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Abstract The introduction of quasi-Newton and nonlinear conjugate gradient meth-
ods revolutionized the field of nonlinear optimization. The self-scaling memoryless
Broyden–Fletcher–Goldfarb–Shanno (SSML-BFGS) method by Perry (Disscussion
Paper 269, 1977) and Shanno (SIAM J Numer Anal, 15, 1247–1257, 1978) pro-
vided a good understanding about the relationship between the two classes of meth-
ods. Based on the SSML-BFGS method, new conjugate gradient algorithms, called
CG_DESCENT and CGOPT, have been proposed by Hager and Zhang (SIAM J Optim,
16, 170–192, 2005) and Dai and Kou (SIAM J Optim, 23, 296–320, 2013), respectively.
It is somewhat surprising that the two conjugate gradient methods perform more effi-
ciently than the SSML-BFGS method. In this paper, we aim at proposing some suitable
modifications of the SSML-BFGS method such that the sufficient descent condition
holds. Convergence analysis of the modified method is made for convex and noncon-
vex functions, respectively. The numerical experiments for the testing problems from
the Constrained and Unconstrained Test Environment collection demonstrate that the
modified SSML-BFGS method yields a desirable improvement over CGOPT and the
original SSML-BFGS method.
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1 Introduction

It is well known that the introduction of quasi-Newton and nonlinear conjugate gra-
dient methods revolutionized the field of nonlinear optimization. The self-scaling
memoryless Broyden–Fletcher–Goldfarb–Shanno (SSML-BFGS) method by Perry
[1] and Shanno [2] provided a good understanding about the relationship between
nonlinear conjugate gradient methods and quasi-Newton methods. Specifically, if the
line search is exact and the identity matrix is used for the initial Hessian approxima-
tion, then both the BFGS and SSML-BFGS methods will generate the same iterations
as the conjugate gradient method does for convex quadratic functions. On the other
hand, if the previous Hessian approximation is utilized for updating the current quasi-
Newton matrix in the SSML-BFGS method, it will become the self-scaling BFGS
method.

Recently, based on the SSML-BFGS method, two efficient conjugate gradient algo-
rithms, called CG_DESCENT and CGOPT, have been proposed by Hager and Zhang
[3] and Dai and Kou [4], respectively. The numerical experiments show that, equipped
with some nonmonotone line searches, both CG_DESCENT and CGOPT perform
more efficiently than the SSML-BFGS method. This is somewhat surprising since
the SSML-BFGS method can be regarded as a three-term conjugate gradient method,
and three-term conjugate gradient methods (like the Beale-Powell restart method by
Beale [5] and Powell [6]) were generally believed to outperform two-term conjugate
gradient methods in practical computations.

This paper will focus on the original SSML-BFGS method with slight modifications
so that the sufficient descent condition (see (12)) can be satisfied at each iteration. One
possibility is to consider some modified secant equation (see, for example, [7–9]) to
meet the sufficient descent condition. Following this line, however, we failed to find
a better alternative after considerable numerical efforts. We shall explore two other
possibilities in Sect. 3. It turned out that both of them are quite efficient in numerical
tests.

The rest of this paper is organized as follows. Some preliminaries are made in
Sect. 2. The modified SSML-BFGS method is provided in Sect. 3. Section 4 provides
global convergence analysis for convex and nonconvex objective functions, respec-
tively. Numerical results are reported in Sect. 5. Conclusions and discussions are made
in the last section.

2 Preliminaries

Consider the unconstrained optimization problem

min f (x), x ∈ R
n,
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where f is smooth and its gradient g is available. More exactly, we assume that f
satisfies

Assumption 2.1 (i) f is bounded below; namely, f (x) > −∞ for any x ∈ R
n ; (ii)

f is differentiable and its gradient g is Lipschitz continuous; namely, there exists a
constant L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ R
n, (1)

where ‖ · ‖ stands for the Euclidean norm.

