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In 1989, Auchmuty [2] presented some new variational principles to find the extreme
eigenvalue (the smallest or largest one) of a real symmetric matrix. The principles therein
are to minimize some smooth functions which are the sum of a function of 1

2∥x∥
2 and a

function of 1
2x

TAx. More precisely, his model is given below:

min
x∈Rn

E(x) = Φ

(
1

2
∥x∥2

)
+Ψ

(
1

2
xTAx

)
, (1.2)

where the twice continuously differentiable functions Φ and Ψ satisfy some mild assumptions.
Some specific choices of Φ and Ψ were also given in [2]. Among all kinds models, the following
quartic one

min
x∈Rn

E4(x) =
1

4
∥x∥4 + 1

2
xTAx, (1.3)

captured the attention of some authors and was well studied in [3, 8, 18]. Note that Auch-
muty [2] also considered a more general version of (1.3) as follows:

min
x∈Rn

Eµ,ζ(x) =
1

ζ
∥x∥ζ2 +

1

2
xT(A− µIn)x, ζ > 2. (1.4)

which can compute the smallest eigenvalue smaller than µ.
However, the aforementioned variational principles (1.2) – (1.4) are only designed to

compute single eigenvalue. To compute several extreme eigenpairs of a real symmetric
matrix, this paper considers to extend these principles to the matrix cases. We first propose
the block unconstrained β-order model

min
X∈Rn×r

P̂µ,β,θ(X) =
θ

β
∥XTX∥

β
2

F +
1

2
tr
(
XT(A− µIn)X

)
, β > 2, θ > 0, (1.5)

where θ, µ ∈ R are some scaling and shifting parameters, respectively, and In is the n-by-n
identity matrix. Model (1.5) is a natural extension of model (1.4). Setting β = 4 and θ = 1
in (1.5) yields the unconstrained quartic model

min
X∈Rn×r

Pµ(X) =
1

4
tr
(
XTXXTX

)
+

1

2
tr
(
XT(A− µIn)X

)
. (1.6)

If µ > 0, letting β = 4 and θ = µ, we obtain the unconstrained model below:

min
X∈Rn×r

µ

4
tr
(
XTXXTX

)
+

1

2
tr
(
XT(A− µIn)X

)
.

We can also extend model (1.5) to the following general model

min
X∈Rn×r

Gµ(X) = Φ

(
1

2
∥XTX∥F

)
+Ψ

(
1

2
tr(XT(A− µIn)X)

)
, (1.7)

where Φ and Ψ satisfy some mild conditions.
By choosing the parameter µ in (1.5) and (1.7) appropriately, we prove that their global

minimizers lie in the eigenspace corresponding to the r smallest eigenvalues of A. Conse-
quently, the desired eigenpairs can be obtained by applying the Rayleigh-Ritz procedure [20]
to the global minimizers.

It should be noted here that, independently of this work, based on the Courant penalty
function of (1.1), Wen et al. [23] proposed the trace-penalty minimization model as follows:

min
X∈Rn×r

fµ(X) :=
1

2
tr(XTAX) +

µ

4
∥XTX − Ir∥2F, µ > 0, (1.8)
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where µ is the penalty parameter. By choosing µ appropriately, they proved that model (1.8)
is equivalent to the eigenvalue problem. They also gave the specific form of the nonzero sta-
tionary points and global minimizers of (1.8) and further showed that the stationary points
can only be saddle points or global minimizers, provided that µ satisfies some mild condi-
tion. Besides, they developed a specialized gradient-type method for (1.8) and parallelized
it by using OpenMP.

The rest of this paper is organized as follows. In §2.1, we introduce our new block
unconstrained β-order model (1.5) and investigate its properties. The more general model
(1.7) is then considered in §2.2. The alternate Barzilai-Borwein (BB) method with the
adaptive nonmonotone line search is utilized for solving the main unconstrained models
in §3.1. The preliminary numerical results in §3.2 demonstrate the usefulness of the new
models. Finally, we make some conclusions and discussions in the last section.

Notations: The first r columns of M ∈ Rn×m is denoted by M(r). The notation
Diag(γ1, . . . , γn) denotes an n-by-n diagonal matrix whose entries are γ1, . . . , γn. The matrix
A ∈ Rn×n takes the eigenvalue decomposition of the form

A = QΛQT,

where Q ∈ Rn×n is orthogonal, λi(·) designates the i-th algebraically smallest eigenvalue of a
matrix, and Λ = Diag(λ1(A), . . . , λn(A)). If there is no confusing, we also drop A and simply
use λ1, λ2, . . . , λn to denote the eigenvalues of A. We assume that they are in ascending
order; namely, λ1 ≤ λ2 ≤ · · · ≤ λn. Besides, we use σi(·) to denote the i-th algebraically
smallest singular value of a matrix.

2 Variational Principles for Computing Extreme Eigenpairs

We propose in this section some new variational principles which can be regarded as ex-
tensions of the models in [2, 3, 18]. The block unconstrained β-order model is presented in
§2.1. Our new model shares the theoretical results of the trace-penalty minimization model
(1.8) in [23], but the proofs are different and the form of the nonzero stationary point is
quite different. In §2.2, we illustrate a more general unconstrained optimization model. Two
other specific variational principles for computing the largest eigenpairs of positive definite
matrices are also given in this subsection.

2.1 Block Unconstrained β-Order Model

The unconstrained quartic model (1.3), a special case of model (1.4), works well for comput-
ing the smallest eigenvalue and its corresponding eigenvector of negative definite matrices .
In this subsection, we extend model (1.4) to the block counterpart model (1.5), to compute
the r smallest eigenpairs for any real symmetric matrix (not necessarily negative definite).

