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Abstract This paper considers optimization problems on the Stiefel manifold X Tx =
I,, where X € R"*7 is the variable and /), is the p-by- p identity matrix. A framework
of constraint preserving update schemes is proposed by decomposing each feasible
point into the range space of X and the null space of X T. While this general framework
can unify many existing schemes, a new update scheme with low complexity cost is
alsodiscovered. Then we study a feasible Barzilai—-Borwein-like method under the new
update scheme. The global convergence of the method is established with an adaptive
nonmonotone line search. The numerical tests on the nearest low-rank correlation
matrix problem, the Kohn—Sham total energy minimization and a specific problem
from statistics demonstrate the efficiency of the new method. In particular, the new
method performs remarkably well for the nearest low-rank correlation matrix problem
in terms of speed and solution quality and is considerably competitive with the widely
used SCF iteration for the Kohn—Sham total energy minimization.
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1 Introduction

In this paper, we consider general feasible methods for optimization on the Stiefel
manifold,
min  F(X), st XX =1, (1.1)
XeRVL xXp
where I, is the p-by-p identity matrix and F(X): R"*” — R is a differentiable
function. The feasible set S, , := {X € R"*/ : XTx = 1,} is referred to as the
Stiefel manifold, which was due to Stiefel [49].

Problem (1.1) captures many applications, for instance, nearest low-rank correla-
tion matrix problem [25,39,45], linear eigenvalue problem [23,46], Kohn—Sham total
energy minimization [54], orthogonal Procrustes problem [19,48], maximization of
sums of heterogeneous quadratic functions from statistics [9,41], sparse principal com-
ponent analysis [16,30,60], leakage interference minimization [34,38], joint diago-
nalization(blind source separation) [29,51] and determining a minimal set of localized
orbitals from atomic chemistry [10]. For other applications, we refer interested read-
ers to [18,53] and the references therein. In general, problem (1.1) is difficult to solve
due to the nonconvexity of the orthogonality constraint. In fact, some of the above
examples, including the maxcut problem and the leakage interference minimization
[34], are NP-hard.

With the wide applicability and fundamental difficulty, problem (1.1) has attracted
many researchers. Based on the geometric structure, Rapcsak [41,42] reformulated
it as a smooth nonlinear program by introducing a new coordinate representation.
From the point of view of manifold, some authors proposed a variety of feasible
algorithms to solve problem (1.1). These algorithms include steepest descent methods
[1,3,35,36], Barzilai-Borwein (BB) method [53], conjugate gradient methods [2,3,
18], trust region methods [3,56], Newton methods [3,18], quasi-Newton methods
[47] and subspace methods [55]. Unlike the unconstrained case, it is not trivial to
keep the whole iterations in the Stiefel manifold and the concept of retraction has
played an important role (see [4, Theorem 15] and [3, Definition 4.1.1] for a detailed
description on retractions). Simply speaking, the retraction defines an update scheme
which preserves the orthogonality constraint. The existing update schemes employed
by the aforementioned methods are some specific choices of retractions. They can be
classified into two types: geodesic-like and projection-like update schemes. Briefly
speaking, geodesic-like update schemes preserve the constraint by moving a point
along the geodesic or quasi-geodesic while projection-like update schemes do so by
(approximately) projecting a point into the constraint. We will delve into the details
of these update schemes in Sect. 2.1.

In this paper, we firstly develop a framework of constraint preserving update
schemes based on a novel idea of decomposing each feasible point into the range
space of X and the null space of X T. This framework cannot only unify most exist-
ing schemes including a kind of geodesic, gradient projection, Manton’s projection,
polar decomposition, QR factorization and Wen-Yin update schemes (they will be
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mentioned in Sect. 2.1), but also leads to the discovery of a new scheme with low
complexity cost.

Secondly, under the new update scheme, we look for a suitable descent feasible
curve along which the objective function can achieve a certain decrease by taking a
suitable stepsize. Then the original problem can be treated as an unconstrained opti-
mization problem. We consider to combine the efficient BB method [7] with our new
update scheme.To ensure the global convergence, we adopt the adaptive nonmonotone
line search [11], leading to an adaptive feasible BB-like (AFBB) method for problem
(1.1). Note that certain feasible BB-like method with a different nonmonotone line
search was first studied in [53], but the convergence issue was not discussed there. We
prove the global convergence of the AFBB method in the numerical sense under some
mild assumptions. Although our update scheme is also a retraction, the convergence
of retraction-based line search methods in [3] cannot be applied to our methods. To the
best of our knowledge, this is the first global convergence result for feasible methods
with nonmonotone line search for optimization on the Stiefel manifold. Furthermore,
our convergence analysis can also be extended to feasible BB-like methods based on
monotone or some other nonmonotone Armijo-type line search techniques.

Thirdly, we extend the proposed update scheme and algorithm to deal with opti-
mization with multiple generalized orthogonality constraints:

min F(X1,...,Xy), st XTHle =K, ..., X;Hqu =Ky,
X1eCmxri .. X, eCra*Pq

(1.2)

where Hy € R .| H, € R"*"s are symmetric positive semidefinite matrices,

and K| € RP1>pP1 | K, € RPa *Pq are symmetric positive definite matrices. Note

that problem (1.1) is a special case of problem (1.2). See [31,58] for two applications
of problem (1.2).

Finally, to demonstrate the efficiency of the proposed method, we apply the new
method to a variety of problems. For the nearest low-rank correlation matrix problem,
our new method performs remarkably well in terms of speed and solution quality. We
also modify the new method to deal with the extra fixed constraints for the nearest
low-rank correlation matrix problem through the augmented Lagrangian function.
The preliminary numerical results show the potential of the new method to handle
some more general constraints beyond the sphere constraints. For the Kohn—Sham
total energy minimization problem arising in electronic structure calculations, the
new method is considerably competitive with the widely used SCF iteration.

The rest of this paper is organized as follows. In Sect. 2, we review the existing
update schemes and give the first-order optimality condition of problem (1.1). In Sect.
3, we introduce our framework of constraint preserving update schemes and propose a
new update scheme. Some properties of the new update scheme and comparisons with
existing update schemes are also stated in this section. We present the AFBB method
in Sect. 4.1, establish its global convergence in Sect. 4.2 and then discuss how to
deal with the cumulative feasibility error during the iterations in Sect. 4.3. The AFBB
method is also extended to more general problems in Sect. 5. Some numerical tests
on an extensive collection of problems are presented to demonstrate the efficiency of
our AFBB method in Sect. 6. Finally, conclusions are drawn in the last section.
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Notation For matrix M € R™*" we define sym(M) = (M+M T /2. The maximal and
minimal eigenvalues of M are denoted by hmax(M) and hmin (M), respectively. We
use diag(M) to stand for the vector formed by the diagonal entries of M. Meanwhile,
we use Diag(6y, ..., ;) to represent the diagonal matrix whose diagonal entries are
01, ..., 0y. The set of n-by-n symmetric matrices is denoted by S". For § € §",if S is
positive semidefinite (positive definite), we mark S > 0 (S > 0). The Euclidean inner
product of two matrices A, B € R™*" is defined as (A, B) = tr(AT B), where tr(-) is
the trace operator. We denote by A the i-th column of A. The decomposition A =
qr(A)upp(A) is the unique QR factorization with qr(A) € R"*? being a matrix with
orthonormal columns and upp(A) € R”*? an upper triangular matrix with positive

xmax(ATA>)1/2
. . . )\min(ATA)
Denote by e; the i-th unit vector of an appropriate size. For X € S, ,, we define

Px =1, — %XXT. The gradient of F with respectto X is G := DF(X) = (%(UX)),
whereas the gradient in the tangent space is denoted by V.F.

diagonal entries. The condition number of A is defined as cond(A) = (

2 Preliminaries
2.1 Overview of existing update schemes

Given any tangent direction D € R"*” satisfying X' D + DTX = 0 with X € Sn,ps
we briefly review the geodesic-like and projection-like update schemes. Note that the
parameter T > 0 in the following update schemes is some stepsize.

Geodesic-like update schemes. Edelman et al. [18] proposed a computable geodesic
update scheme, in which the iterations lie in the curve defined by

_yT _pT
Ygeol(r;X)z[X, Q]exp(r[ );D (fi|) |:16’:|, 2.1

where QR = — (I, — XXT)D is the unique QR factorization of —(I,, — XXT)D.
This strategy requires computing the exponential of a 2 p-by-2p matrix and the QR
factorization of an n-by-p matrix at each iteration. Consequently, the flops will be
high when p > n/2. Another geodesic approach is proposed by Abrudan et al. [1].
Given an n-by-n skew-symmetric matrix Ay, they considered the curve Yge2(7) =
exp(—tA1)X. Comparing with (2.1), this formula can efficiently deal with the case
when p > n/2. Nevertheless, it still requires great efforts to compute the exponential of
an n-by-n matrix. To avoid computing exponentials of matrices, Nishimori and Akaho
[36] proposed a kind of quasi-geodesic approach. Given an n-by-n skew-symmetric
matrix A», a special case of their update schemes is the Cayley transformation scheme

T -1 T
Yoge (T: X) = (In - EAZ) (1,, + §A2)x. 2.2)

The computation cost for (2.2) is O(n?). This is considerably high even for small
p- In 2010, by some clever derivations, Wen and Yin [53] developed a simple and
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efficient constraint preserving update scheme, known as the Crank—Nicholson-like
update scheme. This scheme is equivalent to the Cayley transformation update scheme.
Their update scheme is described as follows:

T\ T
wa(r;X)=X—rU(12,,+§V U) vTx, 2.3)

where U = [PxD, X], V = [X, —PxD] € R"*?7_ For convenience, we call it
Wen-Yin update scheme throughout this paper. Formula (2.3) has the lowest com-
putation complexity per iteration among the existing geodesic-like approaches when
p < n/2. However, when p > n/2, the cost is still expensive. To deal with this case,
a low-rank update scheme is explored in [53]. They were also the first to combine
the feasible update scheme with the nonmonotone curvilinear search for optimization
with orthogonality constraints.