The SSML-BFGS method by Perry [1] and Shanno [2] is of the form

xk+1 = xk + αkdk, (2)

where the stepsize αk > 0 is obtained by some line search. The next search direction
dk+1 (k ≥ 1) is generated by

dk+1 = −Hk+1 gk+1, (3)

where the approximation matrix Hk+1 is obtained by the BFGS update from a scaled
identity matrix 1

τk
I. More exactly,

Hk+1 = 1

τk

(
I − skyT

k + yksT
k

sT
k yk

)
+

(
1 + 1

τk

‖yk‖2

sT
k yk

)
sksT

k

sT
k yk

, (4)

where sk = xk+1−xk and yk = gk+1−gk . The scaling parameter τk in (4) is suggested
[10,11] to lie in the interval

τk ∈
[

sT
k yk

‖sk‖2 ,
‖yk‖2

sT
k yk

]
. (5)

If the line search is exact, the SSML-BFGS search direction reduces to the conjugate
gradient direction, whereas if we update Hk+1 from 1

τk
Hk , the SSML-BFGS search

direction will become the self-scaling BFGS direction.
By substituting (4) into (3), we can rewrite the search direction of the SSML-BFGS

method of Perry [1] and Shanno [2] (with a multiplier difference) as

dP S
k+1 = −gk+1 +

[
gT

k+1yk

sT
k yk

−
(

τk + ‖yk‖2

sT
k yk

)
gT

k+1sk

sT
k yk

]
sk + gT

k+1sk

sT
k yk

yk . (6)

Based on this method, new conjugate gradient algorithms, called CG_DESCENT and
CGOPT, have been proposed by Hager and Zhang [3] and Dai and Kou [4], respectively.
Specifically, CG_DESCENT is derived by deleting the last term in (6) and setting the

parameter τk to be the value ‖yk‖2

sT
k yk

. CGOPT is proposed by seeking the vector on the
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manifold Sk+1 = {−gk+1 + βsk : β ∈ R} that is closest to dP S
k+1 in (6) and setting

τk = sT
k yk

‖sk‖2 . More exactly, CGOPT is based on the following scheme

dk+1 = −gk+1 + βkdk, (7)

βk = gT
k+1yk

dT
k yk

− dT
k gk+1

dT
k yk

‖yk‖2

dT
k yk

(8)

(here we should notice that the formula (7) has also been used in CG_DESCENT since
its version 5.1). The numerical experiments showed that the two conjugate gradient
methods both perform more efficiently than the SSML-BFGS method in (6).

It is worth mentioning that CGOPT is equipped with the so-called improved Wolfe
line search [4]. This line search consists in calculating a stepsize satisfying the fol-
lowing conditions

φk(α) ≤ φk(0) + min
{
ε|φk(0)|, δαφ′

k(0) + ηk
}
, (9)

φ′
k(α) ≥ σ φ′

k(0). (10)

Under the above conditions, the suggested value of the parameters are ε = 10−6, δ =
0.1, σ = 0.9, and ηk = 1/k2. The reason why we choose this line search is that, it not
only performs well in numerical experiments, but also enables the Zoutendijk condition
(11) (see [12]), which plays a basic role in the global convergence analysis. Further,
CGOPT with the improved Wolfe line search is shown to be globally convergent for
nonconvex functions in [4]. Throughout this paper, the line search is assumed to be
the above improved Wolfe line search.

Lemma 2.1 Assume that f satisfies Assumption 2.1. Consider the iterative method
of the form (2) where the direction dk satisfies gT

k dk < 0 and the stepsize αk satisfies
(9) and (10). Then, we have that

∑
k≥1

(gT
k dk)

2

‖dk‖2 < ∞. (11)

3 The Modified SSML-BFGS Method

As can easily be seen, the SSML-BFGS method can be regarded as a certain three-term
conjugate gradient method since it reduces to the linear conjugate gradient method if
the objective function is quadratic and if the line search is exact. The third term in (6)
is vanished in the ideal case, but can keep more information for nonlinear functions
and inexact line searches. On the other hand, the SSML-BFGS method keeps some
good properties of the BFGS method like the least change property. So it is reasonable
to expect that the SSML-BFGS method performs better than the two-term conjugate
gradient method in numerical computations. But the existing numerical results showed
that the conjugate gradient algorithms, CG_DESCENT and CGOPT, both perform
more efficiently than the SSML-BFGS method in (6). The puzzle attracts us to study
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the SSML-BFGS method with as light modifications as possible and with numerical
performances better than CGOPT.