Throughout this paper, let X = UΣV T ∈ Rn×r be the thin singular value decomposition
(SVD) of X, where U ∈ Rn×r and V ∈ Rr×r are matrices with orthonormal columns, and
Σ = Diag(σ1, . . . , σr) with 0 ≤ σ1 ≤ · · · ≤ σr. Here, for simplicity, we use σi to denote
σi(X). Denote by p the rank of X with p ≤ r. Then we know that σ1 = · · · = σr−p =
0 < σr−p+1 ≤ · · · ≤ σr. Further, denoting by Σ1 the diagonal matrix Diag(σr−p+1, . . . , σr),
we have the compact SVD representation

X = U1Σ1V
T
1 , (2.1)

where U1 and V1 are the last p columns of U and V , respectively.
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The following lemma gives the formulation of any nonzero stationary point of model (1.5).
Specifically, the left singular vector of any nonzero stationary point is certain eigenvector of
A, and its singular values can be computed from the eigenvalues of A.

Lemma 2.1. Suppose X∈ Rn×r is a nonzero stationary point of (1.5). Then it takes the
compact SVD form:

X = Qp,s

[
c

4−β
2

p θ−1(µIp − Λp)

]1/2
V T
p , (2.2)

where Qp,s consists of the j1, . . . , jp columns of Q with

1 ≤ j1 ≤ · · · ≤ jp ≤ s := arg max
λi<µ

i, (2.3)

the constant cp is defined as

cp := ∥XTX∥F = θ−
2

β−2

(∑p

i=1
(µ− λji)

2
) 1

β−2

, (2.4)

Λp = Diag(λj1 , . . . , λjp), and Vp is any r-by-p matrix with orthonormal columns.

Proof. The stationary point X of (1.5) satisfies the first-order optimality condition

∇P̂µ,β,θ(X) = (A− µIn)X + θ∥XTX∥
β−4
2

F XXTX = 0, (2.5)

i.e.,

AX = X
(
µIr − θc

β−4
2

p XTX
)
. (2.6)

Substituting (2.1) into (2.6) and noting UT
1 U1 = V T

1 V1 = Ip, we have

AU1Σ1V
T
1 = U1

(
µIp − θc

β−4
2

p Σ2
1

)
Σ1V

T
1 .

By multiplying V1Σ
−1
1 from the both sides of above equation, we derive

AU1 = U1(µIp − θc
β−4
2

p Σ2
1), (2.7)

which means that the i-th (i = 1, . . . , p) column of U1 is the eigenvector of A corresponding
to the eigenvalue

µ− θc
β−4
2

p σ2
r−p+i , λji .

We then have θ2cβ−4
p

∑p
i=1 σ

4
r−p+i =

∑p
i=1(λji−µ)2, which with

p∑
i=1

σ4
r−p+i = ∥XTX∥2F = c2p

yields

cp = θ−
2

β−2

(∑p

i=1
(µ− λji)

2
) 1

β−2

.

Thus X is of the form (2.2). The proof is completed.

The following theorem shows that under a mild assumption on the parameter µ, the left
singular vectors of the global minimizers X∗ are exactly the extreme eigenvectors of A while
the singular values of X∗ can be represented by the extreme eigenvalues of A.
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Theorem 2.2. Problem (1.5) has a rank-r stationary point if and only if

µ > λr. (2.8)

Furthermore, any global minimizer X∗ of (1.5) has the thin SVD form:

X∗ = Q(r)

[
c

4−β
2 θ−1(µIr − Λr)

]1/2
V T
r , (2.9)

where c := ∥(X∗)TX∗∥F = θ−
2

β−2
(∑r

i=1(µ− λi)
2
) 1

β−2 , Λr = Diag(λ1, . . . , λr) and Vr is
any r-by-r orthogonal matrix. Additionally, the global minimum of (1.5) is

P̂ ∗
µ,β,θ := −θ−

2
β−2 (β − 2)

2β

(∑r

i=1
(µ− λi)

2
) β

2(β−2)

.

Proof. First, if problem (1.5) has a rank-r solution X, then all σi > 0 for i = 1, . . . , r. It

follows from (2.7) that µ−θc
β−4
2

p σ2
r ≤ · · · ≤ µ−θc

β−4
2

p σ2
1 are the r eigenvalues of A. Noticing

that λ1 ≤ · · · ≤ λr are the r smallest eigenvalues of A, we must have µ− θc
β−4
2

p σ2
1 ≥ λr,

which with σ1 > 0 indicates µ > λr.
On the other hand, if µ > λr, it is easy to verify that X∗ defined in (2.9) is of full column

rank and satisfies the first-order optimality condition (2.5). Thus the equivalent condition
(2.8) holds.

We now turn to prove the second statement. Still use X to denote any nonzero stationary
point. It follows from the first-order optimality condition (2.5) and the definition (2.4) that

P̂µ,β,θ(X) = −θ(β − 2)

2β
∥XTX∥

β
2

F = −θ
2

β−2 (β − 2)

2β

(∑p

i=1
(µ− λji)

2
) β

2(β−2)

. (2.10)

Noting that µ > λr, we know that s := arg maxλi<µ i ≥ r, which with (2.10) implies that

P̂µ,β,θ(X) ≥ −θ−
2

β−2 (β − 2)

2β

(∑r

i=1
(µ− λi)

2
) β

2(β−2)

= P̂ ∗
µ,β,θ. (2.11)

The equality in the above inequality holds if and only if the i-th singular value of X is

c
4−β
4 θ−

1
2

√
µ− λr−i+1. Since the global minimum of (1.5) is always attained at a stationary

point (the function value at zero stationary point is zero), we know from (2.11) that the

minimum is P̂ ∗
µ,β,θ and any global minimizer X∗ takes form (2.9). This completes the

proof.