Projection-like update schemes. In spite of the nonconvexity of the Stiefel manifold,
it is possible to preserve the constraint by the projection. The projection of a rank p
matrix C € R"*? onto S, , is defined as the unique solution of

min [|X — Cllg, st X'X =1I,, (2.4)
XGRnxp
where || - || is the Frobenius norm. For any symmetric positive definite matrix B €

RP*P denote by B'/? the unique square root of B. It is easy to see that the solution of
(24)isPs, ,(C) =C(C TC)~Y/2. Then we can extend the gradient projection method
for optimization with convex constraints for solving (1.1), yielding the update scheme

Yep(T; X) = Ps, (X — 7G). (2.5)

n,p

In fact, the famous power method [23] for the extreme eigenvalue problem of sym-
metric matrix is a special case of this gradient projection update scheme. Manton [35]
considered another different projection scheme

Yip(t: X) =Pg, ,(X —1D).

n,p

Absil et al. [3] proposed the polar decomposition

Ypa(t; X) = (X —tD)(I, + 12D D)~ 1/2. (2.6)
The polar decomposition is equivalent to Manton’s projection update scheme, but has
lower complexity cost.! It is then mainly considered in this paper. It is worth noting

that the QR factorization update scheme

Yo (r; X) = qr(X — D) 2.7

! Manton [35] used the SVD decomposition of X — 7 D to obtain the projection, and the cost is higher than
that of the polar decomposition.
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540 B. Jiang, Y.-H. Dai

proposed in [3] can be regarded as an approximation to the polar decomposition update
scheme.

2.2 First-order optimality condition

To begin with, we introduce some basic concepts related to the Stiefel manifold as
in [18]. For any X € &, ,, define the tangent space at X as Ty := {A € R"*7 :
XTA + ATX = 0}. There are two different metrics on 7x. The first one is the
Euclidean metric d,(A, A) = (A, A), which is independent of the point X. The
second one is the canonical metric d.(A, A) = (A, PxA), which is related to X.
Then the projection of any Z € R"*? onto the tangent space 7y under the Euclidean
or canonical metricis Pr(Z2) =Z7Z — X sym(XTZ).

The gradient V.F € Ty of a differential function F(X) : R"*? — R on the Stiefel
manifold is defined such that

(G, A)=d.(VF, A) =(VF, PxA) (2.8)

for all tangent vectors A at X. Solving (2.8) for VJF such that XTVF is skew-
symmetric yields

VF=G-XG'X.
Notice that VF is not the projection of G onto the tangent space at X. The latter should
be G — Xsym(X'G).

We now give the first-order optimality condition without proof. It is analogous to
Lemma 2.1 in [53].

Lemma 2.1 (First-order optimality condition) Suppose X is a local minimizer of
problem (1.1). Then X satisfies the first-order optimality condition

DxL(X,A) =G — XG'X = 0;

i.e., VF = 0, with the associated Lagrange multiplier A = GTX. Besides, VF =0
if and only if

G — X(Z,oGTX + (1 — 2,0)XTG) =0, foranyp > 0.

3 Constraint preserving update schemes

For a feasible point X € S, p, denote Rx = {XR : R € RP*P}and Nx = {W €
R"*P : XTW = 0} to be the range space of X and the null space of X, respectively.
It is well known that the two spaces are orthogonal to each other and their sum forms
the whole space R"*”. As a result, any point in R”*” can uniquely be decomposed
into the sum of two points, which belong to the two spaces, respectively. With this
observation, we introduce our idea for a framework of constraint preserving update
schemes for problem (1.1).
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Given a matrix W in the null space Ny, consider the following curve
Y(;X)=XR(r)+ WN (1), 3.1

where R(t), N(t) € RP*P and T > 0 is some parameter. In other words, this curve
canbe divided into two parts; i.e., X R(7) in the range space of X and W N () in the null
space of xT. Tolnake the following analysis simple, we assume that R(t) = R(t)Z(t)
and N(t) = N(r)Z(tr), where Z(t) is always invertible, the curve (3.1) can be
expressed by

Y(t; X) = (XR(z) + WN(1)) Z(2). (3.2)

Our goal is to determine appropriate R (7), N (t), Z(t) and W such that the curve
Y (t; X) is still feasible; i.e., Y Ty =1 p (notice that if there is no confusion, we will
write Y (7; X) as Y (t) or even simply Y, efc.). To do so, we need to investigate the
fundamental relations which hold for Y (). This technique can be called as method of
undetermined coefficients.

Firstly, a natural and necessary condition is that ¥ Ty =1 p» which requires

2@ (RO)TR@ + ﬁ(r)TWTWﬁ(r)) Z(1) = I,
or, equivalently,
Z@) " Z@) ' = R@OTR@) + N@©)TWTWN(1). 3.3)
Secondly, consider some initial conditions which Y (7; X) should satisfy. As
Y(r; X) with > 0 is a curve starting from the current iteration X, it is natural
to impose that Y (0; X) = X. To meet this condition, by (3.2), we may ask
RO)=1,, N@©)=0, Z(0)=I,. (3.4)
With these choices, we further have by (3.2) that
Y'(0; X) = X (R'(0) + Z'(0)) + WN'(0). (3.5)

Assume that some matrix E is chosen, which is intended for —Y’(0; X); i.e., E =
—Y’(0; X). Then (3.5) holds if

W=—(,—XX")E, R@©0)+Z0)=-X"E, N =I,. (3.6)
In the following, we consider three approaches of choosing W, ﬁ(r), N(t) and

Z(7), which satisfy the requirements (3.3), (3.4) and (3.6), such that (3.3) holds.

Approach 1. Consider the simple case that Z(t) = I,,. This, with the second equation
in (3.6), indicates that R’ 0)=-X TE. By some tedious analysis in “Appendix 8.17,
we can obtain a generalized geodesic update scheme which covers the geodesic update
scheme (2.1) as a special case.
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In the next two approaches, to satisfy the conditions N() = 0and N'(0) = I s
we choose _
N(t) =1l)p. 3.7

Noticing that "%’T)_l =—-Z@)'Z()Z(x) ! and using (3.3) and (3.7), we can get
that

707 +2'0) = — (ﬁ/(O)T + 1?(0)) .
This, with the second condition in (3.6), means that X TE must be a skew-symmetric
matrix; i.e., E € Tx.

Approach I1. To meet RO)=1 p» We consider to choose
R(t) =1, + TR (0). (3.8)

Noting that N (t) = tlp, we can get Z(t) from (3.3) by the polar decomposition or
the Cholesky factorization. Thus we can obtain the generalized polar decomposition
and Cholesky factorization update schemes. The former one covers the ordinary polar
decomposition and gradient projection update schemes, while the latter one includes
the ordinary QR factorization update scheme. See “Appendix 8.2” for details.

Approach II1. In this approach, to solve Z(7) from (3.3) easily, we may assume R(7)
to be some function of Z(t), which takes the form of

R(t) =2, - Z(t)™". 3.9)

Substituting (3.7) and (3.9) into (3.3) leads to

2
zZo)y Tz =21, + %WTW.

Consequently, Z(t) must be of the form

2 _
z(o) = (1, + TZWTW +L(v)) g (3.10)

where L(t) is any p-by-p skew-symmetric matrix with L(0) = 0. Notice that the
above inverse always exists since L(t) is skew-symmetric. The relations (3.9) and
(3.10) indicate that R'(0) = Z'(0) = —L’(0). Further, by the second relation in (3.6),
we must have that L'(0) = %X TE. Thus we can choose

L(x) = g(n)XE,

where g(t) is any function satisfying g(0) = 0 and g’(0) = 1/2. For simplicity, we
choose g(t) = t/2. See Sects. 4.2 and 6.4 for more choices of g(7).
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To sum up, given any matrix E € 7y, we can define the following update scheme

W=—(,—XX")E,
J@O) =1+ ZWTW + IXTE, (3.11)
Y(1; X)= QX +tW)J ()" — X.

Some geometrical meanings of the above scheme will be discussed in the paragraph
before Lemma 3.3.

A few remarks on the framework and the direction E are made here. Firstly, it
follows from (8.2), (8.3) and (8.4) that the framework can unify the famous geo-
desic, gradient projection, polar decomposition and QR factorization update schemes.
Meanwhile, it can yield generalized geodesic, polar decomposition or QR factorization
update scheme by choosing different ForZ (0). See “Appendix 8.1” and “Appen-
dix 8.27, respectively, for the specific choices of F and Z’(0). We will mainly consider
the new update scheme (3.11) in the remainder of this paper. Secondly, like uncon-
strained optimization, many possible choices for E, for instance, the gradient descent,
conjugate gradient, or quasi-Newton direction, can be used under the update scheme
(3.11). However, we focus on the gradient descent direction in Sect. 3.1 due to its
simplicity.

3.1 Choice of E

In this subsection, we consider to seek an appropriate E such that the update scheme
Y (7; X) given by (3.11) defines a descent curve. We summarize the properties of the
update scheme (3.11) in the following lemma. See “Appendix 9” for its proof.

Lemma 3.1 For any feasible point X € S, ,, consider the curve given by (3.11),
where E = D, and

Dy = —(1-20)XX)VF = G-X(20G X +(1-2p)X'G), p>0. (3.12)

Then the following properties hold:
(i) YO Y (x) = I;
(ii) Y'(0) = —D,, is a descent direction and

OF (Y
Froy = )

r=0 < —min{p, L} VFI[E;

(iii) for any T > 0 and any p-by-p orthogonal matrix Q , we have Y Q ), # X;

(iv) cond(J) < (5 + Uz)/4, where v = || D,||F.