We shall focus on the original SSML-BFGS method with slight modifications so
that the sufficient descent condition can be satisfied at each iteration; namely,

gT
k dk ≤ −c‖gk‖2, for all k ≥ 1and some constant c > 0. (12)

One possibility is to consider some modified secant equation (see, for example, [7–9])

Bk+1sk = zk, zk = yk + λ
θk

‖sk‖2 sk,

where θk = 6( fk − fk+1) + 3(gk + gk+1)
T sk and λ ≥ 0 is some constant. By

replacing the vector yk in the SSML-BFGS method with zk , it is not difficult to
show that the method satisfies the sufficient descent condition in a way similar to the
related references, and better numerical performance is expected. Following this line,
however, we failed to find an alternative better than the original SSML-BFGS method
after considerable numerical efforts.

For other possibilities, we consider the following modification and multiply the
third term in (6) by some non-negative parameter ξk , yielding the following direction

dk+1 = −gk+1 + βk(τk)dk + γkyk, (13)

where

βk(τk) = gT
k+1yk

dT
k yk

−
(

τk + ‖yk‖2

sT
k yk

)
gT

k+1sk

dT
k yk

, (14)

γk = ξk
gT

k+1dk

dT
k yk

, 0 ≤ ξk ≤ 1 (15)

If dT
k gk+1 = 0, the scalar βk(τk) in (14) reduces to the Hestenes-Stiefel or Polak-

Ribiére-Polyak formula since its second term is missing, and the parameter γk in
(15) reduces to zero. Powell [13] constructed a counter-example showing that the
Polak-Ribiére-Polyak method with exact line searches may not converge for general
nonlinear functions.

Consequently, Powell’s example can also be used to show that the method (2) and
(13) with βk(τk) and γk given by (14) and (15) need not converge for general nonlinear
functions. Therefore, we replace (14)s by the following truncation form

β+
k (τk) = max

{
βk(τk), ζ

gT
k+1dk

‖dk‖2

}
, (16)

where 0 < ζ < 1 is some parameter and its suggested value is 0.1 in our practical
computations. This kind of truncation form comes from a similar idea in [4]. In this
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case, if βk is truncated; namely, β+
k (τk) = ζ

gT
k+1dk

‖dk‖2 , we set ξk ≡ 0 in (15) to guarantee
the sufficient descent condition. In other words, if a truncation happens, we restart the
method along the direction

dk+1 = −gk+1 + ζ
gT

k+1dk

‖dk‖2 dk . (17)

The above direction reduces to the steepest descent direction −gk+1 if the line search
is exact. However, they are not the same if the line search is not exact, which is the
usual case in practical computations. Since the direction dk+1 makes use of some
derivative information along dk , it is reasonable to believe that the restart direction
dk+1 in restart is better than −gk+1 in restart. This is proved by our numerical tests.

Now we describe the modified SSML-BFGS method as follows.

Algorithm 3.1 (Modified SSML-BFGS method)

Step 0. Given x1 ∈ R
n, ε ≥ 0 and 0 < ζ < 1.

Step 1. Set k := 1. If ‖g1‖ ≤ ε, stop. Let d1 = −g1.
Step 2. Compute a stepsize αk > 0 satisfying conditions (9), (10).
Step 3. Let xk+1 = xk + αkdk . Compute gk+1. If ‖gk+1‖ ≤ ε, stop.
Step 4. If the dynamic restart conditions are satisfied, let dk+1 = −gk+1 and set

k := k + 1, goto Step 2.
Step 5. Compute βk by (14) and β+

k by (16). If β+
k = βk , decide ξk ∈ [0, 1] and

compute γk by (15) and dk+1 by (13); else, update dk+1 = −gk+1 +β+
k dk . Set

k := k + 1, goto Step 2.

Step 2 of the algorithm means that the stepsizes are obtained by the improved Wolfe
line search algorithm (see Algorithm 3.2 in [4] for details). It is a nonmonotone line
search algorithm which can not only avoid a numerical drawback of the Wolfe line
search, but also guarantee the global convergence of conjugate gradient methods. In
Step 4, to accelerate the algorithm, we adopt the dynamic restart technique proposed
in [4] (see Algorithm 4.1 in [4] for details).