Before we proceed, several remarks on Theorem 2.2 are in order. Firstly, it follows
from the proof of Theorem 2.2 that model (1.5) can return the eigenvalues of A which
are smaller than µ and their corresponding eigenvectors. More precisely, denoting r̂ =
min{r, argmaxλi<µ i}, the global minimizer of (1.5) is

X∗ = Q(r̂)

[
ĉ

4−β
2 θ−1(µIr − Λ(r̂))

]1/2
V T
r̂ ,

where ĉ = θ−
2

β−2

(∑r̂
i=1(µ− λi)

2
) 1

β−2

, Λ(r̂) = Diag(λ1, . . . , λr̂) and Vr̂ is any r-by-r̂ matrix

with orthonormal columns. Particularly, when A is negative definite, we can easily choose
µ = 0. In fact, the parameter µ can be regarded as a shifting parameter of A. Secondly, if
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the r largest eigenvalues are wanted, we only need to reset A := −A. Further, our model
can be extended to compute the r smallest singular values and corresponding right (resp.
left) singular vectors of a real matrix Ã if we set A := ÃTÃ (resp. A := ÃÃT).

Let L : Rn×r → Rn×r be a linear operator. The Fréchet derivative of ∇P̂µ,β,θ at X is

defined as the operator ∇2P̂µ,β,θ : Rn×r → L such that

lim
∥S∥F→0

∥∇P̂µ,β,θ(X + S)−∇P̂µ,β,θ(X)−∇2P̂µ,β,θ(X)(S)∥F
∥S∥F

= 0.

We can easily derive that

∇2P̂µ,β,θ(X)(S) = (A− µI)S + θ∥XTX∥
β−4
2

F

(
SXTX +X(XTS + STX)

)
+θ(β − 4)∥XTX∥

β−8
2

F tr(STXXTX)XXTX. (2.12)

The following theorem shows that our block unconstrained β-order model enjoys the ad-
vantage that all the nonzero stationary points can only be the global minimizers or saddle
points under some conditions.

Theorem 2.3. If µ > λr, any nonzero stationary point of problem (1.5) is either a saddle
point or a global minimizer defined in (2.9). Furthermore, if λr < µ ≤ λr+1, all the rank-r
stationary points are global minimizers.

Proof. We first give a simple formulation of tr
(
ST∇2P̂µ,β,θ(X)(S)

)
. It follows from Lemma

2.1 that any nonzero stationary point X takes the form (2.2). Without loss of generality,
assume V T

p = [Ip, 0p,r−p] in (2.2), where 0p,r−p is the p-by-(r− p) zero matrix. Thus X can
be expressed by

X =
(
c

4−β
2

p θ−1
)1/2 [

Qp(µIp − Λp)
1/2, 0p,r−p

]
:= [X1, X2], (2.13)

where Qp stands for the Qp,s in (2.2).
Let S = [S1, S2], where S1 ∈ Rn×p and S2 ∈ Rn×(r−p) are the first p columns and last

r − p columns of S, respectively. Noticing that cp = ∥XTX∥F, with (2.12), (2.13) and the
partition of S, we have

tr
(
ST∇2P̂µ,β,θ(X)(S)

)
= tr

(
ST(A− µIn + θc

β−4
2

p XXT)S

)
+ θc

β−4
2

p tr(STSXTX)

+ θc
β−4
2

p tr(STXSTX) + θ(β − 4)c
β−8
2

p [tr(STXXTX)]2

= tr

(
ST
1 (A− µIn + θc

β−4
2

p X1X
T
1 )S1

)
+ tr

(
ST
2 (A− µIn + θc

β−4
2

p X1X
T
1 )S2

)
+ θc

β−4
2

p

(
tr(ST

1 S1X
T
1 X1) + tr(ST

1 X1S
T
1 X1)

)
+ θ(β − 4)c

β−8
2

p [tr(ST
1 X1X

T
1 X1)]

2, (2.14)

where

X1 =
(
c

4−β
2

p θ−1
)1/2

Qp(µIp − Λp)
1/2. (2.15)
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Let Qpc consist of the columns of Q which are not in Qp, we have A = QΛQT =
QpΛpQ

T
p +QpcΛpcQT

pc . Thus there holds

A− µIn + θc
β−4
2

p X1X
T
1 = Q(Λ− µIn)Q

T +Qp(µIp − Λp)Q
T
p= Qpc(Λpc − µIn−p)Q

T
pc .

(2.16)

Substituting the above equation, (2.15) and (2.4) into (2.14), we obtain

tr
(
ST∇2P̂µ,β,θ(X)(S)

)
= tr

(
ST
1 Qpc(Λpc − µIn−p)Q

T
pcS1

)
+ tr

(
ST
2 Qpc(Λpc − µIn−p)Q

T
pcS2

)
+tr

(
ST
1 S1(µIp − Λp)

)
+ tr(ST

1 Qp(µIp − Λp)
1/2ST

1 Qp(µIp − Λp)
1/2)

+(β − 4)
(∑p

i=1
(µ− λji)

2
)−1 [

tr(ST
1 Qp(µIp − Λp)

3/2)
]2

. (2.17)

We now show the first statement. Assuming µ > λr, we consider three cases of Λp in
(2.13). Firstly, if Λp = Diag(λ1, . . . , λr), we know from Theorem 2.2 that X is a global
minimizer.

