. (4.6)

One good property of the formula (4.6) for ρk is that, if sTk−1yk−1 > 0, the relation (2.9) is always

satisfied with this choice except the vectors gk and yk−1 are collinear. Nevertheless, our numerical studies

in Subsection 3.3 show that the formula (4.5) is clearly superior to (4.6).
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To go a step further, we may introduce a parameter λk > 1 into (4.6) and obtain the following choice

of ρk,

ρBBCG3
k = λk

‖yk−1‖2

sTk−1yk−1

‖gk‖
2. (4.7)

As the parameter λk increases, we can see that relation (2.9) still holds and the Hessian of the objective

function (2.7) will become more positive definite. We think that the prediction model (2.8) requires to act

at least two roles: One is to approximate the original function in the two-dimensional subspace spanned

by −gk and dk−1 and the other is to be such that the search direction dk obtained by the prediction

model is downhill so that the original function can receive a descent along such a direction. Since a value

of λk is a little larger than one can balance the two roles in a better way, we feel that this will make the

method perform better. This turned out to be true by our numerical experiments in Subsection 3.3 and

we shall choose

λk ≡
3

2
. (4.8)

We will find that the choice of ρk in (4.7) with λk given in (4.8) outperforms the choice of ρk in (4.5).

4.3 Numerical experiments

We tested the BBCG method with Matlab (version 7.9.0) and compared it with some other methods. For

a given dimension n, we generated the matrix A by A=AT
1 A1 with A1 = 100(rand(n, n)− 0.5) and the

vector b = 100(rand(n, 1)− 0.5). The initial point is generated by x1 = rand(n, 1). The Cauchy steepest

descent stepsize is used at the first iteration for all the methods. The stopping condition is

‖gk‖2 6 10−6‖g1‖2. (4.9)

Ten simulations were made for a given dimension. For each simulation, we marked with the symbol

“DGT” if the method is divergent and the gradient norm grows to infinity, or “Failed” if the number

of iterations exceeds 50000. Otherwise, we listed down the required number of iterations in the numeri-

cal tables.

For the first numerical comparison, we fix the dimension n = 20. In Table 1, YS1, YS2, BBCG1,

BBCG2 and BBCG3 are corresponding to the SMCG method with ρk being chosen by (2.12), (2.13) and

(4.5)–(4.7), respectively. The choices (5.5) and (5.8) will be given in the next section. SCG stands for

the spectral conjugate gradient method by Birgin and Mart́ınez [2], who first tried the combination of

the Barzilai-Borwein gradient method and the conjugate gradient method. More exactly, they considered

the direction dk = −αBB1
k gk + βk sk−1, where βk =

(αBB1
k

yk−1−sk−1)
Tgk

sT
k−1yk−1

, which satisfies that dT
k yk−1 =

−gT
k sk−1. BB denotes the Barzilai-Borwein gradient method with the stepsize given by (4.5), since this

choice is generally preferred over (4.6) in numerical experiments. No line searches are carried for each

method. We generated ten test problems. The number of the required iterations by each method is listed

in Table 1. From Table 1, we can see that YS2, SCG and BBCG2 cannot provide an inexact solution

in case of no line searches. Although the performance of YS2 is not so good at all, its improvement,

BBCG3, performs much better than YS1 and BB.

In the second numerical experiment, we compare the BBCG3 method and the BB method for higher-

dimensional problems. Specifically, we choose n = 50, n = 200 and n = 500. Again, ten simulations are

made for a given dimension. The numerical results are listed in Table 2. From the table, we can see that

the BBCG3 method requires fewer iterations for almost all the testing problems.

For the BBCG3 method, since the ρk in (4.7) with λk given in (4.8) does not satisfy the condition

(3.17), the function value may not be decreasing at every iteration. In other words, the BBCG3 method

is a non-monotone method. In the convex quadratic case, it is easy for us to enforce a descent in the

objective function by an exact line search. More exactly, assuming that the current iteration is xk with

function value fk and gradient gk and the step is sk, if f(xk + sk) is not less than fk, then we take the

point xk + α∗
ksk with α∗

k =
−gT

k
sk

sT
k
Ask

being the unique minimizer of the line search function f(xk + αsk).