In Step 5, we need to give the value of ξk ∈ [0, 1], when the parameter βk need not
be truncated by β+

k . Here, we propose two candidates for ξk :

(i) given some constant ξ ∈ 0 ≤ ξ < 1, set ξk ≡ ξ .
(ii) given ξ ∈ [0, 1] and a positive constant c0, calculate ξ̄k by the following way

ξ̄k = arg max
{
ξk ≤ 1 | dT

k+1gk+1 ≤ −c0‖gk+1‖2
}

. (18)

If ξ̄k ∈ 0 ≤ ξ̄k < 1 and ξ̄k > ξ , we set ξk = ξ̄k ; else set ξk = ξ .

In (i), by letting ξk to be a constant ξ in [0, 1], we can show that the direction (13)–(15)
satisfies the sufficient descent condition in the following lemmas. In (ii), we propose a
dynamic way to determine ξk . With such ξk , the direction (13)–(15) not only satisfies
the sufficient descent condition, but also is as close as possible to the SSML-BFGS
direction.

Now, we can establish the sufficient descent condition for Algorithm 3.1.
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Lemma 3.1 Consider the conjugate gradient method (2), (13) with (14) and (15). If
dT

k yk > 0, we always have that

dT
k+1gk+1 ≤ −c1‖gk+1‖2 for some positive constant c1 > 0. (19)

Proof Based on the choice of ξk , we divided the proof into the following two cases.
Case (i). From (13)–(15) and the positivity of sT

k yk and τk , it follows that

dT
k+1gk+1 = −(sT

k yk)
2‖gk+1‖2 − (sT

k gk+1)
2‖yk‖2 + (1 + ξ)(sT

k gk+1)(sT
k yk)gT

k+1yk

(sT
k yk)2

−τk
(sT

k gk+1)
2

sT
k yk

≤ −(sT
k yk)

2‖gk+1‖2−(sT
k gk+1)

2‖yk‖2+(1+ξ)(sT
k gk+1)(sT

k yk)gT
k+1yk

(sT
k yk)2

.

(20)

By applying the inequality

uT v ≤ 1

2
(‖u‖2 + ‖v‖2)

to the relation (20) with

u = 1 + ξ√
2

(sT
k yk)gk+1, v = √

2(sT
k gk+1)yk,

we can obtain

dT
k+1gk+1 ≤ −

(
1 − (1 + ξ)2

4

)
‖gk+1‖2.

Thus, (19) holds with c1 = 1 − (1+ξ)2

4 .
Case (ii). From Case (i) and (18), it is easy to see that (19) holds with c1 =

min{c0, 1 − (1+ξ)2

4 }.
Lemma 3.2 Consider the conjugate gradient method (2) and (13), where βk(τk) is
replaced by β+

k (τk) in (16) and γk is given in (15). If dT
k yk > 0 and the line search

satisfies condition (10), we have that

dT
k+1gk+1 ≤ −c2‖gk+1‖2 for some positive constant c2 > 0. (21)

Proof By Algorithm 3.1 and Lemma 3.1, we only need to consider the case that

β+
k = ζ

gT
k+1dk

‖dk‖2 with 0 < ζ < 1 and ξk ≡ 0 in (15).
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In this case, it is obvious that

dT
k+1gk+1 = −‖gk+1‖2 + ζ

(dT
k gk+1)

2

‖dk‖2

≤ − (1 − ζ ) ‖gk+1‖2.

This, with Lemma 3.1, indicates that (21) holds with c2 = min{c1, (1 − ζ )}. ��

4 Global Convergence Analysis

For uniformly convex functions, we have the following convergence result.

Theorem 4.1 Assume that f satisfies Assumption 2.1. Consider the search direction
defined by (13)–(15), where the parameter τk lies in the interval in (5) and the stepsize
αk is calculated by the improved line search satisfying (9) and (10). If, further, f is
uniformly convex; namely, there exists a constant μ > 0 such that

(∇ f (x) − ∇ f (y))T (x − y) ≥ μ‖x − y‖2, ∀ x, y ∈ R
n, (22)

we have that
lim

k→∞ gk = 0. (23)

Proof It follows from (1) and (22) that

‖yk‖ ≤ L ‖sk‖, (24)

dT
k yk ≥ μ ‖dk‖ ‖sk‖. (25)

By (22) and (24), it is easy to see that for any τk belonging to the interval in (5), there
exists a positive constant cτ such that

|τk | ≤ cτ .

