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Abstract

In a cellular wireless system, users located at cell edges often suffer significant out-of-cell inter-

ference. Assuming each base station is equipped with multiple antennas, we can model this scenario

as a multiple-input single-output (MISO) interference channel. In this paper we consider a coordinated

beamforming approach whereby multiple base stations jointly optimize their downlink beamforming

vectors in order to simultaneously improve the data rates of a given group of cell edge users. Assuming

perfect channel knowledge, we formulate this problem as the maximization of a system utility (which

balances user fairness and average user rates), subject to individual power constraints at each base station.

We show that, for the single carrier case and when the number of antennas at each base station is at least

two, the optimal coordinated beamforming problem is NP-hard for both the harmonic mean utility and

the proportional fairness utility. For general utilities, we propose a cyclic coordinate descent algorithm,

which enables each transmitter to update its beamformer locally with limited information exchange,

and establish its global convergence to a stationary point. We illustrate its effectiveness in computer

simulations by using the space matched beamformer as the benchmark.
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I. INTRODUCTION

In a conventional wireless cellular system, base stations from different cells communicate with their

respective remote terminals independently. Signal processing is performed on an intra-cell basis, while the

out-of-cell interference is treated as background noise. This architecture often causes undesirable service

outages to users situated near cell edges where the out-of-cell interference can be severe. Since the

conventional intra-cell signal processing can not effectively mitigate the impact of inter-cell interference,

we are led to consider coordinated base station beamforming across multiple cells in order to improve

the services to edge users. In this paper, we focus on the downlink scenario where the base stations are

equipped with multiple antennas and model it as a MISO interference channel. We consider joint optimal

beamforming across multiple base stations to simultaneously improve the data rates of a given group of

cell edge users. Assuming that the channel state information (CSI) is known, we formulate this problem

as the maximization of a system utility (which balances user fairness and average user rates), subject to

individual power constraints at each base station. We show that, for the single carrier case and when the

number of antennas at each base station is at least two, the optimal coordinated beamforming problem is

NP-hard for both the harmonic mean utility and the proportional fairness utility. This NP-hardness result

is in contrast to the single antenna case for which the same optimization problem is convex for both the

harmonic mean and proportional fairness utility functions [1]. For the min-rate utility, this problem is

known to also be solvable in polynomial time [1], [2].

In addition to the complexity analysis, we propose a practical iterative cyclic coordinate descent

algorithm for the multi-cell coordinated beamforming problem by exploiting the separability of power

constraints. We prove the global convergence of this cyclic coordinate descent algorithm (to a stationary

point). Numerical experiments are also presented to illustrate the effectiveness of the proposed algorithm.

A. Related Work

Downlink beamforming has been studied extensively in the single cell setup [3], [4]. For the multi-

cell interference channel, the reference [5] considered coordinated beamforming for the minimization of

total weighted transmit power across the base stations subject to individual signal-to-interference-plus-

noise-ratio (SINR) constraints at the remote users. It turns out this problem can be transformed into a

convex second order conic programming (SOCP) and efficiently solved. However, the maximization of
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weighted sum rates for a multi-cell interference channel under individual power constraints is NP-hard

even for the single antenna and the single carrier case [1]. In fact, more is known about the single

antenna interference channel case. For instance, if the system utility is changed into either the geometric

mean rate (i.e., proportional fairness), the harmonic mean rate, or the min-rate, the corresponding utility

maximization problem (for the single tone case) can be converted to a convex optimization problem

and solved efficiently with global optimality [1], [6]. However, when the number of tones is more than

two, all of the aforementioned power control problems are NP-hard. The focus of this paper is to study

the multi-antenna case (MISO interference channel), analyze the complexity of the corresponding utility

maximization problems, and propose a practical algorithm to solve them.

In addition to the aforementioned utility based formulations, various base station cooperation techniques

have been proposed to mitigate inter-cell interferences, including multi-point coordinated transmission, or

network multi-input multi-output (MIMO) transmission [7]–[16]. For example, distributed or decentralized

approaches are proposed for coordinated transmitter beamforming design in MISO interference channel

in [7], [10], [13], [14], [16], [17], some of which are based on dual uplink channels.

The references [11], [12] show that coordination enables the cellular network to enjoy a greater spectral

efficiency. Most of these cooperative techniques require each base station to have not only full/partial CSI

but also the knowledge of actual independent data streams to all remote terminals. With the complete

sharing of data streams and CSI, the multi-cell scenario is effectively reduced to a single cell interference

management problem with either total [18] or per-group-of-antenna power constraints [19], [20]. Among

the major drawbacks of these techniques (in comparison to the utility based approaches) are their stringent

requirement on base station coordination, the large demand on the communication bandwidth of backhaul

links, as well as the heavy computational load associated with the increasing number of cells [21], [22].

The references [8], [15], [23], [24] provided characterizations of the achievable rate region and proved

the existence of a unique Nash equilibrium which is inefficient in the sense that the achievable rates are

bounded by a constant, regardless of the available transmit power. See [23], [25] for more recent results

of the MISO channel.

Notation: We adopt the following notations in this paper. We use lower case boldface to denote column

vectors. For any vector h, we denote its transpose and Hermitian transpose by hT and h†, respectively.

Also, we use (x, y) to represent a two-dimensional row vector and ‖ · ‖ to represent the Euclidean norm.

Finally, for a multi-variable function f(x), we let ∇f(x) and ∇2f(x) denote its gradient and Hessian.
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II. PROBLEM FORMULATION

Consider a cellular system in which there are K base stations each equipped with L transmit antennas.

The K base stations wish to transmit respectively to K mobile receivers each having only a single

antenna. Each base station can direct a beam to its intended receiver in such a way that the resulting

interference to the other mobile units is small. Consider the single carrier case, and let hjk ∈ CL denote

L-dimensional complex channel vector between base station j and receiver k. Let vk ∈ CL denote the

beamforming vector used by base station k, while sk is a complex scalar denoting the information signal

for user k with E|sk|2 = 1. The transmit vector of the j-th base station is vjsj . Then the signal received

by user k can be described as

yk =
K∑

j=1

h†jkvjsj + zk, 1 ≤ k ≤ K, (1)

where zk is the additive white Gaussian noise (AWGN) with variance σ2
k/2 per real dimension. Treating

interference as noise, we can write the SINR of each user as

SINRk =
|h†kkvk|2

σ2
k +

∑
j 6=k |h†jkvj |2

, 1 ≤ k ≤ K. (2)

Adopting a utility, we can formulate the optimal coordinated downlink beamforming problem as

max H(r1, r2, ..., rK)

s.t. rk = log

(
1 +

|h†kkvk|2
σ2

k +
∑

j 6=k |h†jkvj |2

)
,

‖vk‖2 ≤ Pk, 1 ≤ k ≤ K,

(3)

where Pk denotes the power budget of base station k and H(·) denotes the system utility which may be

any of the following

• Weighted sum-rate utility: H1 =
1
K

K∑

k=1

wkrk, with weight wk ≥ 0.

• Proportional fairness utility: H2 =

(
K∏

k=1

rk

)1/K

⇔ 1
K

K∑

k=1

log rk.

• Harmonic mean utility: H3 = K/

(
K∑

k=1

r−1
k

)
.

• Min-rate utility: H4 = min
1≤k≤K

rk.
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According to [23], [24], problem (3) can be written in a more general form as

max H(r1, r2, ..., rK)

s.t. rk = log

(
1 +

h†kkVkhkk

σ2
k +

∑
j 6=k h†jkVjhjk

)
,

Trace(Vk) ≤ Pk, Vk < 0, 1 ≤ k ≤ K,

(4)

where Vk is the transmit covariance matrix at transmitter k. The results in [23], [24] state that problem

(4) has a rank-one optimal solution for each Vk. This implies that problem (3) and problem (4) are

equivalent. We focus on formulation (3) in this paper.

The above beamforming problem (3) can be nonconvex in general due to the nonlinear equality

constraints. The tuple of optimal transmit rates (r1, r2, ..., rK) corresponding to problem (3) (with any

choice of the four mentioned system utilities) lie on the boundary of the achievable rate region. See

[8], [9], [15], [23], [24] for various efforts to characterize the achievable rate region of the interference

channel.