We denote this modification of BBCG3 by BBCG3ls. In this case, we choose n = 1000, n = 2000 and
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n = 3000. Again, ten simulations are made for a given dimension. The numerical results are listed in

Table 3. For BBCG3ls, the number of the required line searches is taken down in the column “nls”.

The version 8.3.0.532 of MATLAB is used for this test. From Table 3, we can see that for quite many

problems (though not all), BBCG3 generates a descent in the objective function at each iteration and

hence has the same performance as BBCG3ls. For the other testing problems, BBCG3 is slightly better

than BBCG3ls.

Table 1 A numerical experience with Naive methods (without line searches)

P YS1 YS2 SCG BBCG1 BBCG2 BBCG3 (5.5) (5.8) BB

1 318 DGT DGT 724 DGT 192 671 195 227

2 135 DGT DGT 300 DGT 122 258 148 159

3 1269 DGT DGT 3508 DGT 481 2887 910 524

4 1244 DGT DGT 3115 DGT 290 2578 978 857

5 269 DGT DGT 839 DGT 226 695 289 221

6 1856 DGT DGT 16573 DGT 911 12338 4166 4705

7 661 DGT DGT 1165 DGT 420 1309 634 388

8 1872 DGT DGT 5812 DGT 506 5015 1310 3519

9 2037 DGT DGT 3946 DGT 365 1871 868 582

10 151 273 DGT 319 DGT 108 260 134 117

Table 2 Comparing BBCG3 with BB

n = 50 n = 200 n = 500

P BBCG3 BB BBCG3 BB BBCG3 BB

1 372 1045 530 541 3731 13044

2 241 529 677 1451 1600 3638

3 265 406 1437 8191 2131 1329

4 577 634 889 1621 1233 684

5 721 Failed 740 1450 1344 1971

6 1020 19166 1608 16756 1326 2981

7 311 619 1106 1746 1278 1622

8 1811 10781 1609 13081 1554 654

9 704 1261 2604 36132 2900 3594

10 590 15174 1443 7859 1668 2754

Table 3 Comparing BBCG3 without and with line searches

n = 1000 n = 2000 n = 3000

P BBCG3 BBCG3ls nls BBCG3 BBCG3ls nls BBCG3 BBCGls nls

1 1669 1669 0 6472 6472 0 10994 10991 81

2 3618 3618 0 3950 3950 0 10162 10162 0

3 3051 3051 0 8409 8833 438 11825 12028 1059

4 10390 13474 3847 4071 4071 0 4805 4805 0

5 4926 4926 0 10219 10219 0 13682 12934 271

6 2650 2650 0 5439 5439 0 11824 11824 0

7 2483 2483 0 5011 5011 0 7341 7341 0

8 2607 2607 0 5451 5451 0 11304 11304 0

9 5186 5186 0 4054 4054 0 6315 6315 0

10 2876 2876 0 4453 4453 0 11314 11171 222
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5 More choices of parameter ρk in the SMCG method

In this section, we investigate two other choices of the parameter ρk in the SMCG method. The first

one is such that the two-dimensional quadratic termination holds without any exact line searches. The

second one is derived so that it has some kind of optimal property. However, as seen from Table 1, neither

of them outperforms the BBCG3 method.

5.1 A choice of ρk based on two-dimensional quadratic termination

The two-dimensional quadratic termination of the SMCG method, exposed in Theorem 3.1, relied on the

fact that one exact line search is used. In this subsection, we shall propose a choice of the parameter ρk
so that the exact line search is not a necessity. To do so, we give the following lemma.

Lemma 5.1. Suppose that A is a matrix in Rn×n and gk and sk−1 are two non-collinear vectors

in Rn. Consider the 2 × 2 matrix Ak, which is the projection of A in the two-dimensional subspace

Span(gk, sk−1). Then we have that

Trace(Ak) =
sTk−1yk−1 − 2

sT
k−1gk gT

k
yk−1

‖gk‖2
2

+ ‖sk−1‖2
gT
k
Agk

‖gk‖2

‖sk−1‖2 −
(sT

k−1
gk)2

‖gk‖2

, (5.1)

where, again, yk−1 = Ask−1.