Secondly, consider the case that Λp = Diag(λ1, . . . , λp) but 0 < p < r. Denote by qi
the i-th column of Q, that is the eigenvector corresponding to λi. Let all columns of S1 are
zeros except that its first column is q1, and S2 = 0n,r−p. With (2.17), we have that

tr
(
ST∇2P̂µ,β,θ(X)(S)

)
= 0 + 0 + (µ− λ1) + (µ− λ1)

+(β − 4)
(∑p

i=1
(µ− λi)

2
)−1

(µ− λ1)
3. (2.18)

Noticing that β > 2 and µ > λr ≥ λ1, we have

tr
(
ST∇2P̂µ,β,θ(X)(S)

)
> 2(µ− λ1)− 2

(∑p

i=1
(µ− λi)

2
)−1

(µ− λ1)
3 > 0. (2.19)

On the other hand, letting S1 = 0n,p and S2 =
[
qp+1, 0n,1, . . . , 0n,1

]
, we obtain from (2.17)

that
tr
(
ST∇2P̂µ,β,θ(X)(S)

)
= 0 + (λp+1 − µ) + 0 + 0 + 0 < 0, (2.20)

where the inequality is due to the inequality µ > λr ≥ λp+1. We thus obtain from (2.19)
and (2.20) that X is a saddle point.

Thirdly, consider the case that Λp ̸= Diag(λ1, . . . , λp) and p > 0. Then there must exist
two eigenvalues λt1 > λt2 , where λt1 is in Λp while λt2 is in Λpc . Constructing S1 such that
all columns are zeros except that its t1-th column is qt2 , and S2 = 0, we then derive from
(2.17) that

tr
(
ST∇2P̂µ,β,θ(X)(S)

)
=(λt2 − µ) + 0 + (µ− λt1) + 0 + 0 < 0. (2.21)

On the other hand, if all columns of S are zeros except its first column is qj1 , similar to
(2.18) and (2.19), we get by simple computations that

tr
(
ST∇2P̂µ,β,θ(X)(S)

)
= 2(µ− λj1) + (β − 4)

(∑p

i=1
(µ− λji)

2
)−1

(µ− λj1)
3 > 0.

(2.22)
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Inequalities (2.21) and (2.22) imply that X is also a saddle point in this case. Therefore,
all nonzero stationary points are either saddle points or the global minimizer points. This
proves the first statement.

We further show the second statement. Suppose λr < µ ≤ λr+1. Let X be any given
rank-r stationary point. It is easy to see that s = r in (2.3). Thus we have j1 = 1, . . . , jr = r,
which means Λp = Diag(λ1, . . . , λr). By Theorem 2.2, we see that X is a global minimizer
of (1.5). The proof is completed.

We now show that if the condition λr < µ ≤ λr+1 does not occur, the second statement
of the above theorem may not hold. Consider the case λr = λr+1 and λ1 < λr. From the
definition, we know s ≥ r + 1. Construct the point

X̃ = Q̃p,s

[
c̃

4−β
2

p θ−1(µIp − Λ̃p)

]1/2
,

where j1 = 2, . . . , jp = r+1, c̃p = θ−
2

β−2

(∑r+1
i=2 (µ− λi)

2
) 1

β−2

and Λ̃p = Diag(λ2, . . . , λr+1).

It is easy to see from Lemma 2.1 that X̃ is a rank-r stationary point. On the other hand, it
follows from Theorem 2.2 that X̂ is not a global minimizer.

Denote by Y (X) ∈ Rn×r an orthonormal basis of the range space of X. Define R(X) :=
AY (X) − Y (X)

(
Y (X)TAY (X)

)
. It is well known that Y (X) spans the eigenspace of A if

and only if R(X) = 0. To illustrate the relationship between ∥R(X)∥F and ∥∇P̂µ,β,θ(X)∥F,
we give the following theorem.

Theorem 2.4. Consider the model (1.5), for any rank-r matrix X, we have

∥R(X)∥F ≤ σ1(X)−1∥∇P̂µ,β,θ(X)∥F. (2.23)

Furthermore, given any ϵ > 0 and δ = ϵ
1+ϵc

4−β
4 θ−

1
2

√
µ− λr, for any X satisfying ∥X −

X∗∥F ≤ δ, where X∗ is any global minimizer defined in (2.9), the following inequality holds

∥R(X)∥F ≤ c
β−4
4 θ

1
2

1 + ϵ√
µ− λr

∥∇P̂µ,β,θ(X)∥F. (2.24)

Proof. It follows from (2.6) that

AX = ∇P̂µ,β,θ(X) +X(µIr − θ∥XTX∥
β−4
2

F XTX). (2.25)

Following the definition of Y (X), there must exist a nonsingular matrix K such that X =
Y (X)K. Substituting this relation into (2.25) and multiplying K−1 from both sides of the
relation, we obtain

AY (X) = ∇P̂µ,β,θ(X)K−1 + Y (X)(µIr − θ∥KTK∥
β−4
2

F KTK).

Noticing that Y (X)TY (X) = Ir and
(
In − Y (X)Y (X)T

)
Y (X) = 0, we then have

R(X) =
(
In − Y (X)Y (X)T

)
(AY (X)) =

(
In − Y (X)Y (X)T

)
∇P̂µ,β,θ(X)K−1.