In practice, the choice of utilities depends on a suitable compromise between system performance (total

rates achievable) and user fairness. The sum-rate utility H1 focuses entirely on system performance, while

the min-rate utility H4 places the highest emphasis on user fairness. The other two choices H2 and H3

represent an appropriate tradeoff between the two extremes.

III. COMPLEXITY ANALYSIS

In this section, we investigate the complexity status of the optimal coordinated downlink beamforming

problem (3) for various choices of system utilities. We provide a complete analysis on when the problem

is NP-hard and also identify subclasses of the (general NP-hard) problem that are solvable in polynomial

time.

Generally speaking, convex optimization problems are relatively easy to solve, provided that there

is a fast way to evaluate the objective function and its subgradient and to determine the feasibility

of a candidate solution. More precisely, for any convex optimization problem and any ε > 0, the so-

called ellipsoid algorithm [26] can be used to find an ε-optimal solution (i.e., a feasible solution whose

objective value is within ε from being globally optimal) with a complexity that is polynomial in the

problem dimension and log(1/ε). In contrast, nonconvex optimization problems are generally difficult to

solve as they require exponential effort. However, not all nonconvex problems are hard since the lack

of convexity may be due to inappropriate formulation. In fact, there are many nonconvex optimization
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problems which admit a convex reformulation. Thus, convexity is a useful but unreliable test of the

computational tractability of an optimization problem. A more robust tool is the computational complexity

theory which we briefly describe below.

A. Computational Complexity Theory: A Brief Background

Generically, an optimization problem can be described by the minimization of an objective function

over a feasible region. A decision version of the minimization problem is to decide if the feasible region

contains a vector at which the objective function value is below a given threshold. The answer to the

decision problem is binary, true or false, and there is no need to identify what the solution is. The decision

version is typically easier to solve than the original optimization problem which requires the determination

of an (globally) optimal solution. The size of an optimization problem instance is defined as the length

of a binary string required to describe the objective function and the feasible region [26]. We say an

algorithm solves the decision version of an optimization problem if for each instance of the problem, the

algorithm correctly gives “true” or “false” answer. We can define the running time of an algorithm as the

maximum number of basic computational steps (e.g., number of elementary bit operations) required to

solve the decision version of an optimization problem of a given size. Typically, the algorithm’s running

time is a function of the problem size.

In the computational complexity theory [27], [28], there are two important classes of optimization

problems, P and NP. The class P contains optimization problems which are solvable (or decidable) by

an algorithm whose running time grows at most as a polynomial function of the input size. The class

NP, which stands for Nondeterministic Polynomial time, consists of decision version of optimization

problems whose “true” instances can be verified in polynomial time, assuming the availability of a feasible

solution that meets the threshold requirement. More formally, we say a nondeterministic algorithm solves

a decision version of an optimization problem if we can verify each “true” instance of the problem using

a sequence of nondeterministic steps (i.e., involving random guesses). If the number of nondeterministic

steps is polynomial, then the algorithm is said to have a nondeterministic polynomial running time. For

example, for any n × n symmetric matrix Q with integer entries and an integer threshold value L,

consider the problem of deciding if there exists a binary vector x ∈ {−1, 1}n such that xTQx ≤ L.

A nondeterministic algorithm to solve this problem is to guess a binary vector x and then check if

xTQx ≤ L indeed holds. Such a binary vector x exists for all “true” instances of the problem, and

the verification process requires polynomially many steps although some steps may involve a random

guess (of a component of x). In this case, the problem is solvable in nondeterministic polynomial time.
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The class NP contains precisely those decision version of optimization problems that are solvable in

nondeterministic polynomial time. Clearly, P is contained in NP. It is widely conjectured that P 6= NP,

or equivalently, there are problems in NP which are not solvable in (deterministic) polynomial time.

NP-complete problems are the most difficult problems in NP, in the sense that if any one of them is

in P, so is every other problem in NP. There are many well known NP-complete problems such as the

traveling salesman problem and the 3-colorability problem. The latter problem is to decide if the nodes

of a given graph can be colored in three colors so that each adjacent pair of nodes are colored differently.

The 3-colorability problem is clearly in NP since we can easily check if a guessed coloring scheme meets

the requirement. There is no known polynomial time algorithm to solve the 3-colorability problem. In

fact, if this problem is solvable in polynomial time (i.e., in P), then every problem in NP is solvable in

polynomial time, or equivalently P = NP. A problem P is said to be NP-hard if it is at least as hard as

those NP-complete problems, which means that the polynomial time solvability of P would imply every

NP-complete problem is in P. A NP-hard problem may not be in NP. For example, the binary quadratic

minimization problem minx∈{−1,1}n xTQx is NP-hard, since it is not known to be in NP, and is at least

as hard as the NP-complete problem of deciding if there exists a binary vector x such that xTQx ≤ L,

where the threshold value L is given.

To prove a problem P is NP-complete, we need to show two things. First, we verify the problem is in

NP. This step is usually easy. Second, we need to show P is at least as difficult as a known NP-complete

problem. This can be accomplished by a standard technique called polynomial time transformation. In a

polynomial time transformation, we pick a known NP-complete problem and show that it is equivalent

to a special case of P . More precisely, we take an arbitrary instance of a known NP-complete problem,

construct a special instance (with polynomial size) of P , and then establish the equivalence of the two

instances. To show a problem is NP-hard, we simply ignore the first step, as there is no need to show

P is in NP. If a known NP-complete problem is polynomially transformed to a special case of problem

P , then a polynomial time algorithm for P would also solve the NP-complete problem, which is not

possible unless P = NP.

November 5, 2010 DRAFT



8

B. Maximization of the Weighted Sum-Rate Utility

Consider the system utility H1 =
1
K

K∑

k=1

wkrk. In the single antenna case (L = 1), the original system

optimization problem (3) becomes

max
1
K

K∑

k=1

wkrk

s.t. rk = log

(
1 +

xk

γk +
∑

j 6=k αjkxj

)
,

0 ≤ xk ≤ Pk, 1 ≤ k ≤ K,

(5)

where xk = ‖vk‖2, αjk = ‖hjk‖2/‖hkk‖2 and γk = σ2
k/‖hkk‖2. Problem (5) is known to be NP-hard

[1] even when the weights wk are all equal, and the proof is based on a polynomial time transformation

from the maximum independent set problem [27] (which is known to be NP-complete). Thus, the general

case of L ≥ 1 is also NP-hard. However, some subclasses of problem (5) can still be polynomial time

solvable. For instances, distributed polynomial time algorithms have been proposed in [25], [29]–[32] to

solve the sum-rate maximization problem for various special channels.

C. Maximization of the Harmonic Mean Utility

We now study the complexity status of problem (3) defined by the harmonic mean utility.

Theorem 3.1 (Harmonic Mean Utility): For the harmonic mean utility H3 = K/

(
K∑

k=1

r−1
k

)
, the

optimal coordinated downlink beamforming problem can be transformed into a convex optimization

problem when L = 1, but is NP-hard when L ≥ 2.

When there is only a single transmit antenna (L = 1), reference [1] shows that the harmonic mean utility

maximization can be transformed into an equivalent convex problem. We thus focus on the case L ≥ 2.

Notice that the harmonic mean utility maximization problem is a continuous optimization problem. To

show its NP-hardness, we need to transform a known NP-complete discrete problem to it. To facilitate this

transformation, it is necessary to induce certain discrete structure to its solutions. This is accomplished

by using the concavity of the harmonic mean utility with respect to each beamforming vector vk. In

particular, Lemma 3.2 shows that we can constrain the optimal beamforming vectors to be taken from

two orthogonal vectors ha or hb.

The NP-hardness proof of Theorem 3.1 is based on a transformation from a variant of the 3-SAT

[28] problem. To describe this variant, we need to define the UNANIMITY property and the NAE
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(stands for “not-all-equal”) property of a disjunctive clause1.

Definition 3.1: For a given truth assignment to a set of Boolean variables, a disjunctive clause is said

to be UNANIMOUS if all literals in the clause have the same value (whether it is the True or the False

value). Otherwise it is said to be satisfied in the NAE (Not-All-Equal) sense.