In particular, if p =n, Y(t) = XQJ ' = L) and J = I, + %XTE; if p =1, the
matrices X, Y, G reduce to the vectors x, y, g, respectively, and the update scheme
becomes

24 rng T
y(r) = = —1)x - = g.
1+ 5(gTg—(xT9)?) 1+ 5 (gTg—(xT9)?)
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Before we proceed, several remarks on Lemma 3.1 are in order. Firstly, without
otherwise specification, we will always choose E = D), in the remainder of this paper.
In this case, by (3.11) and the definition of D,, we must have that

W=—(,—XX")D,=—(,— XX"G. (3.13)

There are two special choices of p. One is p = 1/2, yielding Y’ (0) = —V F; the other
oneis p = 1/4yielding Y'(0) = —G+ Xsym(X TG). Generally, the two directions are
not the same except the case when X TG = GTX. Wewill compare the two directions
in §6.4; the results therein shows that p = 1/4 is a better choice. Secondly, recalling
that the Grassmann manifold G, ,, is defined as the set of all p-dimensional subspaces
of an n-dimensional space, any two orthogonal matrices whose columns span the same
p-dimensional subspace can be regarded as the same point in G, ,,. By (iii) of Lemma
3.1, we know that any Y (r) with > 0 and X must be different points in G, p- Thus our
update scheme can be also used for optimization on the Grassmann manifold, that is,
problem (1.1) with the additional homogeneity assumption that F(X Q) = F(X),
where Q) is any p-by-p orthogonal matrix. Finally, statement (iv) of Lemma 3.1
indicates that the condition number of J can be controlled by the term 7| D, ||F, this
fact will guide us to set a safeguard for the stepsize, as addressed in (4.4).

As mentioned before, one typical choice of E is E = D,. Consider the case when
p ~ n, it is quite expensive to calculate J~! directly. However, in this case we may
construct a low-rank matrix E so that J~! can be cheaply obtained. Lemma 3.2 shows
the possibility of choosing a rank-2 matrix E, with which J~! can be analytically
given and fast computed. A proof of Lemma 3.2 can be found in “Appendix 10”.
Similarly, we may also form a rank-2r matrix £ with 1 < r < n/2 in the same vein.
Nevertheless, it is worth noting that seeking an appropriate low-rank matrix E faces
a trade-off between the computational cost and the quality of the search curve.

Lemma 3.2 For any feasible X € S, p, define D) = G(,-)e;r — X(i)Gg)X. Consider
the curve Y (t) given by (3.11) with E = D9, where q is the column index given by

g := argmax (G, D) = arg max e,.T (GTV]-') e;. (3.14)
i=l1,..., p i=1,...,p

Then we have that

- 1 —17[el
e b][‘i‘ | qur} (3.15)

zaT T T T
where o = %G(q) (In — X(q)X(q)) G(q), b= %X_qG(q) and X_q =X — X(q)eq.

Moreover, Y (1) is a descent curve satisfying

! 2
Fr(Y(0) < —ZIIV}"IIP
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Geometrically, the proposed framework is not geodesic expect for the case when
p = 1. Instead, it can be regarded as a generalized gradient projection scheme. In
the special case when there always holds XTG = GTX, we can explicitly get the
projection operator of new update scheme (3.11). Notice that the condition XTG =
G X holds for a wide range of problems, such as the linear eigenvalue problem and
the vector case (p = 1) of problem (1.1).

Lemma 3.3 Assume that X'G = G' X for any feasible point X € Su,p- Then the
update scheme (3.11) with E = D, can be expressed by

2
Y(r) =Ps,, (x (Ip +1X'G - TZGT(IH - XXT)G) - rG) .

Proof The condition X T6=G6"x implies that XTDp = 0, which with (3.11) means
that J = I, + 5 WTW. Rewrite Y () in (3.11) as

Y(r) = (XL, — ) +tw)J L.
Thus it follows from Y(r)TY (t) = I, and the above expressions of Y (t) and J that

(XL, — D +TtW) (XQI, — ]) + W) = J2.
Recalling the definition of Pg, , () for (2.4), we have that

Y(r) =Ps,, (X2, —J)+ W)

= Ps

n,p

72
(X(I,, +1X7G6 - IGT(I,, - XXT)G) - rc) ,
where the second equality uses (3.13). This completes the proof. O

3.2 Comparison with the existing update schemes

To begin with, we address a relationship between the update scheme (3.11) and the
Wen-Yin update scheme. We show that the Wen-Yin update scheme can be regarded
as a special member of the update scheme (3.11) with g(t) = t/2 under the condition
that I, + 7 X TD is invertible. Notice that this invertible condition is indispensable for
the well definition of the Wen-Yin update scheme, but is not necessary for the validity
of the update scheme (3.11). We summarize the results in Proposition 3.1 and relegate
the proof in “Appendix 11”.

Proposition 3.1 For any feasible point X € S, p, if the tangent direction D € Tx is

such that I, + fTX TD is invertible, then the update scheme (2.3) is well-defined and
it is equivalent to the update scheme (3.11) with g(t) = t/2 and E = D.
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Table 1 Computational cost for different update schemes

Update schemes l<p<n p=1 p=n
First t New t Firstt Newrt Firstt Newrt

Ygp (2.5), any D 3np2 + 2np + ¥p3 3np2 + 2np + 32 p3 5n 5n %ln3 %n3
Ygeo1 (2.1), D =D, 10np2 +np + 80p3 4np2 + +80p Tn 3n 14n3 1243
Ypa (2.6), D = D, Tnp® 4 3np + 332 P> 2np? 4 2mp + %32 P 3n %ng %nz
Yqr2.7), D = D, 6np? + 3np 2np? + 2np Tn 3n 6n3 213
Yuy 231, D =Dy  9np*+2np+Rp> dnp? +np+p>  In 3n 3 2y
Ywy (2.3), D = Dy 7np +np+ 3 40 3 4np +np+ 35 40 3 n 3n %rﬁ %n‘%
Y (3.11), D =D, Tnp? +2np+3p>  2mp? +3np+3p>  In 3n L3 803

For a fixed feasible point X € &, ,, assume that the gradient G has been computed.
Let us compare the computational costs of several aforementioned constraint preserv-
ing update schemes. In Table 1, we list the cost of the aforementioned update schemes
and leave some details in “Appendix 12”. In the table, the column “First 7" gives the
cost of computing a feasible point with the first trial stepsize of tq.5;, Whereas the
column “New t” provides the cost of getting a new feasible point with a new stepsize
of Thew. Table 1 tells us that the ordinary gradient projection actually has the lowest
complexity cost while the scheme (2.7) based on the QR factorization and our update
scheme (3.11) are strong candidates. Although by Proposition 3.1, our update scheme
and the Wen-Yin update scheme are equivalent under some assumption, the former
has a lower complexity cost especially for large p, as shown in Table 1. As pointed
in [4], however, the choice of the update scheme can affect the number of iterations
required for solving the optimization problem. Hence, a lower complexity cost at each
iteration does not necessarily imply a higher efficiency on the whole. Actually, how to
seek a constraint preserving update scheme which can find the global minimizer with
a higher probability and at a faster speed is still an open problem. This remains under
investigation.

4 Adaptive feasible BB-like (AFBB) method and global convergence

In this section, we focus on the adaptive feasible BB-like method and its global con-
vergence. We also propose a strategy to control the feasibility error in practical com-
putations.

4.1 Adaptive feasible BB-like method

To provide an efficient scheme, we must also pay much attention on choosing the
stepsize 7 in the constraint preserving update scheme (3.11) with £ = D,,. Although
there is only one parameter, its choice proves very important to the efficiency of the
scheme. Since BB-like methods need less storage and are very efficient for uncon-
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strained optimization problems [13,20,44,59] and special constrained optimization
problems [8,11,12,53], we consider to use some BB-like stepsize in the scheme (3.11).

Denote Sy = Xy — Xx—1 and Yy—1 = Dy — Dpp—1, where X =
Y (tx—1; Xx—1). Similar to the unconstrained case, we can get the long and short BB
stepsizes as follows:

rLBB _ (Sk—l, Skfl) and ‘L'SBB _ |<Sk71, Yk—1>|
. [{Sk—1. Yi—1)]| ¢ (Yio1. Y1)

In the numerical experiments in Sect. 6, we adopt the following alternative BB (ABB)
stepsize [11]
ABB _ rkSBB, for odd k;

% =1.L

4.1
rkBB, for even k. @.1)

If J,;l] is stored in updating Xy, we can freely get (Sx—_1, Sx—1) = 4p — 4tr(Jk_J1)
which is due to the feasibility of X; and X;_; and X,Lle = 2],;11 — I,. Thus,
computing the ABB stepsize needs at most 6np flops.

Although BB-like methods prove efficient for nonlinear optimization, its heavy
nonmonotonicity in function values makes the global convergence analysis difficult.
Up to now, the unmodified BB method is only showed to be globally convergent in the
strongly convex quadratic case [43] and the convergence is R-linear [14]. It is shown
in [27] that the unmodified BB method needs not converge for the extreme eigenvalue
problem, which is a special case of problem (1.1). Thus we consider to incorporate
the ABB stepsize with the Armijo-type line search which requires 7 to satisfy

FY(w) < Fr +8uF. (Y(0; Xp)),

for some constant § € (0, 1), and F, is the so-called “reference function value”,
satisfying F, > Fi. In this paper, we consider to update F;- by the adaptive strategy
proposed in [11]. This strategy cannot only guarantee the convergence, but can keep
the efficiency of the unmodified BB method since only few line search procedures will
be invoked during the iterations. Denote by Fieg the current best function value and
by F. the maximum objective value since the value of Fpes; Was found. Initially, we
set Fr := 400, Frest = Fe = F(Xo). Let L be a preselected positive integer. The
following is a detailed description of the aforementioned adaptive strategy.

it Frpt < Foest

Foest = Frr1, Fe = Fry1, [ =0,
else

Fe =max{F¢, Fr+1}, L =141,

ifl=1L, Fo=F., Fo=Fis1, =0, end
end

4.2)

For other nonmonotone line search methods, interested readers can refer to [15,24,
44,52,57]. Now we give a detailed description of the AFBB method.
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Algorithm 4.1 (Adaptive Feasible BB-like Method)

Step 0 Given Xo € Sy, p, €, 0> 0,0 < 0,8 < 1, €min, €max > 0, A, L > 0 and set
k:=0.

Step 1 If | D, klIF < €, stop.

Step 2 Find the least nonnegative integer iy satisfying

F @ s X)) < Fr 4 8otV FL(Y (0; Xp)), 4.3)

and set 7 1= o'k ,51).
Step 3 Update X;4+1 = Y (tx; Xx) by (3.11) and F, by (4.2).
Step 4 Calculate rk(o) by a certain BB stepsize and set

o = max {emin/ 1Dy xllF, min {{”, min{eman/I Dy.llF A} (44)

Step5 k:=k+1.Goto Step 1.

4.2 Convergence of the AFBB method

In this subsection, we establish the global convergence result of Algorithm 4.1 in the
numerical sense.