Therefore, there holds

∥R(X)∥F ≤ ∥∇P̂µ,β,θ(X)K−1∥F ≤ ∥K−1∥2∥∇P̂µ,β,θ(X)∥F,
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which with KTK = XTX implies (2.23).
Now we establish the estimate (2.24). The formulation (2.9) of any global minimizer X∗

indicates that σ1(X
∗) = c

4−β
4 θ−

1
2

√
µ− λr. Therefore, we have that

σ1(X) ≥ σ1(X
∗)− δ =

c
4−β
4 θ−

1
2

1 + ϵ

√
µ− λr. (2.26)

This is because, for any B1, B2 ∈ Rm×n, we must have that |σ1(B1)−σ1(B2)| ≤ ∥B1−B2∥F.
Combining (2.26) and (2.23) yields (2.24). We complete the proof.

The above theorem suggests that the error of approximate eigenpairs ∥R(X)∥F can be

efficiently controlled by the error ∥∇P̂µ,β,θ(X)∥F. After an approximate solution of (1.5)
is obtained, we can use the Rayleigh-Ritz procedure to recover the approximate extreme
eigenpairs. More exactly, we first calculate the eigenvalue decomposition Y (X)TAY (X) =

V Σ̂V T and then set the approximate eigenpairs to be (Y (X)V, Σ̂).

2.2 General Unconstrained Model

In this subsection, we investigate the more general unconstrained model (1.7), where Φ and
Ψ satisfy the following assumptions which are similar to those in [2].

Assumption 2.5.

(A1) Φ: [0,+∞) → R is continuous differentiable and twice continuously differentiable on
(0,+∞) with Φ(0) = 0 and Φ′(z) ̸= 0 for z ̸= 0.

(A2) Ψ: R → R is twice continuously differentiable on R\{0} with Ψ(0) = 0.

Further, to investigate model (1.7) easily, we make the following assumptions.

Assumption 2.6.

(A3) Φ and Ψ are monotonically increasing on their domains.

(A4) For each z ∈ R, there exists a unique w(z) ≥ 0 such that

Φ′
(
1

2
w(z)

)
− zΨ′

(
−1

2
z · w(z)

)
= 0. (2.27)

We first establish the formulation of any nonzero stationary point of model (1.7). Similar
to Lemma 2.1, the left singular vector of the nonzero stationary point is certain eigenvector
of A, and its singular values can be computed from the eigenvalues of A.

Theorem 2.7. Suppose Φ and Ψ satisfy Assumptions 2.5 and 2.6. Let X be a nonzero
stationary point of (1.7). Then it takes the compact SVD form:

X = Qp,s

[
w(ap)

ap
(µIp − Λp)

]1/2
V T
p ,

where Qp,s consists of the j1, . . . , jp columns of Q with 1 ≤ j1 ≤ · · · ≤ jp ≤ s :=

arg maxλi<µ i, the constant ap :=
Φ′( 1

2∥X
TX∥F )

Ψ′( 1
2 tr(X

T(A−µIn)X))
=

(∑p
i=1(µ− λji)

2
) 1

2 , w(ap) is de-

fined in (2.27), Λp = Diag(λj1 , . . . , λjp), and Vp is any r-by-p matrix with orthonormal
columns.
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Proof. Since the proof is analogous to that of Lemma 2.1, we only show some main relations.
Let X = U1Σ1V

T
1 be any nonzero stationary point. Using the conditions (A1) and (A4), we

have
µ− λji = ap∥Σ2

1∥−1σ2
i , i = 1, . . . , p

and

Φ′
(
1

2
∥Σ2

1∥F
)
− apΨ

′
(
−1

2
ap∥Σ2

1∥F
)

= 0.

We now give the specific formulation of the global minimizer of (1.7) under the condition
µ > λr. The results are similar to those of Theorem 2.2.

Theorem 2.8. Suppose Φ and Ψ satisfy Assumptions 2.5 and 2.6. Problem (1.7) has a
rank-r stationary point if and only if

µ > λr.

Furthermore, the global minimizer X∗ of (1.7) has the thin SVD form:

X∗ = Q(r)

[
w(a)

a
(µIr − Λr)

]1/2
V T
r , (2.28)

where the constant a =
(∑r

i=1(µ− λi)
2
) 1

2 , Λr = Diag(λ1, . . . , λr), Vr is any r-by-r orthog-
onal matrix, and the global minimum is

G∗
µ := Φ

(
1

2
w(a)

)
+Ψ

(
−1

2
a · w(a)

)
.

Proof. We only sketch the proof since it is very analogous to that of Theorem 2.2. Consider
the nonzero stationary point X, we know from Theorem 2.7 that

Gµ(X) = h(ap) := Φ

(
1

2
w(ap)

)
+Ψ

(
−1

2
ap · w(ap)

)
.

Using Assumption 2.6, it is easy to verify that

h′(z) = −1

2
ω(z)Ψ′

(
−1

2
z · ω(z)

)
≤ 0,

which means that h(z) is decreasing on [0,+∞). Thus the global minimum is attained when
ap = a, similar to the proof of Theorem 2.2, we can know that the global minimizer X∗ has
the form (2.28).

We conclude this section by giving some remarks on model (1.7). Firstly, we always
choose some easy Φ and Ψ since the bad ones may worsen the condition number when A is
ill-conditioned. It is worth noting that model (1.5) is a special case of model (1.7) with

Φ(y;β, θ) =
θ

β
(2y)

β
2 , y ≥ 0 and Ψ(z) = z, z ∈ R.