Definition 3.2: The MAX-UNANIMITY problem is described as follows: given a positive integer M

and m disjunctive clauses defined over n Boolean variables, we ask whether there exists a truth assignment

such that the number of unanimous disjunctive clauses is at least M . When the number of literals in each

clause is two, we denote the corresponding problem by MAX-2UNANIMITY. When each clause contains

three literals, the problem of determining whether there exists a truth assignment under which all clauses

are satisfied in the NAE sense is called NAE-SAT.

The NAE-SAT problem is known to be NP-complete [28]. The next lemma says that the MAX-

2UNANIMITY problem is also NP-complete (the proof is provided in Appendix A).

Lemma 3.1: MAX-2UNANIMITY is NP-complete.

We are now ready to prove Theorem 3.1.

Proof: Let the utility in problem (3) be H3. Consider an instance of MAX-2UNANIMITY with

clauses c1, c2, ..., cm defined over Boolean variables x1, x2, ..., xn and an integer M . Let ha = (1, 0)T , hb =

(0, 1)T and h = (
√

N, 0)T , where N is a large positive number (to be specified later). We write each

clause cj = αj ∨ βj , with αj , βj taken from {x1, x2, ..., xn, x̄1, x̄2, ..., x̄n}. Let us define two mappings

π, τ : {1, 2, ..., m} 7→ {±1,±2, ...,±n}

such that

π(j) =





i, if αj = xi,

−i, if αj = x̄i,
and τ(j) =





i, if βj = xi,

−i, if βj = x̄i.

For instance, if c4 = x3 ∨ x̄5, then we have α4 = x3, β4 = x̄5, with π(4) = 3 and τ(4) = −5. For

i = ±1,±2, ...,±n, we define

hi =





ha, if i > 0,

hb, if i < 0.

Given any instance of MAX-2UNANIMITY, we construct the following (6) as an instance of (3) (the

inverse of harmonic mean utility minimization is equivalent to harmonic mean utility maximization) with

a total of K = 4n+2m users. Herein, each Boolean variable xi corresponds to four users, including user

1Recall that for a given set of Boolean variables, a literal is defined as either a Boolean variable or its negation, while a

disjunctive clause refers to a logical expression consisting of the logical “OR” of literals.
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4i (called “variable user”) and user 4i− 1, 4i− 2 and 4i− 3 (called “auxiliary variable users”); while

each clause cj corresponds to a pair of users, i.e., user 4n + 2j and 4n + 2j − 1 (called “clause users”).

In (6), each (variable, auxiliary variable or clause) user k is associated with a transmitter beamforming

vector vk, k = 1, 2, ..., 4n + 2m.

min
n∑

i=1

(
1
r4i

+
1

r4i−1
+

1
r4i−2

+
1

r4i−3

)
+

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. r4i = log
(
1 + |(

√
0.9,

√
0.9)v4i|2

)
, r4i−1 = log

(
1 +

|(1, 0)v4i−1|2
|(1, 1)v4i|2

)
, 1 ≤ i ≤ n,

r4i−2 = log
(

1 +
|(10, 0)v4i−2|2
|(1, 0)v4i|2

)
, r4i−3 = log

(
1 +

|(10, 0)v4i−3|2
|(0, 1)v4i|2

)
, 1 ≤ i ≤ n,

r4n+2j = log


1 +

|h†v4n+2j |2
1 + |h†π(j)v4|π(j)||2 + |h†τ(j)v4|τ(j)||2


, 1 ≤ j ≤ m,

r4n+2j−1 = log


1 +

|h†v4n+2j−1|2
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2


, 1 ≤ j ≤ m,

‖vk‖2 ≤ 1, 1 ≤ k ≤ 4n + 2m.

(6)

The n “variable users” 4i, i = 1, 2, ..., n, in (6) communicate interference free. Their channel vectors are

(
√

0.9,
√

0.9)T and their noise power are 1. The 3n “auxiliary variable users” 4i− 1, 4i− 2, 4i− 3, i =

1, 2, ..., n, do suffer from crosstalk interference from “variable user” 4i. That is, the interference chan-

nel vectors from “variable user” 4i are (1, 1)T , (1, 0)T and (0, 1)T ; the direct channel vectors are

(1, 0)T , (10, 0)T and (10, 0)T ; the self noise power are zero. For the “clause users” 4n + 2j and 4n + 2j − 1, j =

1, 2, ..., m: their direct channel vectors are h; their noise powers are 1; their interference channel vectors

are hπ(j),hτ(j) and h−π(j),h−τ(j), respectively. Take the clause c1 = x2 ∨ x̄3 as an illustrative example

and the corresponding “clause users” are 4n + 2 and 4n + 1. Since π(1) = 2 and τ(1) = −3, the

two “clause users” experience interferences from “variable users” 4|π(1)| = 8 and 4|τ(1)| = 12. The

interferences are |h†av8|2 + |h†bv12|2 and |h†bv8|2 + |h†av12|2, respectively.

The correspondence between MAX-2UNANIMITY problem and problem (6) is listed as Table I. Notice

that r4n+2j can be obtained from clause cj according to Table I and r4n+2j−1 can be obtained from r4n+2j

by swapping ha with hb.

We first fix some easy variables of (6) to simplify the problem. Since each beamforming vector

v4n+2j , v4n+2j−1, j = 1, 2, ..., m, and v4i−l, i = 1, 2, ..., n, l = 1, 2, 3, appears exactly once, it follows

by optimality that they must match the corresponding channel vectors. That is, v∗4n+2j = v∗4n+2j−1 =

v∗4i−1 = v∗4i−2 = v∗4i−3 = ha. It remains to determine the optimal beamforming vectors v∗4i, i =

1, 2, ..., n. For this purpose, we need the following key lemma whose proof is relegated to Appendix B.
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TABLE I

VARIABLE CORRESPONDENCE

MAX-2UNANIMITY Problem (6)

variable xi beamforming vector v4i

clause cj rates r4n+2j and r4n+2j−1

literal xi interference |h†av4i|2

literal x̄i interference |h†bv4i|2

Lemma 3.2: When N ≥ 2(e200m − 1), the optimal beamforming vectors {v∗4i} of (6) must be either

ha or hb.

From Lemma 3.2, the first sum in the objective function of (6) equals nC regardless of v∗4i = ha or

hb, where

C , 1
log 1.9

+
1

log 101
+

1
log 2

=
1
r4i

+
1

r4i−1
+

1
r4i−2

+
1

r4i−3

is a constant. Thus, we only need to consider the second sum of (6). Notice that the value of each term

in the second sum of (6) only depends on whether clause cj is unanimous, i.e.,

1
r4n+2j

+
1

r4n+2j−1
=





1
log (1 + N/3)

+
1

log (1 + N/1)
, if cj is unanimous,

1
log (1 + N/2)

+
1

log (1 + N/2)
, if cj is not.

Since
1

log (1 + N/3)
+

1
log (1 + N)

<
2

log (1 + N/2)

from Claim 1 in Appendix B, it follows that the second sum of (6) will be smaller if more clauses

are satisfied unanimously. Therefore, the minimum of (6) is only related to the maximum number of

unanimous clauses of the given MAX-2UNANIMITY instance. Specifically, the minimum of (6) is no

more than

nC +
M

log (1 + N/3)
+

M

log (1 + N)
+

2(m−M)
log (1 + N/2)

(7)

if and only if there exists a truth assignment such that at least M clauses are made unanimous for the

given MAX-2UNANIMITY instance. Thus, we have transformed MAX-2UNANIMITY problem to the

problem of checking if problem (6) will have an optimal value below the above threshold (7).

Finally, given any instance of MAX-2UNANIMITY, we can construct problem (6) in polynomial time.