Theorem 4.1 Let {X) : k > 0} be the sequence generated by Algorithm 4.1 with
€ = 0. Assume that F(X) is differentiable and that its gradient DF (X) is Lipschitz
continuous on Sy, p with Lipschitz constant Lo, that is,

IDF(X) = DFX)lF < Lol X = Yllf, forall X,Y € Sy p.

Then we have either D, = 0 for some finite k or

liminf | D, x|l = 0. 4.5)
k—o00

Proof The sketch of proof is as follows (see [26] for more details). Firstly, for the
update scheme (3.11), we can show (see Lemma 4.4 of [26]) that

2+ €
Ve (k) — Y (O) [l < %rknDp,kHF,
4.6)
/ ’ 4 + €max 2
1Y{(1) = Y; Ol = —— =1l Dp il

where Y (;) and Y, ,é (1) stand for Y (t; X) and Y'(t; Xi), respectively.
Secondly, since DF(X) is Lipstchitz continuous on the compact set S, ,, there
exists a constant ¢y > 0 such that

IDF(X)IlF < co. forall X €S, p.
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By employing (4.6), we can verify [26] that the stepsizes {1} are bounded below, as

addressed by

T, > min{c, tk(l)},

20 (1-9) min{p, 1} o dtemax 2+€max
c1 max{2p,1)2 and ¢y = 2 0+ T Lo.

Thirdly, denote F;., F¢, Foest, [ at the k-th iteration by ff, ]-"f, ft]fest’ I , respec-
tively. It follows from (4.3), the second statement of Lemma 3.1, 73 > min{c, rk(l)}

and [ Dp kllF < max{2p, 1}|VFi|F that

where ¢ =

Fiy1 < FF—8cal Dy 1|1, (4.7)

. 1 .
%. Assume that D,y = 0 will not happen after finite
iterations. Numerically, if Fr41 < Fpest, we must have that Fr41 < Fpest — €mach,
where €mach 1 the machine precision again. By this, we can show [26] that k=1L
holds for infinite number of times. Define the infinite set K := {k; : (5 = L}. If
the relation (4.5) is false, then there must exist a positive constant ¢3 > 0 such that

ID, kllF > c3 for all sufficiently large k. Then we obtain by (4.7) that

where ¢ =

F; < }'rk" —g forallk; < j <kiy1, (4.8)

dcz min{p, 1} min{c-c3,€min}
max{2p,1}2

where g = is a positive constant. Moreover, by the definition

of F,, we know that Fr*! < maxy, < j<k, Fj» which with (4.8) implies that for all
k,‘ (S IC,

F

i+1 < f'{(, —£1.
Since KC is an infinite set, the summation of the above relation over K leads to a
contradiction to the boundedness of F(X) in the feasible set. Therefore (4.5) must be
true. This completes the proof. O
Several remarks on the convergence are made here. Firstly, we note that Theorem
4.1 still holds for a certain nonlinear g(t), provided that |g(t)/7| is bounded above.
Secondly, we point out that inequality (4.6), the basis for proving (4.7), is a crucial
ingredient in establishing the convergence. Actually, this inequality also holds for
the gradient projection, the polar decomposition or the Wen-Yin update scheme, but
with different constant before the term #;. Thus similar convergence results can be
established for the three schemes in the framework of Algorithm 4.1. Thirdly, with
the key inequalities in (4.6), we can similarly prove the global convergence of the
feasible BB-like methods based on the monotone line search, or the nonmonotone
line searches proposed in [24,57]. Finally, we know from (4.4) that the sequence
{tv. : k > 0} is bounded above. This, with vy = 7||D, |l and Theorem 4.1,
indicates that either vy = 0 for some finite k or liminf;_, o, vy = 0. Combining
this with statement (iv) of Lemma 3.1, we have either cond(J;) = 1 for some finite k
or liminf;_, o cond(J;) = 1.
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4.3 Controlling feasibility errors

The update scheme (3.11) is so constructed that Y('C)TY(‘L') = I, always holds. In
practical computations, however, the orthogonality constraint may be violated after
several iterations. As will be seen, it is mainly due to the numerical errors occured
on the multiplication X T W, which should be exactly equal to zero in theory. In the
following, we give a detailed analysis for this phenomenon and then propose a strategy
for controlling the feasibility errors.

Now we assume that all the arithmetics are exact, but the orthogonality constraint
may be violated at X. Denote Ex = X' X — p» By = YTy — I,. Itis easy to verify
from the definition (3.11) of J that

Ql,—NTQIL, - +?WTw=JTJ.

Performing respectively the left and right multiplications by J~T and J~! on both
sides of the above equation, we obtain

Qi )Tt =)+ 2 T wiwy =1, 4.9)
which implies that
1207 = I,l2 < 1. (4.10)
Rewrite Y (7) in update scheme (3.11) as Y (r) = XQJ ' - p) + tWJ~!. This,
with (4.9) and XTX = Ex + I,,, implies that
Ey = QI —I)TExQI T =)+t = )X Tw !
+r TwWix It = 1,). 4.11)
It follows from W = —(I,, — XXT)Dp in (3.11) and the definition of E x that XTw =

EXXTDP. Then by the Cauchy inequality, (4.11), (4.10), [|J !> < land 7 ID,llF <
€max, We know that

12xlF < (1+ 251X D, lIE) 1Ex 1l = (1+ 2emacy/T+ 1ExT2) IExllF (412)

showing that the feasibility of ¥ may be out of control after some iterations.
To control the feasibility errors, we propose an approach, in which the matrix W
in the scheme is replaced by

W=_ (1,, - X(XTX)—le) G=— (1,, - X(XTX)_IXT) D,.  (4.13)

Notice that when X T X is exactly 1, W reduces to — —(I,— XX T)D which is identical
to the 0r1g1nal Win (3.1 1) corresponding to E = D,. Denote by Y the new Y computed
by using W anddefine 2y = YTY -1, Noting that X TW=o, similarly to the deriving
of (4.11), we obtain that
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error

"
10 ‘ ‘
0 50 100 150 200
iteration

Fig. 1 The error of feasibility during iterations

By =i ' —1p)Tex@i T - 1,),

which with (4.10) implies that || Ey ||[g < | Ex|lg. Thus, with np? + 8 p3 /3 extra flops
for computing the W in (4.13), we can efficiently control the cumulative feasibility
errors. Considering that X TW is not exactly zero in practical computations, we may
reasonably assume that || X T_xTxx™x)~'xT || is in the same order as the machine
precision &mach. Then we have ||XTW|| F < O(&mach)||Dyllr. Following the analysis
of deriving (4.12), we have that

IEyIIF < IExIIF + 2€max O (émach),

which significantly improves the bound in (4.12).

To illustrate the usefulness of the above strategy, we take a typical example, which
is to calculate the sum of the four largest eigenvalue of matrix “S3DKT3M2” from
UF Sparse Matrix Collection [17]. We tried two versions of Algorithm 4.1, in which
the original W and the modified W in (4.1 3) are used respectively. The corresponding
parameters are chosen according to Sect. 6.1. Figure 1 depicts the error of the feasibility
versus the iteration number. From this figure, we see that the feasibility errors during
the iterations are efficiently controlled by using w.

5 Several extensions

In this section, we mention some extensions of the constraint preserving update scheme
(3.11) and the AFBB method. At first, we consider a special case of (1.2); i.e., opti-
mization with the generalized orthogonality constraint,

min  F(X), st X*HX =K, (5.1)
XeCnxp

where H € R"™" is a symmetric positive semidefinite (not necessarily symmetric

positive definite) matrix and K € R”*? is a symmetric positive definite matrix. The
first-order optimality condition of problem (5.1) is as follows.
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Lemma 5.1 Suppose X is a local minimizer of problem (5.1). Then X satisfies the
first-order optimality condition VF = G — HXG*XK~! = 0, with the asso-
ciated Lagrange multiplier A = G*XK~'. Moreover, VF = 0 if and only if
D:=GX*H*X — HXG*HX = 0.

Proof The first statement can be easily verified. For the second one, we first assume
that V.F = 0. Then, we know that G = HX K ~' X*G. Substituting H X K ~! X*G for
the second G in the definition of D yields

D= (G- HXG*XK YWX*H*X = VFX*H*X = 0.

Now we assume that D = 0. Noting that D = (GX*H — HXG*)H X, we can obtain
* * * 1 * *112
(G,D) =(GX*H,GX*H — HXG )=§||GX H — HXG™||g, (5.2)

which with D = 0 means that GX*H — HXG* = 0. Noting that VF = (GX*H —
HXG*)XK~!, we can see that VF = 0. The proof is completed. O

Similar to the analysis in Sect. 3, we can give the following feasible update scheme
for (5.1).

Lemma 5.2 For any feasible point X with X*HX = K, let W = —(, —
XK 'X*H)D and J(t) = K + TTZW*HW + %‘L’X*HD. Consider the curve given
by

Y)=QRX+tW)J 'K — X. (5.3)

Then we have that

(i) Y(©)*HY(r) = K;
(i) Y'(0) = —D is a descent direction and F. (Y (0)) < —%HXK_1 ||52||Vf||2;

1
(iii) cond(J) < 52“2 cond(K), where v = —T”H”i(ﬁz“F-

proof Since X*H D is skew-Hermitian, J is invertible and hence Y (7) is well-defined.
Rewriting Y (r) = X(2J 'K — p) + tWJ'K and noting X*HW = 0, we can
easily verify (i). Moreover, it is not difficulty to verify that Y'(0) = —D. It follows
from VF = (GX*H — HXG*)XK ! that

IVFIF < IXK~ ' 21GX*H — HXG*||F.

Combing the above inequality with (5.2), . (Y (0)) = (G, Y'(0)) and Y'(0) = —D,
we have that

1 1 1
Fr(X () = IIGX"H — HXG*|}: < -5 IXK N2 IVFIE.
So (ii) is true.
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For (i), it follows from D = —W+XK ' X*HD and X*HW = Othat D*HD =
W*HW + D*HXK~!X*H D. Thus there holds

1 1 1
IHZD|2 = |H2WI|Z + |K 2X*HD|Z.