Here, β > 2, θ > 0.
Secondly, considering the case when Φ is monotonically decreasing while the other condi-

tions in Assumptions 2.5 and 2.6 are kept, we know that model (1.5) can return the largest r
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eigenvalues of A and their corresponding eigenvectors under the condition µ < λn−r+1. The
proofs are similar to those for Theorems 2.7 and 2.8. We further give two specific choices of
Φ and Ψ with µ = 0 for the symmetric positive definite matrix. The first one is

Φ(y) = y, y ∈ R and Ψ(z;α) =

{
−α−1(2z)α/2, z > 0;
+∞, z ≤ 0,

1 ≤ α < 2,

yielding the model

min
X∈Rn×r

1

2
∥XTX∥F − 1

α
tr(XTAX)α/2, 1 ≤ α < 2, (2.29)

whose vector case was studied in [2]. The second one is

Φ(y) = 2y, y ∈ R and Ψ(z) =

{
− ln(2z), z > 0;
+∞, z ≤ 0,

yielding the model

min
X∈Rn×r

∥XTX∥F − ln tr(XTAX). (2.30)

The vector case of this model was studied in [18]. According to Theorems 2.7 and 2.8, we can
employ models (2.29) and (2.30) to compute the largest eigenvalues and their corresponding
eigenvectors of A.

Finally, we point out that the model (1.7) can also be extended to deal with the problem
of computing the several smallest (or largest) generalized eigenvalues and corresponding
eigenvectors:

Ax = λA,BBx,

where x ∈ Rn and B is symmetric positive definite. The scalar λA,B is the generalized
eigenvalue of (A,B). It is clear that Ā = B−1/2AB−1/2 (B1/2 is the unique square root
of B) shares the same eigenvalues with (A,B), and the eigenvector matrix X of (A,B)
satisfies the condition Z = B1/2X, where Z is the eigenvector matrix of Ā. Notice that the
unconstrained model (1.7) for Ā is

min
Z∈Rn×r

Ĝ(Z) = Φ

(
1

2
∥ZTZ∥F

)
+Ψ

(
1

2
tr(ZT(Ā− µIn)Z)

)
.

Inserting Z = B1/2X into the above formulation, we obtain the unconstrained model for
computing the extreme eigenpairs of the generalized eigenvalue problem as follows:

min
X∈Rn×r

Ĝ(X) = Φ

(
1

2
∥XTBX∥F

)
+Ψ

(
1

2
tr(XT(A− µB)X)

)
.

3 Algorithm and Numerical Illustration

3.1 Adaptive Alternative BB Method

Since problem (1.5) is an unconstrained nonconvex minimization problem, a large number
of mature unconstrained optimization algorithms can be used to solve it. For instance,
Mongeau et al. [18] considered the steepest descent algorithm and Newton-type algorithms
to solve model (1.4). By contrast, we are particularly interested in BB-like methods which
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enjoy the low storage and have proved to be very efficient [4, 7, 19]. Below, we take model
(1.6) (a special case of (1.5)) as an example to describe the adaptive alternate BB method.

Denote X, Pµ(X), ∇Pµ(X) at the k-th iteration by Xk, Pµ(Xk), ∇Pµ(Xk), respectively.
Let Sk−1 = Xk −Xk−1, Yk−1 = ∇Pµ(Xk)−∇Pµ(Xk−1). The large and short BB stepsizes
are respectively defined as follows:

τLBB
k =

tr(STk−1Sk−1)

|tr(STk−1Yk−1)|
and τSBB

k =
|tr(STk−1Yk−1)|
tr(YT

k−1Yk−1)
.

In our numerical experiments in §3.2, the following alternative BB (ABB) stepsize [4]

τABB
k =

{
τSBB
k , for odd k;
τLBB
k , for even k,

(3.1)

is adopted since it performs better than τLBB
k or τSBB

k . The adaptive nonmonotone line
search strategy proposed in [4, 5] is incorporated to ensure the global convergence. We now
describe the complete ABB method with the adaptive nonmonotone line search for model
(1.6).

Algorithm 3.1. (An Adaptive ABB Method)

Step 0 Give a starting point and initialize the parameters.

(i) Fix ϵ > 0, 0 < γ, δ < 1, τmin, τmax > 0 and a positive integer L, set k := 0, l := 0;

(ii) Pick up X0 with full column rank, a shifting parameter µ larger than λr, set Pr =
Pbest = Pc := P0;

(iii) Compute ∇Pµ(X0) and τ
(1)
0 .

Step 1 If ∥∇Pµ(Xk)∥F ≤ tol, return the approximated eigenpairs via the Rayleigh-Ritz
procedure and stop.

Step 2 Find the smallest nonnegative integer ik satisfying

Pµ(Xk − γikτ
(1)
k ∇Pµ(Xk)) ≤ Pr − δγikτ

(1)
k ∥∇Pµ(Xk)∥2F,

and set τk = γikτ
(1)
k .

Step 3 (i) Update the new point:
Xk+1 = Xk − τk∇Pµ(Xk), Pk+1 = Pµ(Xk+1);

(ii) Update Pr, Pbest, Pc by the following procedure:

if Pk+1 < Pbest,
Pbest = Pk+1, Pc = Pk+1, l = 0,

else
Pc = max{Pc, Pk+1}, l = l + 1,
if l = L, Pr = Pc, Pc = Pk+1, l = 0, end

end

Step 4 Calculate τ0k by (3.1) and set the first trial stepsize:

τ
(1)
k = max{τmin,min{τ (0)k , τmax}}.
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Step 5 k := k + 1. Go to Step 1.

From Theorem 2.2, we know that any global minimizer of the quartic model (1.6) is of
full rank. On the other hand, as the initial point X0 is of full rank, we expect that the
sequence {Xk; k ≥ 0} can retain this property. The following theorem states two sufficient
conditions for Xk+1 being rank-r if rank(Xk) = r.