Since MAX-2UNANIMITY is NP-complete (Lemma 3.1), it follows that problem (3) with harmonic

mean utility is NP-hard.
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A few remarks are in order. First, it follows from the proof of Theorem 3.1 that even if the optimal

transmit power levels are known (i.e., ‖vk‖2 ≤ Pk is replaced with ‖vk‖2 = Pk), the problem of

finding the optimal beamforming directions of harmonic mean rate maximization problem is still NP-

hard. Second, we have set the noise powers of users 4i − 1, 4i − 2, 4i − 3, i = 1, 2, ..., n, to zero in

(6). These settings simplify the proof and do not reduce any generality. We could have used small noise

power values in the proof (even though some extra argument is needed), since there is a positive gap

between the global optimal value and the local optimal values of (6). Finally, our proof actually implies

that there is a positive probability (measure) that a randomly generated MISO coordinated beamforming

problem under the harmonic mean utility is NP-hard. In particular, by continuity, all slightly perturbed

versions of the constructed instance (6) (i.e., channel vectors, noise/transmit powers are slightly changed)

will be equivalent to MAX-2UNANIMITY problem. This is because there is a positive (and constant)

jump in the global optimal value of the constructed example when the optimal value of the corresponding

MAX-2UNANIMITY instance increases by one. When channel conditions change slightly, this one-to-

one correspondence between the optimal values and the property of the discrete jump in the optimal

value of the constructed MISO problem remains valid.

D. Maximization of the Proportional Fairness Utility

Like the harmonic mean utility, we have the following hardness result.

Theorem 3.2 (Proportional Fairness Utility): For the proportional fairness utility H2 =

(
K∏

k=1

rk

)1/K

,

the optimal coordinated downlink beamforming problem can be transformed into a convex optimization

problem when L = 1, but is NP-hard when L ≥ 2.

Proof: The first part of Theorem 3.2 is proved in [1]. For the second part, the argument is similar

to that of Theorem 3.1. We only give a proof outline here.

First, we have the following lemma whose proof is provided in Appendix C.

Lemma 3.3: The function f(x) = log log
(

1 +
1

σ2 + x

)
is strictly convex in x ≥ 0 for any σ.
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Second, given any MAX-2UNANIMITY instance, an instance (8) of problem (3) with utility log H2

(equivalent to proportional fairness utility maximization) and 3n + 2m users is constructed as follows:

max
n∑

i=1

(log r3i + log r3i−1 + log r3i−2) +
m∑

j=1

(log r3n+2j + log r3n+2j−1)

s.t. r3i = log
(
1 + |(

√
0.1,

√
0.1)v3i|2

)
, r3i−1 = log

(
1 +

|(1, 0)v3i−1|2
|(1, 0)v3i|2

)
, 1 ≤ i ≤ n,

r3i−2 = log
(

1 +
|(1, 0)v3i−2|2
|(0, 1)v3i|2

)
, 1 ≤ i ≤ n,

r3n+2j = log


1 +

|h†v3n+2j |2
1 + |h†π(j)v3|π(j)||2 + |h†τ(j)v3|τ(j)||2


, 1 ≤ j ≤ m,

r3n+2j−1 = log


1 +

|h†v3n+2j−1|2
1 + |h†−π(j)v3|π(j)||2 + |h†−τ(j)v3|τ(j)||2


, 1 ≤ j ≤ m,

‖vk‖2 ≤ 1, 1 ≤ k ≤ 3n + 2m.

(8)

Notice that each solution to (8) must have v∗3i−1 = v∗3i−2 = ha, i = 1, 2, ..., n, and v∗3n+2j = v∗3n+2j−1 =

ha, j = 1, 2, ..., m. Moreover, we consider the following parametric optimization problem (similar to (18)

in the harmonic mean case):

max log r3 + log r2 + log r1

s.t. r3 = log
(
1 + |(

√
0.1,

√
0.1)v3|2

)
,

r2 = log
(
1 + 1/(σ2 + |(1, 0)v3|2)

)
,

r1 = log
(
1 + 1/(σ2 + |(0, 1)v3|2)

)
,

‖v3‖ = t,

(9)

where σ > 0 is a constant and t is the parameter. The global maxima of (9) should be (t, 0)T or (0, t)T

when σ is small. Furthermore, the optimum value of (9) is an increasing function with respect to t ∈ [0, 1].

Using an argument similar to that of the harmonic mean case for (6), each globally optimal beamforming

solution v∗3i of (8) should be either ha or hb when N ≥ 3(e6m − 1). When restricted to solutions of the

form v∗3i = ha or hb, the maximum of (8) is only linearly related to the maximum number of unanimous

clauses of the given MAX-2UNANIMITY instance. Thus, maximizing the number of unanimous clauses

is the same as solving (8). According to Lemma 3.1, it follows that the optimal coordinated downlink

beamforming problem with utility H2 is also NP-hard.
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E. Maximization of the Min-Rate Utility

Let the system utility function in (3) be given by H = H4. In this case, the problem can be solved in

polynomial time for arbitrary L and K [1], [2]. Specifically, letting

r = min
1≤k≤K

{rk},

the min-rate utility maximization problem becomes

max r

s.t. r ≤ log

(
1 +

|h†kkvk|2
σ2

k +
∑

j 6=k |h†jkvj |2

)
,

‖vk‖2 ≤ Pk, 1 ≤ k ≤ K.

(10)

Given a r > 0, we can efficiently check if there exists vk, k = 1, 2, ..., K, such that the constraints

in (10) are satisfied. This feasibility problem is a second order cone programming, which can be solved

efficiently using interior-point methods. The following theorem is a generalization of the result of [2],

which deals with the single-cell case.

Theorem 3.3 (Min-Rate Utility): For the min-rate utility, the optimal coordinated downlink beamform-

ing problem can be solved in polynomial time with arbitrary K and L under the (very wild) assumption

that mink

{
Pk‖hkk‖2/σ2

k

} ≤ R.

Proof: We propose the following polynomial time algorithm for (10) based on the bisection technique.

A Polynomial Time Algorithm for Min-Rate

Utility Maximization

Step 1. Initialization: Choose r` and ru such that the optimal ropt lies in [r`, ru]

and a tolerance ε.

Step 2. If ru − r` ≤ ε, stop, else go to Step 3.

Step 3. Let rmid = (r` + ru)/2 and solve an SOCP problem to check the

feasibility problem of (10) with r = rmid. If feasible, set r` = rmid,

else set ru = rmid and go to Step 2.

According to standard analysis of path-following interior-point methods, Step 3 can be finished in

O(K3.5L3.5) time. As for the initial choices of r` and ru, we can let v̄k be the space matched beamformer,

i.e., v̄k = hkk

√
Pk/‖hkk‖ and

r` = min
k

log

(
1 +

|h†kkv̄k|2
σ2

k +
∑

j 6=k |h†jkv̄j |2

)
,
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ru = min
k

log

(
1 +

|h†kkv̄k|2
σ2

k

)
.

It takes log2 ((ru − r`) /ε) iterations to reach tolerance ε. Thus, a total of O(K3.5L3.5 log2 ((ru − r`) /ε))

arithmetic operations are needed in the worst case. Since

ru − r` ≤ min
k

log(1 + Pk‖hkk‖2/σ2
k) ≤ R,

we have

K3.5L3.5 log2 ((ru − r`) /ε) ≤ K3.5L3.5N(R, ε),

where N(R, ε) is the smallest integer which is greater than log2 (R/ε) . Therefore, the above algorithm

has a polynomial time worst case complexity.

The algorithm described above can easily be extended to the weighted min-rate maximization problems.

In [30], [31], the weighted min-rate maximization is related to the weighted sum MSE minimization

and the weighted sum-rate maximization via the Friedland-Karlin spectral radius minimax theorem in

nonnegative matrix theory. A brief sketch of the Friedland-Karlin inequalities can be found in [33].

Table II summarizes the complexity status of the optimal coordinated downlink beamforming problem

(3) for different choices of utilities.

TABLE II

COMPLEXITY STATUS OF THE OPTIMAL COORDINATED DOWNLINK BEAMFORMING PROBLEM IN THE MISO INTERFERENCE

CHANNEL

PPPPPPPPPPClass

Utility
Weighted Sum-Rate Proportional Fairness Harmonic Mean Min-Rate

L = 1, any K NP-hard [1] Convex [1] Convex [1] Poly. Time Solvable [1], [2]

L ≥ 2, any K NP-hard NP-hard NP-hard Poly. Time Solvable [1], [2]

IV. A CYCLIC COORDINATE DESCENT ALGORITHM

In this section, we consider how to solve the coordinated beamforming problem (3) with a general

utility ρ(v1,v2, ...,vK), i.e., it can be the inverse of the harmonic mean utility function
∑K

k=1 1/rk. In

particular, problem (3) is changed into

min ρ(v1,v2, ...,vK)

s.t. ‖vk‖2 ≤ Pk, 1 ≤ k ≤ K.