Meanwhile, it is easy to see that

o T -
1712 < ||K||2+I||H2W||F+§||K2||2||K 2X"HDI|F.

Plugging t = —VHIKHZU into the above equality yields

1H2Dlg
1 _1
IKlv? IH2WIE  IKlbv |K~2X*HDle

1712< 1K ll2 + . 1
4 IH2D|2 2 IH2D|r

2
v U
< IIKll2 + 1K l2 - max (T“ -+ Et)

5402
<
=4

1K ]l2. (5.4)

On the other hand, we see from (5.3), X*HW = 0 and X*HX = K that2J~! =
K=Y (X*HY)K~! + K~!, which indicates that ||J ™|l < ||K~!||>. Combing this
with (5.4) gives (iii). The proof is completed. O

With the help of the above lemma, we can design the AFBB method for problem
(5.1) similar to Algorithm 4.1. Global convergence results can also be established.

Finally, we point out that our scheme and algorithm can naturally be extended to
(1.2), since the variables X1, ..., X, are separated in the constraints.

6 Numerical results

In this section, we present numerical results on a variety of problems to illustrate
the efficiency of our AFBB method. We implemented AFBB in Matlab R2012a. All
experiments were performed in Matlab under a Linux operating system on a Thinkpad
T420 Laptop with an Intel® dual core CPU at 2.60GHz x 2 and 4GB of RAM.

6.1 Stopping criteria

Define tol? := Xe=Xitle 544 o/ = Fi=Tinil WWe terminate the algorithm
k n k | Frl+1

if one of the following holds: (i) k > Maxlter; (ii) || Dyl < €llDpollF; (iii)

tol; < €, and tol,{ < €7; (iv) mean([toli_min{k’ﬂ“, ..., tolf]) < 10e, and
mean([tolifmin{k Tyl oo tolj{‘ 1) < 10ey, where Maxlter is the maximal iteration
number. These criteria are the same as those used in [53] except that we replace
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[VFillg < e therein by criterion (ii) here. Unless otherwise specified, we set
€e=107, 6, =107, 7 = 1078, T = 5 and Maxlter = 3000.
The other parameters for AFBB are given as follows:

0 =025 6 =05, 8§ =0.001, enin = 107%, emax = 103, A =100, L =3.

The initial trial stepsize rél) at the first iteration is chosen to be 0.5 || Dp,o||,§l. The

ABB stepsize (4.1) is used for computing the trial stepsize rk(o) . The “tic-toc” command
in Matlab is used to obtain the CPU time in seconds elapsed by each code. After the
iterations, if | XTX — I pllF = 10714, a re-orthogonality procedure will be performed
to enhance the feasibility.

6.2 Nearest low-rank correlation matrix problem

Given C € S" and a nonnegative weight matrix H € S", the nearest low-rank
correlation matrix problem is given by

1
min S |H O (X - O)|12, st diag(X) =e, rank(X) <r, X =0,  (6.1)
E n

where © is the Hadama product operator of two matrices, e € R”" is the vector with
all ones, r < n is a given positive integer number. A usual weight is H = 1, where
1 € R™*" represents the matrix with all ones.

To deal with the nonconvex rank constraints rank(X) < r, as used in the geo-
metric optimization method [25], majorization method [39], and trigonometric para-
metrization method [45], we rewrite X = VTV with v = [Vi,..., V,] € R™*",
Consequently, we get the equivalent formulation of (6.1) as follows:

1
Ir[lén 0(V;H,C) := §||H®(VTV—C)|||2:, st. |[Vilo=1,i=1,...,n, (6.2)
Ve rxn

which is the minimization of a quartic polynomial over spheres. Among many
approaches to solve problem (6.1), we compared our algorithm with several state-of-
the-art methods; i.e., the majorized penalty approach(PenCorr?) [22], the sequential
semismooth Newton method (SemiNewton) [33], and the Wen-Yin nonmonotone BB
method (OptM?) proposed in [53]. For more comprehensive literature reviews, see
[22,33].

We chose the initial point of problem (6.2) in the same way as in the majoriza-
tion method. Specifically, we selected the modified PCA [21] of C; i.e., Cpea, to
be the initial point in AFBB or OptM. Let C have the eigenvalue decomposition
C = PDiag(xl,...,xn)PT, where PTP = I, and 2y > --- > ), . Define
A, = Diag(\1, ..., \r) and denote by P; the first » columns of P. Then the i-th

2 1t can be downloaded from http://www.math.nus.edu.sg/~matsundf/#Codes.

3 1t can be downloaded from http://optman.blogs.rice.edu/.
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column of Cpcy 18 [Cpeal(iy = zi/llzill, where z; = Pl[Ai/Z](,-), i=1,...,r. Incase
of \; <0 forsome 1 <i <r,we first solved the following problem:

- 1
C =argmin =X — C||}, st diag(X)=e, X >0
XGS" 2

by the semismooth Newton method [40] and then set the initial point as Epca. Note
that SemiNewton and PenCorr also have their own efficient ways to generate good
initial points.

We list the test problems from [22,28,32,33,39] as follows. For the case when
H # 1, we may need to use the incomplete C. More specifically, the entries of C,
corresponding to the nonzero weights, will be set to be zeros.

Ex. 1 [33]: The matrix C is the 387 x 387 one-day correlation matrix (as of Oct.
10, 2008) from the lagged datasets of RiskMetrics.*

Ex. 2 [39]: H =1, n = 500, the entries

c exp( yli — Jl velts — | )
ij = — Vit = - . : .
N max{i, j}3 — yalv/i — V7 |

fori,j=1,...,nwithy; =0, y, =0.480, y3 = 1.511, y4 = 0.186.

Ex. 3[22]: n = 500, the entries C;; = 0.5+0.5¢70% =/l fori, j =1, ..., n. The
weight matrix H is either 1 or arandom matrix whose entries are uniformly distributed
in [0.1, 10] except for 200 entries in [0.01, 100].

Ex. 4 [22]: n = 943, C is based on 100, 000 ratings for 1682 movies by 943 users
from Movielens data sets. It can be download from http://www.grouplens.org/node/
73. The weight matrix H is either 1 or the one provided by T. Fushiki at Institute of
Statistical Mathematics in Japan.

Ex. 5-9 [28,32]: We consider the five gene correlation matrices C: Lymph, ER,
Arabidopsis, Leukemia and Hereditary bc. For the sake of comparison, as done in
[28], we perturb C to

C=(-y)C+yF,

where y = 0.05 and F is arandom symmetric matrix with entries uniformly distributed
in [—1, 1]. The corresponding weight matrix H is either 1 or the one created by
Example 2 in [28].

In our implementation, all the parameters of each solver were set to be their default
values except the termination criteria of OptM were changed to the ones in Sect.
6.1. The numerical results are reported in Tables 2, 3 and 4. To save space, we only
report some representative results. For more details, one can see [26]. In these tables,
“nlcmres?” and “nlcmres” represent the initial and returned residual || H © (X — C) ||r,
respectively. The terms “time” and “feasi”” denote the CPU time and the violation of
diag(X) = e, respectively, and “nfge” stands for the total number of function and
gradient evaluations. Note that CPU time of OptM or AFBB includes the CPU time
for generating the initial point by the modified PCA. To further show the efficiency of

4 Dr. Qingna Li provided us this matrix kindly.
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Table 2 Numerical results of the nearest low-rank correlation matrix problem with H = 1: SemiNewton,
PenCorr

r SemiNewton PenCorr
nlemres” nlcmres time feasi nlcmres? nlcmres time feasi
Ex. 1,n =387
2 1.653e02 1.630e02 3.6 4e—15  1.653e02 1.623e02 12.3 le—08
5 7.026e01 6.157e01 2.2 4e—15  7.026e01 6.111e01 8.1 Se—08
20 8.641e00 6.087¢00 1.5 Se—15 8.641e00 6.066¢00 2.3 6e—07

40 1.335e00 7.765e—01 1.3 7e—15  1.335e00 7.768e—01 1.1 2e—08
80 5.889e—02  3.228e—02 1.2 9e—15 5.889e—02 3.262e—02 0.7 le—08

Ex.4,n =943
5 4.410e02 4.136e02 18.8 6e—15  4.410e02 4.128e02 73.6 6e—08
20 2.943e02 2.888e02 22.7 Te—15  2.943e02 2.887e02 36.4 3e—08
50 2.765e02 2.773e02 26.6 le—14  2.765e02 2.763e02 18.7 8e—08
100 2.758e02 2.761e02 26.6 le—14  2.758e02 2.758e02 4.6 2e—08
200  2.758e02 2.758e02 20.1 le—14  2.758e02 2.758e02 4.5 2e—08
250  2.758e02 2.758e02 27.3 le—14  2.758e02 2.758e02 4.5 2e—08

Ex. 8, Leukemia, n = 1, 255
5 3.918e02 3.317e02 454 Te—15 3.918e02 3.309¢02 140.6 2e—08
20 1.554e02 1.055e02 32.6 8e—15  1.554e02 1.055e02 87.0 2e—07

50 6.529¢01 4.473e01 29.2 le—14  6.529¢01 4.473e01 334 4e—07
100 3.937e01 3.274e01 21.3 2e—14  3.937e01 3.274e01 28.9 4e—08
200  3.163e01 3.099e01 35.7 2e—14  3.163e01 3.095e01 12.3 7e—08
400 3.078e01 3.078e01 29.3 3e—14  3.078e01 3.078e01 7.6 2e—07

Ex. 9, Hereditary bc, n = 1,869
5 4.657¢02 4.361e02 118.7 8e—15  4.657¢02 4.357¢02 342.8 6e—08
20 7.194¢01 6.426e01 104.2 le—14  7.194e01 6.425¢01 163.0 9e—08

50 5.823e01 5.200e01 79.1 2e—14  5.823e01 5.199¢01 112.1 8e—08
100 5.311e01 5.026e01 92.5 2e—14 5.311e01 5.026e01 109.2 3e—08
200 4.990e01 4.989¢01 110.9 3e—14  4.990e01 4.970e01 36.5 6e—07
400  4.966e01 4.966e01 27.6 1le—09  4.966e01 4.966e01 23.7 4e—09

our approach, we considered to implement AFBB starting from a random Xy, denoted
by “AFBB-randX(”. The results of AFBB-randX for H = 1 are reported in the last
five columns of Table 3.