Theorem 3.2. Consider the gradient iteration formula:

Xk+1 = Xk − τk∇Pµ(Xk), τk ≥ 0.

Suppose that Xk is of the thin SVD form:

Xk = UkΣkV
T
k ,

where Uk ∈ Rn×r and Vk ∈ Rr×r are matrices with orthonormal columns, and Σk =
Diag (σ1(Xk), . . . , σr(Xk)). If rank(Xk) = r, then Xk+1 is of rank-r under the condition
that

τ−1
k /∈ {λi(U

T
k AUk +Σ2

k)− µ, i = 1 . . . , r}. (3.2)

Moreover, if the stepsize satisfies

τk <
1

max{λr(UT
k AUk) + σ2

r(Xk)− µ, 0}
, (3.3)

Xk+1 is also of rank-r. Here, 1
0 = +∞.

Proof. Noticing that Xk is of full column rank, we have that

Xk+1 = Xk − τk∇Pµ(Xk) =
[
In − τk∇Pµ(Xk)(X

T
k Xk)

−1XT
k

]
Xk. (3.4)

Since the matrices∇Pµ(Xk)(X
T
k Xk)

−1XT
k andXT

k ∇Pµ(Xk)(X
T
k Xk)

−1 have the same nonzero
eigenvalues, the eigenvalues of the matrices in the square brackets of (3.4) are n−r repeated
1, and

1− τkλi

(
XT

k ∇Pµ(Xk)(X
T
k Xk)

−1
)
, i = 1, . . . , r. (3.5)

Using the relation ∇Pµ(Xk) = XkX
T
k Xk + (A− µIn)Xk and the thin SVD factorization of

Xk, it is easy to verify that

XT
k ∇Pµ(Xk)(X

T
k Xk)

−1 = VkΣk(Σ
2
k + UT

k AUk − µIr)Σ
−1
k V T

k ,

which implies that

λi(X
T
k ∇Pµ(Xk)(X

T
k Xk)

−1) = λi(U
T
k AUk +Σ2

k)− µ, i = 1, . . . , r. (3.6)

Combing (3.6) and (3.5), we know that if (3.2) holds, the matrix in the square brackets of
(3.4) must be nonsingular which with rank(Xk) = r implies that Xk+1 is of rank-r.

Additionally, it is easy to see that

λr(U
T
k AUk +Σ2

k)− µ ≤ λr(U
T
k AUk) + σ2

r(Xk)− µ.

Since τk ≥ 0, we only need to consider the positive elements in the set {λi(U
T
k AUk) +

σ2
r(Xk) − µ, i = 1, . . . , r}. Thus the relation (3.3) implies that (3.2) must hold, which

further indicates that Xk+1 is of full column rank. The proof is completed.

To end this subsection, we make some remarks on Theorem 3.2. Firstly, we can see from
the above theorem that Xk can always remain full rank unless the stepsize happens to be
equal to one of the r values in (3.2). Also, if µ is large enough, Xk will always remain full
rank. Secondly, the results of Theorem 3.2 can be extended to the β-order model easily

by inserting a constant C = θ∥Σ2
k∥

β−4
2

F before the term Σ2
k in (3.2) and σ2

r(Xk) in (3.3),
respectively.
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3.2 Preliminary Numerical Results

In this subsection, we present some preliminary numerical results to illustrate the efficiency
of our new models. Our code (EigUncABB) for Algorithm 3.1 was written in Matlab.
All experiments were performed in Matlab R2012a under a Linux operating system on a
Thinkpad T420 Laptop with an Intelr dual core CPU at 2.60GHz × 2 and 4GB of RAM.

The test matrix is constructed as the 3D negative Laplacian on a rectangular finite-
difference grid. Its exact eigenpairs can be computed by the Matlab code “laplacian” ‡. The
Matlab command for generating the test matrix A ∈ R16000×16000 and its exact eigenpairs
is given below,

[lambda,Uex,A] = laplacian([20,20,40],{’DD’ ’NN’ ’P’});

where “lambda” and “Uex” are the exact eigenvalues and corresponding eigenvectors, re-
spectively. Note that A is symmetric positive definite and has eigenvalues with multiplicity.

We compare EigUncABB with the Matlab built-in function EIGS which interfaces with
the Fortran package APPARCK [15], and a Matlab version of LOBPCG [12]§. In order
to improve the accuracy of the approximate solution, we compute additional r̄ − r eigen-
pairs (called “guard vectors” [6, 11, 16]) and then truncate the r smallest eigenvalues and
their corresponding eigenvectors. We choose r̄ = max(⌊1.1r⌋, 10), where ⌊·⌋ returns the
nearest integer less than or equal to the corresponding element. Denote by ui, λi the i-th
approximate eigenvector and eigenvalue returned by the corresponding codes. The relative
eigenvalue error and relative residual error of i-th eigenpair are respectively defined as

erri :=
|λi − λi|

max(1, |λi|)
and resii :=

|Aui − λiui|
max(1, |λi|)

.

In the following tables, we use the minimal, mean and maximal of erri and resii with
i = 1, . . . , r to measure the solution quality of each code.