(11)
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Since this problem is NP-hard in general (proved in Section III), we are led to develop efficient algorithms

to find a high quality approximate solution or a stationary point for it. Due to variable separability in the

constraints of (11) and our desire for distributed implementations, we propose to solve (11) by cyclicly

adjusting the beamforming vector vk while assuming the beamforming vectors {vj : j 6= k} are fixed.

In other words, we solve a sequence of per-base station problems

min
vk

ρ(v1,v2, ...,vK)

s.t. ‖vk‖2 ≤ Pk.

(12)

A. An Inexact Cyclic Coordinate Descent Algorithm

The cyclic coordinate descent algorithm is also known as the nonlinear Gauss-Seidel iteration [34].

There are several studies of this type of algorithms [34]–[38] and its applications in engineering [39]. How-

ever, most of these studies require either the convexity of objective function or exact solution of subprob-

lem (12), which not only is costly but also may result in algorithm divergence [35]. Below we consider

a general differentiable optimization problem with separable constraints

min f(x1,x2, ...,xK)

s.t. xk ∈ Xk, 1 ≤ k ≤ K,
(13)

where the feasible set X :=
∏K

k=1 Xk is separable, bounded and closed. We propose an easily imple-

mentable cyclic coordinate descent algorithm which simply requires a sufficient decrease in the objective

of (12) at each iteration. The algorithm can be applied to solve the utility maximization problem (3) with

H = H1, H2 and H3 and have the same convergence properties because they have smooth objective

functions and a separable feasible region (the feasible region is in the Cartesian product form). But the

same can not be said about H4 since it is non-differentiable.

Interestingly, the pricing algorithm introduced in [17] can be viewed as a partially linearized version

of our cyclic coordinate descent algorithm. Specifically, under the power constraint (‖vk‖2 ≤ Pk): the

proposed algorithm tries to allocate resources of the k-th transmitter by maximizing the summation of all

users’ utility functions; while the pricing algorithm lets transmitter k maximize its own utility function

plus the summation of the first order approximation of all other users’ utility functions at the current point

Ikj = |h†kjvk|2, where Ikj denotes the received interference at the j-th receiver from the k-th transmitter.

The next result shows that the above inexact cyclic coordinate descent algorithm converges to a KKT

point of (13). The proof of this result is relegated to Appendix D.

Theorem 4.1: Suppose f(x) is twice continuously differentiable and bounded below, and the feasible

set X is convex, separable and compact. Then every accumulation point of the sequence {xi} generated
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by the inexact cyclic coordinate descent algorithm is a stationary point of (13).

An Inexact Cyclic Coordinate Descent Algorithm

Step 1. Initialization: choose x1 = [x1
1,x

1
2, ...,x

1
K ] and a tolerance ε > 0.

Step 2. Iteration i ≥ 1 : Let zi+1
0 = xi.

For k = 1, 2, ..., K,

- Compute the gradient projection direction for the component xk

according to

di+1
k = PXk

[xi
k −∇xk

f(zi+1
k−1)]− xi

k, (14)

where PXk
[·] denotes the orthogonal projection to Xk and zi+1

k is

defined as

zi+1
k =

(
xi+1

1 , ...,xi+1
k ,xi

k+1, ...,x
i
K

)
. (15)

- Determine a stepsize αi+1
k using the backtracking line search [40].

- Update xi+1
k = xi

k + αi+1
k di+1

k .

End (For)

Step 3. Termination: If ‖xi+1 − xi‖ ≤ ε, then stop; else set i = i + 1 and go

to Step 2.

The separability of the constraints is necessary for the algorithm’s convergence. The following example

(taken from [37]) shows that, without the separability, the algorithm can get stuck at an uninteresting

point:
min x2

1 + x2
2

s.t. x1 + x2 ≥ 2.

This strongly convex function has a unique global solution at x∗1 = x∗2 = 1. However, if the initial point

is (1.5, 0.5), the cyclic coordinate descent algorithm will be stuck.

Specializing the inexact cyclic coordinate descent algorithm to the coordinated beamforming problem

(11), we need to perform a projected gradient descent iteration for the subproblem (12). In this case, we

have a ball constraint Vk = {v | ‖v‖2 ≤ Pk} and the corresponding projection is straightforward

PVk
(v) =





v, if ‖v‖2 ≤ Pk,√
Pkv
‖v‖ , if ‖v‖2 > Pk.

(16)

The proposed optimization procedure can be implemented in a distributed fashion to solve the MISO

downlink beamforming problem. At the initial step, each base station needs to know the system utility
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function and the local CSI for all channels originating from that transmitter (either through feedback or

reverse-link estimation [41]). The only information to be exchanged are the numerator and denominator

of SINR terms at K receivers. In subsequent iterations, a base station updates its beamforming vector by

solving (12) inexactly using a gradient projection algorithm. Take minus sum-rate utility minimization

as an example. Denote the received desired signal power and received interference-plus-noise power at

receiver k by P̂k and Îk. Then we have SINRk = P̂k/Îk and the utility function in (12) becomes

ρ(v1,v2, ...,vK) = −
K∑

k=1

log(1 + SINRk).

Since transmitter k knows P̂j , Îj (j = 1, 2, ..., K) , its local CSI hkj (j = 1, 2, ..., K) and the utility

function ρ, we have ∇vk
ρ(v1,v2, ...,vK) = −∑K

j=1 gk(j), where

gk(j) =





2h†kkvkhkk

(1 + SINRk) Îk

, if j = k,

−2P̂jh
†
kjvkhkj

(1 + SINRj) Î2
j

, if j 6= k.

Combining (14) and (16), the search direction dk is obtained (as transmitter k knows its own power

budget Pk). Furthermore, the step αk can be determined using the backtracking search technique because

we can compute the utility function and its gradient at point vk + αdk for any trial step α. After that,

all receivers measure individual SINR terms and send the SINR information (both the numerator and

denominator of SINR) to the next base station. The inexact cyclic coordinate descent algorithm enables

each transmitter to update its beamformer with only limited information exchange.

As a variant, we can also use the so-called Barzilai-Borwein (BB) [42] projection step for the subprob-

lem (12) to replace the standard gradient projection step. In particular, at i-th iteration, the BB gradient

projection direction di
BB is given by




di
BB = PVk

(
vi

k − αi
BB∇vk

ρ(vi)
)− vi

k,

αi
BB =

‖si−1‖2

(si−1)Tyi−1
,

where si−1 = vi
k−vi−1

k , yi−1 = ∇vk
ρ(vi)−∇vk

ρ(vi−1). The BB (projection) method is known to have

better numerical performance than the standard gradient (projection) method. The R-linear convergence

of BB method has been established in [43] for strongly convex quadratic functions.

V. NUMERICAL SIMULATIONS

To evaluate the effectiveness of the proposed inexact cyclic coordinate descent algorithm, we have

conducted numerical simulations for a 7-cell network with one user per cell as shown in Fig. 1. Each
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Fig. 1. A wireless network with seven base stations and a single user per cell.

base station is equipped with L antennas. Similar to [5], standard WiMax parameters are used in all

the simulations; see Table III, where d is the distance in kilometers. The location of each remote user

is chosen randomly within its cell but at least 0.5km away from the corresponding base station. The

proposed algorithm is initialized to the space matched beamformer in all simulations.

TABLE III

STANDARD WIMAX PARAMETERS

Model or Parameters Values

noise power spectral density −162 dBm/Hz

path loss model 128.1 + 37.6 log10(d)

log-normal shadowing 8 dB

distance between neighboring base stations 2.8km

antenna gain 15 dBi

Figure 2 plots the iteration process of BB projection method for problem (3) with harmonic mean

utility. It can be seen that most of improvement is achieved in the first 1-2 iterations, making the method

attractive for practical implementations.