From the results, we know that AFBB performs better than OptM in terms of the
residual, the CPU time and the number of function and gradient evaluations. Again, in
the case when H = 1, AFBB not only runs considerably faster than SemiNewton and
PenCorr, but also always find a better solution in terms of the residual except for the
problem with large r; in the case when H # 1, our AFBB shows great advantage over
PenCorr in terms of the solution quality and CPU time. Besides, although AFBB-
rand X performs worse than AFBB, it still can solve the problem in a reasonable
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time and is comparable with SemiNewton and PenCorr. Apart from the ABB stepsize,
another reason for the efficiency of AFBB is its low complexity cost per iteration. The
dominated cost of AFBB at each iteration is computing the function value and the
gradient in (6.1). For special H = 1 and general H, the costs are 2n%r + 3nr? and
3n?r, respectively. In contrast, SemiNewton and PenCorr need to solve iteratively a
series of least squares correlation matrix problems without the rank constraint, whose
cost is very expensive.

Here we should notice that PenCorr is a general and powerful package since it can
deal with more general constraints such as lower and upper bound constraints. While
it is not known yet how to extend AFBB efficiently in this situation, we shall consider
a possible extension of the problem (6.1) with some given entries of the matrix X.
More exactly, it is required that X;; = g;; for (i, j) € B,, where B, is the subset
of {(i, DIl < j < i < n} satisfying —1 < ¢;; < 1 for any (i, j) € B,. Using the
decomposition X = VTV, the problem is now equivalent to

min 6(V; H, C)
VER’X”

st. ||Vilo=1,i=1,...,n, (6.3)
VIV —qij =0, (i, j) € B,.

l

To deal with the extra nonlinear constraints, we introduce the augmented Lagrangian
function (see [5,37,50]) of (6.3) as follows:

L.V, A)=6(V: H,C) + %e(v; H,,C+ A/p)

where i > 0 is the penalty parameter, A, H, and C are matrices in R™ " with zero
entries for all (i, j) ¢ B.. Starting from the initial point Cpey or Cpea, A9 = 0,
wo = 10, the procedure of the augmented Lagrangian method is as follows:

Vigr = argmin L, (V, Ap), st [[Vilo=1,i=1,...,n,
VGR’X” . 64
Ags1 o= A — e He © (V] Vi — Co), 64

i+1 = 10p.

The subproblem in (6.4) is a low-rank nearest correlation matrix problem and is solved
inexactly by the AFBB method. Specifically, for the k-th subproblem, the main para-
meters of AFBB are set to be

e = max{0.1e;_1, 1077}, €, 4 = max{0.1, 41, 107},
€rx = max{0.1€ s z—1, 1078}, Maxlter; = 2000,

where €9 = 107", €, 0 = 1073, €50 = 107>, Denoting vk = > i), Vi Vij —
qi,j|, we terminate the procedure (6.4) when v 1 < 3 x 108 or Vi1 — V| < 1078,

Below we consider a test instance of problem (6.2) with extra fixed constraints.
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Table 5 Numerical results of the nearest low-rank correlation matrix problem with equality requirements:
PenCorr, AFBB

r PenCorr AFBB

residual time feasi const. residual time feasi const. nfge

Ex. 10,n =943, H =1
10 3.533¢02  1,082.1 2e—08 2e—07 3.529e02 73.1 6e—15 2e—08 2,678

50 2.841e02 93.8 4e—08 9e—08  2.841e02 15.1 6e—15 5e—08 446
100 2.827e02 36.3 le—07 7e—08 2.827e02 16.9 Te—15 6e—09 398
200 2.827e02 234 9e—09 6e—09  2.827e02 24.0 Te—15 2e—08 379
250  2.827e02 235 9e—09 6e—09 2.827e02 23.6 Te—15 2e—08 355

Ex. 10, n = 943, H given by T. Fushiki
10 8.306e03  5,292.7 3e—08 5e—07 8.238¢03 200.9 6e—15 1e—08 6,221
50 4.171e03  1,540.5 2¢e—08 1e—08 4.165¢03 63.5 7e—15 3e—09 1,658
100 3.939¢03 1,012.4 le—08 9e—09  3.936e03 55.0 7e—15 1e—08 1,189
200  3.936e03 905.5 2e—08 1e—08 3.933e03 60.4 7e—15 2e—08 1,154
250  3.936e03 917.7 2e—08 1e—08 3.933e03 67.1 8e—15 2e—08 1,148

Ex. 10: The matrices C, H are the same as the ones in Ex. 4. The index set B,
consists of min{n,, n — i} randomly generated integers from {1, ..., n} with n, = 3.
We set gjj = 0 for (i, j) € Be.

The numerical results are presented in Table 5, where “const.” represents the total
constraint violation v;. From the table, we can see that the AFBB method is quite
promising, which shows its potential to handle some more general constraints beyond
the sphere constraints. As the augment Lagrangian method belongs to a different class
of methods, however, we shall go further on this topic elsewhere.

6.3 Kohn—Sham total energy minimization

We test in this subsection a class of nonlinear eigenvalue problems known as Kohn—
Sham (KS) equations, which arise in electronic structure calculations. The original KS
equation or KS energy minimization problem is a continuous nonlinear problem. To
solve the problems numerically, we turn them into finite-dimensional problems. Let
the unitary matrix X € C"*? be the approximation of the electronic wave functions
of p occupied states, where n is the spatial degrees of freedom. Using the planewave
basis, we define the finite-dimensional approximation to the total energy functional as
follows:

I~ 1 ~
Era(X) = tr(X*(EL - v)x) + 300 L p(X)

+0(X) Texc(0(X)) + Egwald + Ereps (6.5)
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where L is a finite-dimensional representation of the Laplacian operator in the
planewave basis, Vo, denotes the ionic pseudopotentials sampled on the suitably
chosen Cartesian grid, p(X) = diag(XX *) represents the charge density, the matrix
LT means the pseudo-inverse of L, and €xc(p(X)) is the exchange-correlation energy
per particle in a uniform electron gas of density p(X). The last two terms in (6.5)
are constant shifts of the total energy (see [54] for the details). Consequently, the
discretized KS energy minimization can be formulated as

min Etotal(X) sit. X*X = Ip. (6.6)
XeCnx

For the above problem, the KKT conditions; i.e., the KS equations, are
HX)X -XA,=0, X*X =1, 6.7)

Here, H(X) = 1L + Vion + Diag(Z!p(X)) + Diag(ixc(0(X))), ixc(0(X)) =
dixc(p(X))/dp(X) and A, is a p-by-p symmetric matrix of Lagrangian
multipliers.

Generically, it is sophisticated to compute the objective function and its gradient
in (6.6). Thus, we use the Matlab Toolbox KSSOLV [54] which is tailored for easily
developing new algorithms for solving the KS equations to do so. In order to show the
efficiency of our AFBB method, we compared it with the self-consistent field (SCF)
iteration which is currently the most widely used approach for the KS equations, this
SCEF iteration is provided in KSSOLV. We also compared AFBB with OptM [53]
for KS problem (6.6) but only the perfomance of AFBB is reported because they
performed similarly. The maximal iteration of SCF was set to be 200 while the other
parameters were set to be their default values in KSSOLV. For the sake of fairness, we
improved the stopping accuracy of AFBB; i.e., resetting € = 1070, ¢, = 10719, €r =
10714, MaxIter = 1000, to obtain a higher quality solution. The termination rules
are not directly comparable due to the different formulations of the problem used
by SCF and AFBB. Specifically, SCF focuses on KS equations (6.7) and needs to
solve a series of linear eigenvalue problems, while AFBB minimizes the total energy
directly. However, as shown later by the numerical results in Table 6, we see that on
average the chosen stopping criteria for AFBB are tighter than those of SCF in terms
of the residual |HX — H(X*HX)|| g~ For each problem, we ran the two algorithms
10 times from different random initial points generated by the function “genX0”
provided in KSSOLV. Note that for each instance, AFBB and SCF use the same initial
point.

A summary of the numerical results on 11 standard testing problems is reported in
Table 6. In this table, “a. Eto . and “a. Eyoa” represent the average initial and returned
total energy function value, respectively. The term “a.iter” denotes the average total
number of iterations, “a.resi”, “a.feasi” and “a.time” the average residual |HX —
X(X*HX)|F, the average violation of the constraint X*X = I, and the average
CPU time in seconds, respectively. We use “a.err” to denote the average relative errors
between the average total energy z; given by AFBB or the average total energy z»

given by SCF and the minimal of z; and Z,, which is computed by %
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564 B. Jiang, Y.-H. Dai

Table 6 Numerical results of the Kohn—Sham total energy minimization: SCF, AFBB

solver a.ES)[al a.Eiotal a.resi a.iter a.feasi a.err a.time
alanine, n = 12,671, p = 18

SCF —6.078e01 —6.116e01 3e—06 48.7 2e—14 2e—13 174.5

AFBB —6.078e01 —6.116e01 4e—07 77.8 Se—15 0e00 137.8
al,n =16,879, p =12

SCF —1.576e01 —1.577e01 8e—03 200.0 6e—15 8e—04 1,490.6

AFBB —1.576e01 —1.580e01 7e—05 986.5 6e—13 0e00 1,212.1
benzene, n = 8,407, p = 15

SCF —3.693¢e01 —3.723e01 2e—06 35.1 le—13 8e—14 70.3

AFBB —3.693e01 —3.723e01 4e—07 70.4 4e—15 0e00 56.5
cl2h26,n = 5,709, p = 37

SCF —8.073e01 —8.154e01 3e—06 69.1 4e—14 2e—13 216.6

AFBB —8.073e01 —8.154e01 6e—07 78.9 le—14 0e00 129.7
ctube661, n = 12,599, p = 48

SCF —1.340e02 —1.346e02 3e—06 50.9 4e—14 Se—14 535.6

AFBB —1.340e02 —1.346e02 6e—07 84.6 8e—14 0e00 377.7
glutamine, n = 16,517, p = 29

SCF —9.087¢01 —9.184¢01 3e—06 49.2 3e—14 8e—14 436.8

AFBB —9.087e01 —9.184¢e01 7e—07 96.2 9e—14 0e00 373.4
graphenel6, n = 3,071, p = 37