Consequently,

‖dk+1‖ ≤ ‖gk+1‖ +
∣∣∣∣∣gT

k+1yk

dT
k yk

−
(

τk + ‖yk‖2

sT
k yk

)
gT

k+1sk

dT
k yk

∣∣∣∣∣ ‖dk‖ +
∣∣∣∣∣ξk

gT
k+1dk

dT
k yk

∣∣∣∣∣ ‖yk‖

≤
(

1 + L ‖sk‖ ‖dk‖
dT

k yk
+ (cτ + L2

μ
)
‖sk‖ ‖dk‖

dT
k yk

+ ‖dk‖‖yk‖
dT

k yk

)
‖gk+1‖

≤
(

1 + L2 + 2μL + μcτ

μ2

)
‖gk+1‖. (26)
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On the other hand, Lemmas 3.1 and 2.1 imply that

∑
k≥1

‖gk‖4

‖dk‖2 < ∞. (27)

Therefore, we obtain by (26) and (27) that

∑
k≥1

‖gk‖2 < ∞,

which implies the truth of (23).

For general nonlinear functions, similar to [14] and [15], we can establish a weaker
convergence result in the sense that

lim inf
k→∞ ‖gk‖ = 0. (28)

To this aim, we proceed by contradiction and assuming that there exists γ > 0 such
that

‖gk‖ ≥ γ, ∀ k ≥ 1. (29)

Lemma 4.1 Assume that f satisfies Assumption 2.1. Consider the iterative method
of the form (2), where the search direction dk is defined by (13), (14), (16), and (15)
with k replaced with k + 1, and where the stepsize αk is calculated by the improved
Wolfe line search satisfying (9) and (10). If the generated sequence {xk} is bounded
and (29) holds, we have that dk �= 0 and

∑
k≥2

‖uk − uk−1‖2 < ∞, (30)

where uk = dk/‖dk‖.

Proof First, note that dk �= 0, for otherwise the sufficient descent condition (21) would
imply gk = 0. Therefore, uk is well defined. Now, divide formula (16) for β+

k into
two parts as follows

β
(1)
k = max

{
gT

k+1yk

dT
k yk

−
(

τk + ‖yk‖2

sT
k yk

)
gT

k+1sk

dT
k yk

− ζ
dT

k gk+1

‖dk‖2 , 0

}
, (31)

β
(2)
k = ζ

dT
k gk+1

‖dk‖2 (0 < ζ < 1) (32)

and define

wk = −gk + β
(2)
k−1dk−1 + γk−1yk−1

‖dk‖ and δk = β
(1)
k−1‖dk−1‖

‖dk‖ .
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By dk = −gk + β+
k−1dk−1 + γkyk−1, we have for k ≥ 2,

uk = wk + δkuk−1. (33)

Using the identity ‖uk‖ = ‖uk−1‖ = 1 and (33), we obtain

‖wk‖ = ‖uk − δkuk−1‖ = ‖δkuk − uk−1‖ (34)

(the last equality can be verified by squaring both sides). Using the condition that
δk ≥ 0, the triangle inequality and (34), we have that

‖uk − uk−1‖ ≤ ‖(1 + δk)uk − (1 + δk)uk−1‖
≤ ‖uk − δkuk−1‖ + ‖δkuk − uk−1‖
= 2‖wk‖. (35)

The line search condition (10) indicates that

gT
k+1dk ≥ σgT

k dk, (36)

which implies that

dT
k yk = gT

k+1dk − gT
k dk ≥ −(1 − σ)dT

k gk . (37)

Combining (36) and (37), we get that

gT
k+1dk ≥ σgT

k dk ≥ −σ

1 − σ
dT

k yk . (38)

It follows from the equality in (37) and dT
k gk < 0 that

gT
k+1dk ≤ dT

k yk . (39)