For a two-user MISO channel, a parametrization of the achievable rate region boundary was given in [8],

[24]. We can use this parametrization to compute the global optimal beamformer of the coordinated MISO

November 5, 2010 DRAFT



20

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

Iteration

R
at

e 
[n

at
s/

se
c/

H
z]

 

 
Hamonic Mean Utility

Fig. 2. A typical iteration process of the inexact cyclic coordinate descent algorithm with K = 7, L = 4 and P = 30 dBm.
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Fig. 3. Performance comparison of the proposed algorithm and the parametrization method with K = 2, P = 30 dBm.

downlink beamforming problem by searching along the rate region boundary. In Fig. 3, the performance

of the proposed algorithm is compared against the global optimum for 50 randomly generated two-user

MISO channels. It can be seen that the proposed algorithm either achieves, or nearly achieves, the global

optimality.

The individual rate distribution is shown in Fig. 4 over 500 channel realizations, where K = 7, L = 4
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Fig. 4. Individual rate distribution with K = 7, L = 4 and P = 30 dBm.
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Fig. 5. Performance comparison of coordinated beamformers and space matched beamformers with K = 7, P = 30 dBm.

and P = 30dBm. It plots the percentage of users at or above the given rate level with the four utilities.

We can observe from Fig. 4 that sum-rate maximization achieves the over efficiency of the network. Its

basic idea is serving only users with good channel states, so about 10% of users are switched off. Min-

rate maximization balances transmit rates of all users at the same level and achieves max-min fairness

among the users. But the overall system performance is severely degraded when there are users with bad
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channel attenuations. Proportional fairness and harmonic mean utilities indeed tradeoff user fairness and

system performance, i.e., they improve system performance remarkably (compared to min-rate utility)

while keep serving all users in the network (compared to sum-rate utility).

Figure 5 shows the performance of four different utility functions with coordinated beamformers

achieved by the proposed algorithm and a fixed transmit power P = 30 dBm versus different number of

transmit antennas. Each point in Fig. 5 is obtained by averaging over 500 independent channel realizations.

Space matched beamformers are used as the benchmark. It can be seen that the transmit rates improve

significantly over the benchmark solution. When the number of users (K = 7) and the transmit power

(P = 30 dBm) are fixed, an increase in the system utility is observed with the number of transmit

antennas.

VI. CONCLUSION

Coordinated transmit beamforming is a promising approach for interference mitigation in the MISO

interference channel. A major design challenge is to find, for a given channel state, a globally optimal

beamforming strategy under an appropriate utility criterion. In the single carrier case with a single

antenna per transmitter, maximizing the (weighted) sum-rate is known to be NP-hard. However, the same

problem is polynomial time solvable when the proportional fairness, harmonic mean or min-rate utility

is used. It turns out the situation with multiple transmit antennas is rather different. For instance, when

each transmitter is equipped with two antennas, the corresponding joint beamforming design problem

becomes NP-hard under either the proportional fairness or the harmonic mean criterion. These complexity

results suggest that we should abandon effort to find globally optimal beamformers for a general MISO

interference channel unless the min-rate utility is used. In the latter case the problem remains polynomial

time solvable.

Motivated by these complexity results, we propose a simple distributed inexact cyclic coordinate descent

algorithm to find a (locally optimal) beamforming strategy. Our algorithm exploits the separable structure

of the power constraints, and is provably globally convergent to a KKT solution. The algorithm requires

only local CSI and an exchange of SINR information at each iteration. Numerical experiments with

WiMax system parameters show that the proposed algorithm is both effective and efficient, providing

significant rate gain over the space matched beamforming strategy.
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APPENDIX A

PROOF OF LEMMA 3.1

We construct a polynomial time transformation from NAE-SAT problem. It can be checked that MAX-

2UNANIMITY problem is in NP. Given a disjunctive clause with three literals, c = x ∨ y ∨ z, let us

construct the following six clauses, each involving only two literals:

R(c) : x ∨ ȳ, x ∨ z̄, y ∨ x̄, y ∨ z̄, z ∨ x̄, z ∨ ȳ. (17)

It can be checked that R(c) has the following properties:

1) The number of unanimous clauses (i.e., all literals having the same value) in R(c) is at most four.

2) The clause c is satisfied in the NAE sense if and only if the number of unanimous clauses in R(c)

is four.

Now given any instance φ of NAE-SAT, we construct a corresponding instance R(φ) of MAX-2UNANIMITY

as follows: for each clause c = α ∨ β ∨ γ of φ, we add to R(φ) the six clauses in (17), with x, y, z

replaced with the literals α, β, γ, respectively. In this way, if φ has m clauses, then R(φ) will have 6m

clauses. Let M = 4m. Then properties 1 and 2 imply that all clauses in φ are simultaneously satisfied in

the NAE sense if and only if at least M = 4m clauses in R(φ) can be made unanimous. In particular,

suppose that 4m clauses in R(φ) are unanimous under a given truth assignment. Since, by property 1,

each group R(c) of six clauses can have at most four unanimous clauses, it follows that exactly four

clauses must be unanimous in each group. By property 2, this further implies that each clause in φ is

satisfied in the NAE sense. Conversely, any truth assignment that satisfies a clause c in the NAE sense

will give rise to four unanimous clauses. Thus, if all m clauses in φ are satisfied in the NAE sense, then

there will be 4m unanimous clauses in R(φ). Finally, this transformation is in polynomial time.

APPENDIX B

PROOF OF LEMMA 3.2

The proof consists of establishing three claims.

Claim 1: The function log−1
(
1 +

(
σ2 + x

)−1
)

is strictly concave in x ≥ 0 for any σ 6= 0. Furthermore,

ha and hb are the only global minima for the optimization problem

min log−1

(
1 +

N

σ2 + x

)
+ log−1

(
1 +

N

σ2 + y

)

s.t. x + y = 1, x ≥ 0, y ≥ 0,

where N > 0.
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To establish Claim 1, we first show strict concavity of r(x) = log−1
(
1 +

(
σ2 + x

)−1
)

. Since

r′(x) =
r2(x)

(1 + σ2 + x) (σ2 + x)
,

r′′(x) =
2r2(x)

(
r(x)− (

1/2 + σ2 + x
))

(1 + σ2 + x)2 (σ2 + x)2
,

it follows that r′′(x) < 0 is equivalent to

g(x) = log
(
1 +

(
σ2 + x

)−1
)
− (

1/2 + σ2 + x
)−1

> 0.

Let z = 1/(σ2 + x) and consider h(z) = log(1 + z)− 2z/(2 + z). Due to

h(0) = 0 and h′(z) =
z2

(1 + z)(z + 2)2
> 0, ∀ z > 0,

it follows that g(x) = h(z) > 0 for all x ≥ 0, implying strict concavity of r(x) over the interval

(0,∞). Since affine transformation does not change strict concavity of a function, this implies that

log−1
(
1 + N/

(
σ2 + x

))
is also strictly concave for x ≥ 0. Finally, since the minimum of a strictly

concave function over a polytope is always attained at a vertex [44], we have established the claim.

To establish Lemma 3.2, let us consider the following parametric optimization problem in R2

min
1
r4

+
1
r3

+
1
r2

+
1
r1

s.t. r4 = log
(
1 + 0.9|(1, 1)v|2) ,

r3 = log
(
1 + 1/|(1, 1)v|2) ,

r2 = log
(
1 + 100/|(1, 0)v|2) ,

r1 = log
(
1 + 100/|(0, 1)v|2) ,

‖v‖ = t,

(18)

where v = (v1, v2)T and t ≥ 0 is the parameter.

Claim 2: Let f(t) denote the minimum value of (18). The following properties hold:

1) f(t) is a strictly decreasing function in [0, 1],

2) When t ∈ (0.95, 1], the global minima of (18) are (t, 0)T and (0, t)T ,

3) f ′(t) is an increasing function in [0.95, 1].