SCF —9.358e01 —9.400e01 6e—03 200.0 2e—14 Se—04 1,058.8

AFBB —9.358e01 —9.405e01 4e—06 219.5 4e—13 0e00 176.2
graphene30, n = 12,279, p = 67

SCF —1.726e+02 —1.735e+02 9e—03 200.0 3e—14 3e—04 9,225.4

AFBB —1.726e+02 —1.736e+02 6e—07 294.2 2e—14 0e00 2,007.3
pentacene, n = 44,791, p = 51

SCF —1.311e+02 —1.319e+02 4e—06 65.9 Se—14 Se—12 3,253.1

AFBB —1.311e+02 —1.319e+02 7e—07 118.7 2e—14 0e00 2,046.5
ptnio, n = 4,069, p = 43

SCF —1.983e02 —2.268e02 8e—06 200.0 2e—14 2e—09 946.7

AFBB —1.983e02 —2.268e02 4e—06 459.6 le—14 0e00 480.2
qdot,n =2,103, p =8

SCF 2.850e01 2.771e01 2e—02 200.0 4e—15 2e—04 106.5

AFBB 2.850e01 2.770e01 3e—04 1, 000.0 3e—15 0e00 81.2

or %_{121222}2‘} From the table, we can see that the AFBB method is considerably
competitive and it can always take less CPU time than SCF to find the better solutions
in terms of the total energy and the residual, especially for the large molecules. In
particular, for the most hard problem “graphene30” in our test, AFBB is not only
significantly faster than SCF, but also returns a better solution with smaller total energy

and residual.
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6.4 Maximization of sums of heterogeneous quadratic functions on the Stiefel
manifold from statistics

Balogh et al. [6] gave a test problem with known global optimal solutions as follows:

)4
- T T
XénRIPXP ;X(,')Aix(i)’ s.it. X' X = Ip, (6.8)
1=
where for 1 <i < p, A; :Diag(n(i —D+1,....,nG—-D+i—1,1L,n(i—1)+
i+1, ..., ni ) and /; < 0. This is a special maximization of sums of heterogeneous

quadratic functions on the Stiefel manifold from statistics (it was also considered in
[9]). By Proposition 1 in [6], we know that {(Ze;, *ez, ..., Lep) : e; € {e;, —e;}}
is the set of minimum points of problem (6.8) and fozl l; is the optimal function
value. It was pointed out in [6] that there were no efficient numerical methods to solve
problem (6.8) yet. Nevertheless, our numerical tests show that the AFBB method
works well.

In this experiment, we resete = 107, ¢, = 1070, €r = 10~ 10 and fixed n = 4000.
Forl < p <mand1 <i < p, we generated /; in two ways, one is that /; is uniformly
distributed in [0, 1], the other is that /; = —1. We ran our AFBB methods 50 times
from different random initial points for each test.

Firstly, we investigate the effect of using different descent directions. We call AFBB
methods using the descent directions D12 and Dy,4 as AFBBD1,; and AFBBDy 4,
respectively. The numerical results are shown in Table 7. In this table, “a.0bj®” and
“a.obj” represent the average initial funciton value and returned function value by
each method, respectively. The terms f*, “a.nfe” and “a.err” denote the optimal func-
tion value, the average total number of function evaluations and the average relative
error between the function value given by each method and f*, respectively. We use
“a.s.ratio” to stand for the average saved ratio of AFBBD,4 which is computed as
100(nfe,—1/4 — nfe,—1,2) /nfe,—1/2. From this table, we know that the two methods
can always find nearly global solutions in acceptable iterations. Averagely, AFBB D1 4
can always find a better solution with smaller function value about 25% faster than
AFBB D /> for most of the tests. This may be due to the fact that Dy 4 is the steepest
descent direction corresponding to the Euclidean metric, that is,

. (G, D)
D4 = argmin — .
DeTx IDllF

Secondly, we consider the effect of using different functions g(7) in forming J (7).
Here, we choose p = 0.5. We tested two choices: g1(r) = /2 which is the default
in update scheme (3.11) and g2(7) = %re". We call AFBB methods using g1(7)
and g>(t) as AFBBgl and AFBBg2, respectively. From Table 8, we see that AFBBg2
improves the performance of AFBBgl by 15% or more for most tests in terms of
the average total number of function evaluations. Meanwhile, it can always return a
soultion with smaller function value. Nevertheless, it remains under investigation how
to seek a better g(7).
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Table 7 Numerical results of AFBBDy /2 and AFBBDj /4 for problem (6.8)

P a.obj® £* AFBBDj AFBBD; 4
a.obj a.nfe a.err a.obj anfe a.err a.s.ratio

random /

2 8.003¢03 —1.304e00 —1.304e00 4039 4e—07 —1.304e00 405.9 4e—07 0.5
20 7.998¢05 —8.902¢00 —8.902¢00 839.8 7e—07 —8.902¢00 6154 4e—07 —26.7
60  7.198e06 —3.096e01 —3.096e01 962.8 8e—07 —3.096e01 692.0 4e—07 —28.1
100 2.000e07 —5.087e01 —5.087¢01 1032.5 1le—06 —5.087e01 714.9 4e—07 —30.8
Li=—li=1....,p

2 7.997¢03 —2.000e00 —2.000e00  391.1 3e—07 —2.000e00 397.6 2e—07 1.7
20 7.998¢05 —2.000e01 —2.000e01 8227 1le—06 —2.000e01 597.2 4e—07 —274
60  7.198¢06 —6.000e01 —6.000e01  890.7 4e—06 —6.000e01 645.6 4e—07 —27.5
100 2.000e07 —1.000e02 —1.000e02 942.0 8e—07 —1.000e02 696.2 4e—07 —26.1
Table 8 Numerical results of AFBBgl and AFBBg2 for problem (6.8)
p aobi®  f* AFBBgl AFBBg2

a.obj a.nfe aerr  a.obj anfe aerr  as.ratio

random /

2 8.004e03 —5.653e—01 —5.653e—01 409.1 1le—06 —5.653e—01 436.4 7e—07 6.7
20 7.998e05 —1.054e01  —1.054e01 839.7 7e—07 —1.054e01 710.3 3e—07 —15.4
60 7.198e06 —2.790e01  —2.790e01 941.3 8e—07 —2.790e01  789.1 6e—07 —16.2
100 2.000e07 —4.158¢01  —4.158e01 1,039.8 8e—07 —4.158¢01  856.0 4e—07 —17.7
=-li=1,....p

2 7.998¢03 —2.000e00  —2.000e00 401.8  2e—07 —2.000e00 402.2 3e—07 0.1
20 7.998¢05 —2.000e01  —2.000e01 816.5 6e—07 —2.000e01  717.6 3e—07 —12.1
60 7.198¢06 —6.000e01  —6.000e01 931.1 le—06 —6.000e01 741.4 3e—07 —20.4
100 2.000e07 —1.000e02  —1.000e02 987.5 2e—06 —1.000e02 869.4 3e—07 —12.0

At the end of this subsection, we remark that X G = G X happens in the nearest
low-rank correlation matrix problem and the Kohn—Sham total energy minimization.
In this case, the term X T D,, vanishes and g(t) will not play a role in forming J (7).

7 Conclusion

In this paper, we have proposed a feasible method for optimization on the Stiefel
manifold. Our main contributions are twofold. Firstly, we proposed a new framework
of constraint preserving update schemes for optimization on the Stiefel manifold by
decomposing each feasible point into the range space of X and the null space of X T
While this new framework can unify many existing schemes, we also investigated a

@ Springer



A framework of constraint preserving update schemes 567

new update scheme with low complexity. Note that our framework can be viewed as a
retraction as well. Secondly, we proposed the adaptive feasible Barzilai-Borwein-like
method and proved its global convergence. To our knowledge, this result is the first
global convergence result for the feasible method with nonmonotone linesearch for
optimization on the Stiefel manifold. Moreover, the corresponding extension to the
generalized Stiefel manifold was also considered.

We have tested our AFBB method on a variety of problems to illustrate its effi-
ciency. Particularly, for the nearest low-rank correlation matrix problem, AFBB per-
forms better than three state-of-the-art algorithms. Note that PenCorr, one of the three
algorithms, can deal with more general problems. For Kohn—Sham total energy mini-
mization, the superiority of AFBB is obvious especially for large molecules, and hence
it is quite promising to use our AFBB for large-scale electronic structure calculations.
Since our update scheme is compatible with moving along any given tangent direction,
we also explore the effect of different descent directions and different g(t)’s on the
performance of AFBB.

As our framework can unify several famous retractions, it is natural and interesting
to argue which one can make the AFBB method find the global optimal solution with
highest probability and at the fastest speed. One possible approach is to consider the
subspace techniques. This remains under investigation.
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8 Appendix 1: Details of approach I and II in Sect. (3)
8.1 Details of approach I

Using the condition that Z(r) = I, and E’(O) = —X'E and denoting A(r) =
[ Rr) } it follows from (3.4) and (3.6) that

WN (1)
.
A0) = [_)‘(VE fi] [ﬂ and A(0) = [ﬂ

where B € R"*P, F € RP*P_ Solving the above ordinary differential equations, we

get that
_vT
A(r):exp(r[ }éVE IB;])[I(;’} (8.1)

Since Z(t) = I, we know from (3.3) and the definition of .A(7) that

Y(r) =X, I, A1),
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and .A(‘L')T.A(‘L') = I,. It follows that the matrix inside the brackets of (8.1) will be
skew-symmetric. This means that B = —WT, F+FT =0and XTE+ETX =0
(ie, E € Tx). Let W = QR be the unique QR factorization of W and assume that F
takes the form F = QF QT, where F € RP*? is any skew-symmetric matrix. Then
we can write

Y(r) =[ X, Ip]exp(t[lé’ SM_);TE _FFT][% QOTD[ﬂ
=[x, Q]exp(r[_);TE _IERTD[I({} ®2

where the second equality is due that Q has orthonormal columns. The update scheme
(8.2) can be regarded as a generalized geodesic update scheme, since letting F' = 0,
(8.2) reduces to the geodesic update scheme (2.1).