Proof. Consider the following orthonormal base of the subspace Span(gk, sk−1),

s̄k−1 =
sk−1

‖sk−1‖
, ḡk =

g̃k

‖g̃k‖
, (5.2)

where g̃k = gk−
gT
k
sk−1

‖sk−1‖2 sk−1. Then Trace(Ak) = s̄Tk−1As̄k−1+ ḡT
k Aḡk. The statement follows from direct

calculations and the relation yk−1 = Ask−1.

As xk ∈ xk−1 + Span(gk−1, sk−2), we suppose that

xk = xk−1 + αk−1gk−1 + βk−1sk−2.

It follows that

yk−1 = αk−1Agk−1 + βk−1yk−2,

and hence

gT
k−1yk−1 = αk−1g

T
k−1Agk−1 + βk−1g

T
k−1yk−2.

Denote ρ̄k−1 = gT
k−1Agk−1. Then we have that

ρ̄k−1 =
gT
k−1yk−1 − βk−1g

T
k yk−1

αk−1

. (5.3)

In this case, we can obtain the value of Trace(Ak−1) exactly:

Trace(Ak−1) =
sTk−2yk−2 − 2

sT
k−2gk−1 gT

k−1yk−2

‖gk−1‖2
2

+ ‖sk−2‖2
ρ̄k−1

‖gk−1‖2

‖sk−2‖2 −
(sT

k−2gk−1)2

‖gk−1‖2

. (5.4)

We may choose ρk such that Trace(Ak−1) = Trace(Ak). More exactly, we choose ρk such that

sTk−1yk−1 − 2
sT
k−1gk gT

k
yk−1

‖gk‖2
2

+ ‖sk−1‖2
ρk

‖gk‖2

‖sk−1‖2 −
(sT

k−1gk)2

‖gk‖2

= Trace(Ak−1). (5.5)

One advantage of the above choice of ρk is that, if the objective function is exactly a two-dimensional

quadratic function, then ρk is exactly equal to the value of gT
k Agk since the value of Trace(Ak) is invariant

in this case. Hence an exact line search is implied at the second iteration and the algorithm will terminate

in four iterations by Theorem 3.1.
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5.2 A choice of ρk with a certain optimal property

The philosophy in deriving the formula (2.13) seems plausible. On one hand, it is assumed that the scaled

memoryless BFGS update is reliable and can be used to estimate the parameter ρk. On the other hand,

the direction −B−1
k gk is not used as its search direction. To have a better philosophy, we shall consider

the following family of scaled memoryless BFGS update:

Bk = τk

(

I −
sk−1s

T
k−1

sTk−1sk−1

)

+
yk−1y

T
k−1

sTk−1yk−1

, (5.6)

where τk is some scaled parameter and is suggested [18, 19] to the interval

τk ∈

[
‖yk−1‖2

sTk−1yk−1

, 2
‖yk−1‖2

sTk−1yk−1

−
sTk−1yk−1

‖sk−1‖2

]

. (5.7)

We shall consider two methods based on (5.6) and ask them to become as close as possible.

The first method is the SMCG method based on (5.6). In this case, we estimate ρk by the value of

gT
k Bkgk, namely,

ρk = τk

(

‖gk‖
2 −

(gT
k sk−1)

2

‖sk−1‖2

)

+
(gT

k yk−1)
2

sTk−1yk−1

. (5.8)

Then we know from (2.11) that the corresponding SMCG direction is parallel to the direction d
(1)

k (τk) =

−gk + β
(1)

k (τk)sk−1, where

β
(1)

k (τk) =
ρk g

T
k sk−1 − gT

k yk−1 ‖gk‖2

gT
k yk−1 g

T
k sk−1 − sTk−1yk−1 ‖gk‖2

=
gT
k yk−1

sTk−1yk−1

− ξkτk
gT
k sk−1

sTk−1yk−1

, (5.9)

and where

ξk =
[‖gk‖2‖sk−1‖2 − (gT

k sk−1)
2] sTk−1yk−1

(‖gk‖2 sTk−1yk−1 − gT
k yk−1 g

T
k sk−1) ‖sk−1‖2

. (5.10)

The second method is the conjugate gradient method with an optimal property based on (5.6) (see [6]

for details). It starts from the search direction −B−1
k gk, where Bk is given in (5.6).