The parameters for EigUncABB are given as follows:

tol = 10−3, γ = 0.5, δ = 0.001, τmin = 10−20, τmax = 1020, L = 4,

and the initial trial stepsize τ
(1)
0 for EigUncABB is chosen to be ∥∇P̂µ,β,θ(X0)∥−1

F . The
initial shifting parameter µ is set to be µ = 1.01× λr̄(X

T
0 AX0). Theorem 2.3 indicates

that an ideal µ should lie in (λr̄, λr̄+1], provided that λr̄ < λr̄+1, whereas the initial µ
does not always satisfy this condition. Therefore, we need to update µ dynamically. From
our preliminary numerical results, when µ is very close to λr̄, the algorithm performs badly.
Thus we will update µ at most jmax

0 times during the iteration. Setting j0 = 1 and jmax
0 = 3,

the procedure for updating µ is given as follows:

if ∥∇P̂µ,β,θ(Xk)∥F ≤ 0.1j0 · ∥∇P̂µ,β,θ(X0)∥F and j0 ≤ jmax
0

µ = 1.01× λr̄(X
T
k AXk);

j0 = j0 + 1;
end

From the description of EIGS, we know that it stops when

Ritz estimate residual ≤ toleigs · ∥A∥2,
‡Downloadable from

http://www.mathworks.com/matlabcentral/fileexchange/27279-laplacian-in-1d-2d-or-3d.
§Downloadable from http://www.mathworks.com/matlabcentral/fileexchange/48-LOBPCG-m.
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where the ∥A∥2 is 2-norm of A. To make a fair comparison, we set toleigs =
10−3

∥A∥2
. Note that

∥A∥2 can be computed easily since the eigenvalues of A are available. LOBPCG stops when
the residual tolerance ∥AXlobpcg −XlobpcgΛlobpcg∥F ≤ tollobpcg, where (Xlobpcg,Λlobpcg) are
approximate eigenpairs provided by LOBPCG.We first set tollobpcg = 10−3. However, in this
case, the quality of the eigenpairs returned by LOBPCG is worsen than that of EigUncABB.
Thus, to make a fair comparison, we reset tollobpcg = ω ·10−3, where 0 < ω < 1. The specific
choices of ω are listed in Table 3.1. LOBPCG and EigUncABB use the same initial point,
which is set to be some random matrix X0 with orthonormal columns, whereas the initial
point of EIGS is the first column of X0.

We first compare EigUncABB, applied to model (1.6), with EIGS and LOBPCG to
demonstrate its efficiency. Two versions of LOBPCG are considered. The first one is
LOBPCG without any preconditioner (LOBPCG-0); the second one is LOBPCG with the
incomplete Cholesky factorization preconditioner (LOBPCG-ichol):

LL = ichol(A,struct(’type’,’ict’,’droptol’,1e-2,’michol’,’off’));.

See [13, 14] for more possible preconditioners. Here it should be noted that EigUncABB
was also implemented with the same preconditioner, but our current results showed that it
performed much better than EigUncABB only for the case of small r, not for the case of
large r yet. We feel that more attention is required for this issue of preconditioning.

A summary of the computational results is given in Table 3.1. In this table, “time”
denotes the CPU time in seconds, “iter” represents the iteration number of LOBPCG-0
and LOBPCG-ichol, “nAx” means the cumulative number of matrix-vector multiplications
in EIGS, “nfe” denotes the total number of function evaluations in EigUncABB. From the
results, we can see that EigUncABB performs much better than LOBPCG-0. Comparing
with LOBPCG-ichol, our EigUncABB is considerably competitive. Particularly, for the
case r ≥ 300, EigUncABB not only takes less CPU time than LOBPCG-ichol, but also finds
the approximate eigenpairs with lower relative eigenvalue error and lower relative residual
error. Comparing with EIGS, our EigUncABB can always find a solution with less CPU
time. Note that for the case r = 400, 500, 700, 800, 1000, EIGS can return the solution with
extremely high accuracy while for the other cases, EIGS only returns the solution with very
low accuracy.

Now we consider the effect of the parameter β in model (1.5) with θ ≡ 1. We test three
different values: β = 3, 4, 5. According to Theorem 2.4, we stop EigUncABB when

∥XT
k Xk∥

β−4
4

F · ∥∇P̂µ,β,θ(Xk)∥F ≤ tol.

Notice that model (1.5) with β = 4 reduces to model (1.6). The corresponding results
are reported in Table 3.2. The choices of β make a difference, though not great, on the
performance. Overall, the 3-order model is the fast, whereas the 5-order model can return
solutions with higher accuracy. It remains under study how to choose the parameter β.

4 Discussions and Conclusions

In this paper, we presented several unconstrained optimization models for computing the
extreme eigenpairs of any real symmetric matrix. Our contributions are twofold. Firstly,
we presented a block unconstrained β-order model. Under a mild assumption on the pa-
rameter µ, we showed that the left singular vectors of the global minimizers X∗ are exactly
the extreme eigenvectors. Further, we proved that the new model has no local minimizer
other than global minimizers, provided that µ satisfies some more condition. Secondly, we
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Table 3.1: Comparison of EIGS, LOBPCG0, LOBPCG-ichol and EigUncABB

Table 3.2: Comparison of different values of β in model (1.5) by using EigUncABB
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extended the unconstrained β-order model to a more general model which shares the similar
results of the unconstrained β-order model.

We also presented some preliminary numerical results to demonstrate the efficiency of
our models. In our experiments, we used the adaptive nonmonotone ABB methods. For our
test problems, EigUncABB is considerably competitive with LOBPCG and EIGS.

The main work of EigUncABB per iteration is to compute the matrix multiplications
XTX, X(XTX), AX whose cost is 3nr2+2Nr, where N is the number of nonzero elements
in A. Thus we can consider to parallelize our EigUncABB. Some other techniques such as
restarting, preconditioning and polynomial filtering can also be employed to speed up and
improve the solution accuracy of our EigUncABB. Besides, we do not know how to design
more efficient optimization algorithms for the block unconstrained models by exploring their
structures. We will investigate them in future.
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