Let us argue that Claim 2 is true. First, if part 2) is true, then we can check part 3) directly by first

computing f(t) as the objective value of (18) at the solutions (t, 0)T or (0, t)T , and then verifying that

f ′′(t) > 0 for t ∈ [0.95, 1]. We omit the details of computations for space reason. So we only need to

argue parts 1) and 2).
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When t is fixed, the KKT condition for problem (18) can be written as



φ(v1, v2) + ψ(v1) = λv1,

φ(v1, v2) + ψ(v2) = λv2,

v2
1 + v2

2 = t2,

(19)

where φ(x, y) and ψ(x) are given as



φ(x, y) =
−1.8 (x + y)

log2
(
1 + 0.9 (x + y)2

)(
1 + 0.9 (x + y)2

) +
2

log2
(
1 + 1/ (x + y)2

)(
(x + y)2 + 1

)
(x + y)

,

ψ(x) =
200

log2 (1 + 100/x2) (100 + x2) x
,

(20)

and λ is the Lagrangian multiplier associated with the constraint ‖v‖ = t in (18). It can be seen that
√

2/2(t, t)T is always a solution to (19). Moreover, (t, 0)T and (0, t)T are the (only) non-differentiable

points of (18). Suppose (v̄1(t), v̄2(t))T , where v̄1(t) 6= v̄2(t), are other KKT solutions to (19) (if there

are any). Notice that the global minimum f(t) is always attained at a KKT point or a non-differentiable

point of (18). Hence,

f(t) = min
{A,B,C}

{fA(t), fB(t), fC(t)},

where fA(t), fB(t) and fC(t) are the objective value of (18) at
√

2/2(t, t)T , (t, 0)T and (v̄1(t), v̄2(t))T ,

respectively.

Next, we claim that f(t) is a decreasing function in t ∈ [0, 1]. We prove this by examining the

monotonicity of the component functions fA(t), fB(t) and fC(t). By (19), we have

λ =
ψ(v̄1(t))− ψ(v̄2(t))

v̄1(t)− v̄2(t)
< 0,

where the last step follows from the fact that ψ(x) is a decreasing function for x ∈ [0, 1]. Therefore,

we conclude from the standard sensitivity analysis [40] of duality multipliers that fC(t) decreases as

t increases in [0, 1]. For t ∈ [0, 0.75], it can be checked that all of fi(t), i = A,B, C, are decreasing

functions. Thus, f(t) decreases monotonically in [0, 0.75]. For t ∈ (0.75, 0.85), the global minimizer of

(18) is neither
√

2/2(t, t)T nor (t, 0)T (or (0, t)T ) as we always can find a point at which the objective

function is smaller than fA(t) and fB(t). As a result, f(t) = fC(t) decreases in t ∈ (0.75, 0.85). For

t ∈ [0.85, 1], we have known fB(t) ≤ fA(t), so f(t) = min{fB(t), fC(t)}. As both of fB(t) and fC(t)

are decreasing functions in t ∈ [0.85, 1], we know f(t) decreases in [0.85, 1]. This completes the proof

that f(t) is monotonically decreasing in [0, 1].

We next prove part 2) of Claim 2: namely for t ∈ [0.95, 1], the global minima of (18) are (t, 0)T

and (0, t)T . We can use v2 =
√

t2 − v2
1 to transform (18) into an unconstrained univariate optimization
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problem, where −t ≤ v1 ≤ t. The global minimizer (v1, v2)T of (18) should satisfy that v1v2 ≥ 0, else

we can find (v̄1, v̄2)T such that v̄1 + v̄2 = v1 + v2, |v̄1| < |v1| and |v̄2| < |v2|, at which the objective

would be lower. Thus, we only need to consider the case v1v2 ≥ 0. Due to symmetry of (18), we only

consider the case 0 ≤ v1 ≤
√

2t/2. It can be checked that for any t ∈ [0.95, 1], the objective function

of (18) increases as v1 increases in [0,
√

2t/2]. Hence, (0, t)T and (t, 0)T are the global minima for (18)

with t ∈ [0.95, 1].

Claim 3: When N ≥ 2(e200m − 1), the global minima v∗4i of (6) must have unit-norm ‖v∗4i‖ = 1, i =

1, 2, ..., n.

By symmetry, we only need to prove ‖v∗4‖ = 1. Let us consider parametric optimization problem (21)

in v4 with the other variables v4i, i = 2, 3, ..., n, fixed, and t as the parameter.

min
v4

(
1
r4

+
1
r3

+
1
r2

+
1
r1

)
+

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. r4 = log
(
1 + 0.9|(1, 1)v4|2

)
, r3 = log

(
1 + 1/|(1, 1)v4|2

)
,

r2 = log
(
1 + 100/|(1, 0)v4|2

)
, r1 = log

(
1 + 100/|(0, 1)v4|2

)
, ‖v4‖ = t,

r4n+2j = log
(
1 + N/

(
1 + |h†π(j)v4|π(j)||2 + |h†τ(j)v4|τ(j)||2

))
, 1 ≤ j ≤ m,

r4n+2j−1 = log
(
1 + N/

(
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

))
, 1 ≤ j ≤ m.

(21)

Let g(t) be the optimum value of (21) and g1(t), g2(t) denote respectively the values of

1
r1

+
1
r2

+
1
r3

+
1
r4

and
m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

when evaluated at the global minima of (21). By definition, f(t) ≤ g1(t) for all t ∈ [0, 1]. We claim that

f(t) = g1(t) for t ∈ [0.95, 1]. To verify this, we consider optimization problem

min
v4

m∑

j=1

(
1

r4n+2j
+

1
r4n+2j−1

)

s.t. ‖v4‖ = t,

r4n+2j = log
(
1 + N/

(
1 + |h†π(j)v|4π(j)||2 + |h†τ(j)v|4τ(j)||2

))
, 1 ≤ j ≤ m,

r4n+2j−1 = log
(
1 + N/

(
1 + |h†−π(j)v4|π(j)||2 + |h†−τ(j)v4|τ(j)||2

))
, 1 ≤ j ≤ m.

(22)

Define |h†av4|2 = x, then |h†bv4|2 = t2 − x, and the objective function of (22) is only dependent on x,

while its constraint ‖v4‖ = t can be transformed to 0 ≤ x ≤ t2. Using Claim 1, we see that the objective

function of (22) is strictly concave in x. As a result, the globally optimal x can only be attained at the

end points of the constraint interval [0, t2]. In other words, the global minimizer of (22) must be either
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(t, 0)T or (0, t)T . Since the global minima of (18) are also (t, 0)T and (0, t)T when t ∈ [0.95, 1], it

follows that the global minimizer of (21) is either (t, 0)T or (0, t)T , if t ∈ [0.95, 1]. This implies that

f(t) = g1(t) in [0.95, 1].

Next, we prove that if N ≥ 2(e200m − 1), then g(1) < g(t) for t ∈ [0, 1). Due to the choice of N , it

can be checked that

f ′(1) +
2m

log2(1 + N/3)
≤ 0, f(0.95) ≥ f(1) +

2m

log(1 + N/2)
.

Then, we have

1) For any t ∈ [0.95, 1],

g′(t) = g′1(t) + g′2(t) = f ′(t) + g′2(t)

≤ f ′(1) + g′2(t)

< f ′(1) +
2m

log2(1 + N/3)
≤ 0.

The second equality is due to the fact f(t) = g1(t) for t ∈ [0.95, 1]. The first inequality holds since

f ′(t) is an increasing function in [0.95, 1] (cf. part 3) of Claim 2), while the second inequality

follows from

g′2(t) <
2m

log2(1 + N/3)
, for all t ∈ [0.95, 1].

The nonpositiveness of g′(t) over t ∈ [0.95, 1] implies g(t) > g(1), for t ∈ [0.95, 1).

2) For any t ∈ [0, 0.95], we have

g(t) > g1(t) ≥ f(t)

≥ f(0.95) ≥ f(1) +
2m

log(1 + N/2)

≥ g1(1) + g2(1) = g(1),

where the third inequality holds because f(t) is a strictly decreasing function in [0, 1] (cf. part

1) of Claim 2) and the last inequality is due to 2m/log(1 + N/2) ≥ g2(1) and f(t) = g1(t) for

t ∈ [0.95, 1].