8.2 Details of approach 11

Based on the choices that ﬁ(r) =1, + rﬁ’(O) and ﬁ(t) = 11,, we can get Z(1)
from (3.3) by the polar decomposition or the Cholesky factorization.

If by the polar decomposition, Z(7) and Z’'(t) are always symmetric. In this case,
it is easy to show that ¥ (t; X) = Ps, ,(XR(z) + WN (1)), which with (3.6), (3.7)
and (3.8) further implies that

Y(t; X) =Ps

n,p

(X —tE —1tXZ'(0)), (8.3)

where Z'(0) is any p-by-p symmetric matrix. If Z’(0) = 0, (8.3) reduces to the
ordinary polar decomposition or Manton’s projection update scheme. If Z'(0) =
sym(XTG) and E = G — Xsym(X'G), it becomes the ordinary gradient projec-
tion update scheme.

If by the Cholesky factorization, Z(t) and Z'(7) are always upper triangular. Sim-
ilarly, we can derive

Y(r;X)= qr(X —TE — IXZ’(O)), (8.4)

where Z’(0) is any p-by-p upper triangular matrix. When Z’(0) = 0, (8.4) reduces to
the ordinary QR factorization update scheme.

9 Appendix 2: Proof of lemma 3.1
The fact that XTDp is skew-symmetric implies that J is invertible, thus Y (7) is well-
defined. (i) follows from the construction of the update scheme (3.11).

Meanwhile, we know that Y'(0) = —D,, which with the chain rule shows that

Fr(Y(0) = —(G, Dp) = —(VF, PxD,),
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where the second equality is due to D, € 7y and the definition (2.8) of VF. Recall
that Px = I,, — %X XT. Substituting (3.12) into the above equation yields

FLY(0) = —(VF, (I, + (p — DXXT)VF) < —minfp, 1}|VF|2.

So (ii) is true.

We prove (iii) by contradiction. Multiplying X T from both sides the expression
of Y(r) in (3.11) and using X'w = 0, we get that 271 — I, = XTY. Assume
that there exists a p-by-p orthogonal matrix Q, such that ¥ = X Q. Then we have
2771 — I, = Qpsie, 21, —J = Qp,J. It follows from (21, — J)T(le —-J) =
(QpNTQpJ and Q] 0, = I, that

.
JT+J =41,

which is a contradiction to the definition of J. The contradiction shows the truth of
(iii).

For (iv), it is obvious that || J]2 < 1 + T4—Z||W|||2: + %HXTDPHF, where | - |2
is the spectral norm. It follows from —D, = W — XX'"D, and X'W = 0 that
ID,lIZ = W2 + | XTD,||%. Notice that v = || D,||¢. Then we have

2 2 T

v W] v IX" Dyl

Wl <1+ — —F 4. ——2F
4 Dsllg 2 IDpllg

IA

1+ 1’2(1 )+ 21) < 5+ vH)/4
ocim \ o) =G/

On the other hand, the relation 2J ! = XTy + | p indicates that ||.J —1|, < 1. Thus
(iv) is true.

In the case that p = 1 or n, it is not difficult to simplify the corresponding update
schemes and we omit the details here. Thus, we complete the proof.

10 Appendix 3: Proof of lemma 3.2

The relation (G, DY) = e;r (GTV}" ) e; can be easily verified from the definition of
D™ With the definition of D@ and XTX = I,,, we have that

2

T T T T T T

xTp@w = x G(q)eq — qu(q)X == (beq —e4b ) e Tx.

Thus Y (7) is well-defined. Moreover, we have that
W=—,—XX")DP = —(I, — XXT)G(q)e;Ir
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Hence, the matrix J = I, + ’4—2WTW + %XTD(‘D can be expressed as

T
T T T & —1||%
J=1p+&ee, +bey —eqb' =1,+ ey, b]([1 0 ][bTD’ (10.1)

where & = T4—2G-(rq) I, —XX T)G(q). By the formulations of b and &, we easily see that
egb=0,&=0a —b'b.

Applying the SMW formula to (10.1) and using the above relations, we can obtain
(3.15). _
Moreover, notice that VF = > | D@ Thus we have

1
pFLY(0) = —p (G, DY) < —(G,VF) < —Envsfn%,

where the first inequality follows from the choice of ¢ in (3.14) and the second one is
due to (ii) of Lemma 3.1. The proof is completed.

11 Appendix 4: Proof of proposition 3.1

Before going into the details of the proof, we recall the following fact on the inverse
of a2 x 2 block matrix.

AT NAD)

Fact 11.1 Assume that 7 =
! [TZI T

ible. Then T is invertible and

-1 .
], where T, and T\ — T|,T,, T, are invert-

—1 —1 —1 -1 —1
7! = [(T”,T T12T22 TZI) 1 ) _({11] - T12T22 T21)71T12T221 4 . ] .
_T22 T21(Tll - T12T22 TZI) T22 T21 (Tll - T12T22 T21) T12T22 + T22

First, we show that the update scheme (2.3) is well-defined, provided that 1, +
ﬁXTD is invertible. Consider the update scheme (2.3) with U = [PxD, X] and
V = [X, —PxD]. It follows from Py = I, — $XX' that X' PxD = 1X'D.
Combining this with XTX =/ pand X TD being skew-symmetric, we can rewrite

(11.1)

T txT z
12p+§VTU=[ Ip+3X D 21y }

TpT T
—IDTP{PyD I, + XD

Moreover, we derive that
T T T T,T Lo 0)?
W'w =D",—XX")D=D PXPXD—i-Z(X D) ,
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which with (3.11) implies that
2 2
J=(1p+ EXTD) + TZDTP;PXD.
Plugging this into (11.1) yields

T T T
12,,+—VTU::[ 11 12}:

I, +*X'D 1
2 T T

21ip
2 , (11.2)
2(Up+35XTD)" =) 1, + fTXTD:|
where T;; € RP*P (i, j € {1, 2}). By simple calculations, we know that
1 TeTh) !
T = TyoT5 Ty = (1, + X D) .

Thus it follows from Fact 11.1 that I, + %VTU is invertible and the update scheme
(2.3) is well-defined.
We now prove the equivalence. With Lemma 4.1 and (11.2), some tedious manip-

My M

. . TuTrn—1 _ 11 Mi2

ulations yield that (I, + 7V 'U)"" = |: My Moy :|, where
My =J7I, + 1XD), My =-%J71,

M3,

2(1, — My, + 3XTD)), Mxn = (I, + tX"D)J .
Direct calculations show that

! T -1 ! T ToTh) -t
M+ 3MXTD =17 oMo+ 3MnXTD) =21, =2(1, + TX"D)J .
(11.3)

Finally, we can obtain

M1 Mip I
Yuy(t) = X — [ PxD, x]([M21 MZJ [%X!}DD

1o o1 1 . 1 .
—x— r(zxx D-— W) (M11 + 3 MiX D) _ rX(M21 + 3 MnX D)

=QX+tW)J ' —Xx,

where the first equality uses (2.3) and XTX =/ »» the second and third equalities are
due to PyD = %X XTD — W and (11.3), respectively. The proof is completed.

12 Appendix 5: Some details of Table 1
We first review the computational costs of some basic matrix operations. Given A €

R™>*"2 and B € R"2*"2  computing AB needs 2n1n% flops while computing AT A
only needs nln% flops. Computing qr(A) by the modified Gram-Schmidt algorithm
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needs 2n1n§ flops (here ny > ny). If B is symmetric, computing the eigenvalue
decomposition B = PX PT with orthogonal P € R"2*"2 and diagonal ¥ € R"2*"2
by the symmetric QR algorithm needs 9n% flops. If B is skew-symmetric, computing
the exponential of B needs IOn% flops. If B is symmetric positive definite, computing
B'/2 needs 10n; flops. In addition, if B is nonsingular, solving the matrix equation
BT = AT by the Gauss elimination with partial pivoting needs ZnIn% + Zn%/ 3 flops.
It follows that computing B~! needs 8n%/ 3 flops. We refer interested readers to [23]
for more details.

To verify the computational costs for the corresponding update scheme in Table
1, we take the new update scheme (3.11) and the Wen-Yin update scheme (2.3) as
examples. Notice that comparing with O(npz) or O(n?), the O( p2) term is omitted
for 1 < p < n. For simplicity, we only consider the case that 1 < p < n. In the
case that p = 1 or n, the cost for the update schemes (3.11) and (2.3) can be easily
obtained by a similar analysis. We omit its details here.

To analyze the computational cost for (3.11), since E = D, and hence W =
-G+ XX TG, we can rewrite the feasible curve as

—1

and
2

J@ =1, + GG = GTXXTG) + pr(XG - GTx).

Forming J(r) needs 3np? + p> flops involving computing X'G, GTG and
(GTX )(XTG). The final assembly for Y (7) consists of involving solving one matrix
equation and performing one matrix multiplication and two matrix subtractions, and
hence needs 4np? 4 2np + 2p> /3 flops. Therefore, the total cost of forming ¥ (; X)
in (3.11) for any 7 is 7np® + 2np + 5p3 /3. While doing backtracking line searches,
we need to update Y (t; X) for a different t. Denote the first trial and the new trial
stepsizes by Tgrgt and Theyw, respectively. It is easy to see that

2 2 2 J -1
Y (thew; X) = X( II,+XTG)_G+( _ )X (Tnew) _x
Tirst Tfirst

Thew Thew

As X (%ml »+ X TG) — G 1is already computed in Y (th.5; X), we store this matrix
and hence only need 2np? + 3np + 2p>/3 to compute ¥ (tpey; X).

To analyze the computational cost for the Wen-Yin update scheme (2.3), we see
that it takes 3np? and 2np? + np flops to form Ly + %VTU and Px D, respectively.
The final assembly for Y (7) needs 4np? +np +40p3 /3 flops. Hence, the total cost for
the Wen-Yin update scheme is 9np® + 2np + 40p> /3. When p = 1/2, we see from
[53] that U = [G, X], V = [X, —G] in (2.3) which implies that there is no need to
compute Py D12 any more, and the total cost for forming the Wen-Yin update scheme
can be reduced to 7np® + np + 40p3 /3. The cost for updating Y () with a new 7 is
4np?* + np +40p3 /3 since VTU can be stored and the main work involves solving a
matrix equation and the final assembly.
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