After some calculations, we know that such a direction is parallel to

dPS
k = −gk +

[
gT
k yk−1

sTk−1yk−1

−

(

τk +
‖yk−1‖

2

sTk−1yk−1

)
gT
k sk−1

sTk−1yk−1

]

sk−1 +
gT
k sk−1

sTk−1yk−1

yk−1. (5.11)

Now, denoting the one-dimensional manifold Sk = {−gk + βsk−1 : β ∈ R}, we seek the vector in Sk

closest to dPS
k in (5.11) as the next search direction, namely,

d
(2)

k (τk) = argmin{‖d− dPS
k ‖ : d ∈ Sk}. (5.12)

Consequently, we obtain the search direction d
(2)

k (τk) = −gk + β
(2)

k (τk)sk−1, where

β
(2)

k (τk) =
gT
k yk−1

sTk−1yk−1

−

(

τk +
‖yk−1‖2

sTk−1yk−1

−
sTk−1yk−1

‖sk−1‖2

)
gT
k sk−1

sTk−1yk−1

. (5.13)

Now we look for the optimal τk that minimizes ‖d
(1)

k (τk)− dPS
k ‖ subject to the constraint (5.7). It is

easy to see that this minimization problem is equivalent to minimizing ‖d
(1)

k (τk) − d
(2)

k (τk)‖ subject to

the same constraint (5.7). By (5.9) and (5.13), we know that the optimal τk is the solution of

min

∥
∥
∥
∥
ξkτk −

(

τk +
‖yk−1‖

2

sTk−1yk−1

−
sTk−1yk−1

‖sk−1‖
2

)∥
∥
∥
∥

s.t. τk ∈

[

‖yk−1‖
2

sTk−1yk−1

, 2
‖yk−1‖

2

sTk−1yk−1

−
sTk−1yk−1

‖sk−1‖
2

]

.

(5.14)
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If ξk = 1, any value of τk is allowed, in which case we can just take τk =
‖yk−1‖2

sT
k−1yk−1

so that the scaled

memoryless BFGS method is used. Otherwise, the solution of (5.14) is to truncate τ̄k = (
‖yk−1‖2

sT
k−1yk−1

−
sT
k−1yk−1

‖sk−1‖2 ) /(ξk − 1) into the interval in (5.7). To sum up, we take

τk =







‖yk−1‖
2

sTk−1yk−1

, if ξk = 1,

max

{

‖yk−1‖
2

sTk−1yk−1

, min

{

τ̄k, 2
‖yk−1‖

2

sTk−1yk−1

−
sTk−1yk−1

‖sk−1‖
2

}}

, otherwise.

(5.15)

The value of parameter ρk is then defined by the relation (5.8).

6 Conclusions and discussions

In this paper, we have provided some new analysis of the SMCG method by Yuan and Stoer [25]. Special

attentions have been given on how to choose the parameter ρk in the method. Specifically, by combining

the Barzilai-Borwein idea, we were able to provide a very efficient way, i.e., (4.7), to choose ρk. Our

preliminary numerical results show that the corresponding BBCG3 method is specially efficient among

some others without any line searches. This implies that the BBCG3 method might enjoy the asymptotical

one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.

However, there are still many questions under investigation:

(1) Does the BBCG3 method without any line searches converge for convex quadratic minimization?

If it converges, what is its convergence rate?

(2) How to extend the BBCG3 method for unconstrained optimization? In such a situation, it is

important how to design a suitable line search.

(3) Are there some other more efficient choices of ρk in the SMCG method?

(4) How to extend the idea of this paper to other subspace minimization conjugate gradient methods?

For example, the three-dimensional subspace minimization conjugate gradient method, which considers

the subspace spanned by −gk, sk−1 and sk−2?

(5) How to extend the BBCG3 method for constrained optimization?
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