Dividing dT
k yk in both (38) and (39), we easily get for all k ≥ 1, the parameter γk in

(15) satisfies the following inequality

|γk | =
∣∣∣∣∣ξk

dT
k gk+1

dT
k yk

∣∣∣∣∣ ≤ max{ σ

1 − σ
, 1},

which with the definition of β
(2)
k in (31) gives

‖ − gk + β
(2)
k−1dk−1 + γk−1yk−1‖ ≤ (1 + ζ ) ‖gk‖ + max{ σ

1 − σ
, 1}‖yk−1‖. (40)
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By the continuity of ∇ f and the boundedness of {xk}, there exists some parameter
constant γ̄ such that

‖xk‖ ≤ γ̄ , ‖gk‖ ≤ γ̄ , ∀k ≥ 1.

It follows from this and (40) that there exists some positive parameter C such that

‖ − gk + β
(2)
k−1dk−1 + γk−1yk−1‖ ≤ C.

This bound for the numerator of wk coupled with (35) gives

‖uk − uk−1‖ ≤ 2‖wk‖ ≤ 2C

‖dk‖ . (41)

The relation (29), the sufficient descent condition (21), and the Zoutendijk condition
(11) indicate that

∑
k≥1

1

‖dk‖2 ≤ 1

γ 4

∑
k≥1

‖gk‖4

‖dk‖2 ≤ 1

γ 4 c2
2

∑
k≥1

(gT
k dk)

2

‖dk‖2 < +∞. (42)

Thus, (30) follows from (41) and (42). ��
By an argument similar to that in [14] and [4], we can obtain the following convergence
theorem for general nonconvex functions. If the objective function has bounded level
sets, it is easy to see that the generated sequence {xk} is bounded.

Theorem 4.2 Assume that f satisfies Assumption 2.1. Consider the iterative method
of the form (2), where the search direction dk is defined by (13), (14), (16), and (15)
with k replaced with k + 1, and where the stepsize αk is calculated by the improved
Wolfe line search satisfying (9) and (10). If the generated sequence {xk} is bounded,
the method converges in the sense that (28) holds.

5 Numerical Experiments

In this section, we report the numerical results of our modified SSML-BFGS method

of the form (2), (13)–(15), where the scaling parameter τk is chosen to be
sT
k yk

‖sk‖2 . If the
parameter ξk in (15) is determined by the two ways proposed in (i) and (ii) of Sect. 3,
respectively, we call the corresponding variants of the modified SSML-BFGS method
by Algorithm 3.1(i) and Algorithm 3.1(ii). In all the compared algorithms, the stepsize
αk is calculated by the improved Wolfe line search [4] satisfying the conditions (9)
and (10). We stop the iteration if the inequality

‖gk‖2 ≤ 10−6

is satisfied.
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Fig. 1 Performance profile of Alg. 3.1(i) and SSML-BFGS based on CPU time for the whole test problems

The test problems are taken from the Constrained and Unconstrained Test Envi-
ronment collection [16]. There are 118 unconstrained test problems in total and their
dimensions vary from 50 to 104. For each comparison, however, we did not count
those problems for which different solvers converge to different local minimizers.

The performance profile by Dolan and Moré [17] is used to display the performance
of the algorithms. Define P as the whole set of n p test problems and S the set of the
interested solvers. Denote by tp,s the cpu time required by solver s for problem p.
Define the performance ratio as

rp,s = tp,s

t∗p
,

where t∗p = min {tp,s : s ∈ S}. It is obvious that rp,s ≥ 1 for all p and s. If a
solver fails to solve a problem, then the ratio rp,s is assigned to be a large number
1010. For each solver s, the performance profile is defined as the following cumulative
distribution function for performance ratio rp,s ,

P(τ ) = si ze{p ∈ P : rp,s ≤ τ }
n p

.

That is, for each method, in the following figures, we plot the fraction P(τ ) of problems
for which the method is within a factor τ of the best time. Obviously, P(1) represents
the percentage of the test problems for which the method is the fastest. The top curve
is the method that solved the most problems in a time that was within a factor τ of the
best time. See [17] for more details about the performance profile.
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Fig. 2 Performance profile of Alg. 3.1(i) and CGOPT based on CPU time for hard test problems.
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Fig. 3 Performance profile of Alg. 3.1(ii) and SSML-BFGS based on CPU time for the whole test problems.

In Fig. 1, we compare Algorithm 3.1 (i) and the original SSML-BFGS method. The
two methods differ in that the former searches along the direction (13)–(15) and the
latter does along the direction (6). After eliminating the problems for which the two
variants converge to different local minimizers, 107 problems are left. Fig. 1 shows
that the new method has a better performance than the SSML-BFGS method.
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Fig. 4 Performance profile of Alg. 3.1(ii) and CGOPT based on CPU time for hard problems.
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Fig. 5 Performance profile of Alg. 3.1(i) and (ii) based on CPU time for the whole test problems.

In Fig. 2, we compare Algorithm 3.1(i) with CGOPT [4] for those hard problems
(here a test problem is said to be hard if any of the solvers requires at least 50 iterations
regardless of the problem dimension). There are 70 hard problems. Fig. 2 shows
that Algorithm 3.1(i) has a great advantage over CGOPT on the whole for the hard
problems.

123



J Optim Theory Appl (2015) 165:209–224 223

In Fig. 3, we compare Algorithm 3.1(ii) and the original SSML-BFGS method.
After eliminating the problems for which the two variants converge to different local
minimizers, 111 problems are left. Fig. 3 shows that Algorithm 3.1(ii) obtains a better
performance than the SSML-BFGS method.

In Fig. 4, we compare Algorithm 3.1(ii) with CGOPT [4] for those hard problems (in
other words, any of the solvers requires at least 50 iterations regardless of the problem
dimension). There are 72 hard problems in this case. Fig. 4 shows that Algorithm
3.1(ii) has a great advantage over CGOPT on the whole for the hard problems.

At the end of this section, we present a comparison between Algorithm 3.1(i) and
Algorithm 3.1(ii) for the whole test problems of CUTEr. From Fig. 5, we can see that
Algorithm 3.1(i) and Algorithm 3.1(ii) perform nearly the same, except that Algorithm
(3.1)(i) is slightly better when τ ≤ 2.5.

6 Conclusions

In this paper, we have proposed a modified SSML-BFGS method, which is of the
form (2), (13), (16). The main modification to SSML-BFGS is that we multiply the
third term of the SSML-BFGS direction with parameter ξk . We also proposed two
strategies (i) and (ii) in Sect. 3 to determine this parameter. We proved that the modi-
fied SSML-BFGS method with either of the strategies satisfies the sufficient descent
condition provided that dT

k yk > 0. Consequently, under some mild conditions, global
convergence results have been established for convex and nonconvex objective func-
tions, respectively. Numerical results indicated that the two implementations of the
SSML-BFGS method perform better than the original SSML-BFGS method by Perry
and Shanno. Moreover, they have a better performance than CGOPT for the hard
problems from the CUTEr collection.

The two strategies for choosing the parameter ξk are proposed such that the direc-
tion generated by the modified SSML-BFGS method satisfies the sufficient descent
condition (12). To some extent, this coincides with the same line along which nonlin-
ear conjugate gradient methods develops. In a recent survey [18], nonlinear conjugate
gradient methods are divided by the following three types. Early nonlinear conjugate
gradient methods, including the Fletcher-Reeves, Polak-Ribiére-Polyak and Hestenes-
Stiefel ones, may not generate a descent search direction even with strong Wolfe line
searches. The second type is descent nonlinear conjugate gradient methods that can
guarantee the descent property of the generated search direction. A remarkable repre-
sentative is the Dai-Yuan method [19], whose descent property and global convergence
can be achieved only with the Wolfe line search. Further, the hybridization of the Dai-
Yuan and Hestenes-Stiefel methods can lead to an efficient conjugate gradient algo-
rithm, called DYHS in [20]. The third type is nonlinear conjugate gradient methods
that can guarantee the sufficient descent condition of the generated search direction
such as the most efficient algorithms CG_DESCENT and CGOPT mentioned in this
paper. Therefore, we feel that there might be a large room for improving numerical
optimization methods with small storage, including the SSML-BFGS method and the
three-term nonlinear conjugate gradient method, by imposing the sufficient descent
condition.
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