Combining the above two steps shows g(t) > g(1) for all t ∈ [0, 1). It follows that the minimum of

g(t) over [0, 1] is attained at t = 1. This establishes Claim 3.

Finally, notice that Claim 3 implies that (6) is equivalent to (21) with t = 1, when N ≥ 2(e200m− 1).

Since the global minimizer of (21) must be either (0, t)T or (t, 0)T for t ∈ [0.95, 1], it follows that the

solutions v∗4i, i = 1, 2, ..., n, to (6) should be either ha or hb when N ≥ 2(e200m − 1).
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APPENDIX C

PROOF OF LEMMA 3.3

Let r(x) = log (1 + 1/(b + x)), then we have f(x) = log r(x), and

r′(x) = −1/((b + 1 + x)(b + x)), f ′(x) = r′(x)/r(x),

f ′′(x) = (g(x)− 1)/
(
(b + 1 + x)2(b + x)2r2(x)

)
,

where g(x) = (2b + 2x + 1)r(x) and b = σ2 ≥ 0. Let y = x + b, then g(x) becomes h(y) =

(2y + 1) log(1 + 1/y). It suffices to prove that h(y) ≥ 1 for all y ≥ 0. Since

h′(y) = 2 log (1 + 1/y)− (2y + 1)/(y(y + 1)),

h′′(y) = 1/
(
y2(y + 1)2

)
> 0,

we know h′(y) is increasing. Since limy→+∞ h′(y) = 0, it follows that h′(y) ≤ 0 and h(y) is a decreasing

function. Notice that limy→+∞ h(y) = 2. Thus, we have h(y) ≥ 2 > 1 for all y ≥ 0. This further implies

that log log (1 + 1/(b + x)) is strictly convex for x ≥ 0.

APPENDIX D

CONVERGENCE OF THE INEXACT CYCLIC COORDINATE DESCENT ALGORITHM

We first need to estimate the step length.

Claim 1: Suppose c1 ∈ (0, 1), ∇h(yi)Tdi < 0 and max
y∈Y

‖∇2h(y)‖ ≤ B, where h(y) is a multi-variable

function associated with y and Y denotes the feasible region. Consider the backtracking line search [40]

whereby αi := γ`, with γ ∈ (0, 1) and ` ≥ 0 being the smallest integer satisfying

h(yi + γ`di) ≤ h(yi) + c1γ
`∇h(yi)Tdi. (23)

Then we have

1 ≥ αi ≥ min
{

1,
2γ(c1 − 1)∇h(yi)Tdi

B‖di‖2

}
, (24)

and

h(yi)− h(yi + αidi)

≥min

{
−c1∇h(yi)T

di,
2γc1(1− c1)

(∇h(yi)Tdi
)2

B‖di‖2

}
.

(25)

Let us argue Claim 1 holds . Suppose that the step αi = 1 is not accepted. In this case, αi will be the

largest step satisfying the sufficient decrease condition (23), implying

h(yi + αiγ
−1di) > h(yi) + c1αiγ

−1∇h(yi)Tdi. (26)
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By Taylor expansion, we have

h(yi + αiγ
−1di) = h(yi) + αiγ

−1∇h(yi)T
di +

α2
i γ
−2

2
diT∇2h(ξ)di

≤ h(yi) + αiγ
−1∇h(yi)T

di +
α2

i γ
−2

2
B‖di‖2,

(27)

where ξ = yi + sαiγ
−1di with certain s ∈ (0, 1). Combining (26) and (27) yields (24). Substituting (24)

into (23), we immediately obtain (25), which establishes Claim 1.

We now proceed with the proof of Theorem 4.1. The basic idea is based on the contradiction principle.

More exactly, if there is no convergence, we can find one descent direction which can provide a sufficient

decrease in the objective function and then obtain a contradiction.

At first, since the iterates {xi} lie in a compact set X , there must exist an accumulation point for

{xi}. Let x̄ denote an accumulation point such that

x̄ = lim
i∈I0,i→∞

xi

for some subsequence indexed by I0. Since the feasible set X is closed, x̄ must also be feasible.

Furthermore, since the projection mapping and the function f are both continuous, it follows that

lim
i∈I0,i→∞

di+1
1 = lim

i∈I0,i→∞
PX1(x

i
1 −∇x1f(zi+1

0 ))− xi
1

= PX1 [x̄1 −∇x1f(x̄)]− x̄1 , d̄1

and

lim
i∈I0,i→∞

f(xi) = f(x̄).

Notice that the function values {f(xi)} are decreasing and bounded below, then f(xi) → f(x̄). Since

f(x) is twice continuously differentiable and the feasible set X is bounded, it follows that

B = max
k=1,2,...,K

max
xk∈Xk

‖∇2
xk

f(x)‖ < ∞.

Because the projection operator is non-expansive and ∇f(x) is continuous in a bounded region, we

obtain from (14) that

‖di+1
k ‖ = ‖PXk

[xi
k −∇xk

f(zi+1
k−1)]− PXk

[xi
k]‖

≤ ‖[xi
k −∇xk

f(zi+1
k−1)]− xi

k‖ = ‖∇xk
f(zi+1

k−1)‖.

Denoting maxx∈X ‖∇f(x)‖ , M, hence we have

‖di+1
k ‖ ≤ ‖∇xk

f(zi+1
k−1)‖ ≤ M < +∞. (28)

The lower and upper bounds on ‖∇xk
f(zi+1

k−1)‖ will be useful in estimating the decrease in the objective

function.
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We proceed by contradiction and suppose x̄ is not a KKT point. Then d̄ = PX [x̄−∇f(x̄)]− x̄ 6= 0

so that δ = ‖d̄‖ > 0. Let

k∗ = min{k | δk = ‖d̄k‖ > 0},

and suppose k∗ > 1 without loss of generality. By definition, we have

lim
i∈I0,i→∞

‖di+1
k ‖ = δk = 0, for k < k∗.

Recall the definition (15) of zi+1
k . Since

‖zi+1
1 − x̄‖ = ‖xi

1 + αi+1
1 di+1

1 − x̄1‖
≤ ‖xi

1 − x̄1‖+ αi+1
1 ‖di+1

1 ‖
≤ ‖xi

1 − x̄1‖+ ‖di+1
1 ‖ −→

i∈I0,i→∞
0,

we have limi∈I0,i→∞ zi+1
1 = x̄. In general, the same argument shows that

lim
i∈I0,i→∞

zi+1
k = x̄, ∀ k < k∗.

Consequently, there holds
lim

i∈I0,i→∞
∇xk∗f(zi+1

k∗−1) = ∇xk∗f(x̄),

lim
i∈I0,i→∞

di+1
k∗ = d̄k∗ .

(29)

Let us use θ̄k∗ to denote the angle between d̄k∗ and ∇xk∗f(x̄). Since ȳk∗ = x̄k∗ −∇xk∗f(x̄) /∈ Xk∗ , it

follows from the property of projection that

(x̄k∗ − PXk∗ [ȳk∗ ])
T (ȳk∗ − PXk∗ [ȳk∗ ]) ≤ 0,

which further implies
‖PXk∗ [ȳk∗ ]− x̄k∗‖2

≤ (x̄k∗ − PXk∗ [ȳk∗ ])T (x̄k∗ − ȳk∗)

= ‖PXk∗ [ȳk∗ ]− x̄k∗‖‖∇xk∗f(x̄)‖ cos θ̄k∗ .

Canceling the factor ‖PXk∗ [ȳk∗ ]− x̄k∗‖ 6= 0 from both sides yields

δk∗ = ‖d̄k∗‖ = ‖PXk∗ [ȳk∗ ]− x̄k∗‖
≤ ‖∇xk∗f(x̄)‖ cos θ̄k∗

≤ M cos θ̄k∗ ,

where the last inequality follows from (28). Thus, we have

cos θ̄k∗ ≥ δk∗

M
. (30)
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Now we can use (28), (29) and (30) to conclude

‖∇xk∗f(zi+1
k∗−1)‖ ≥ ‖di+1

k∗ ‖ ≥
δk∗

2
and cos θi+1

k∗ ≥ δk∗

2M
,

for all i ∈ I0 and i ≥ i0, where i0 is a sufficiently large integer and θi+1
k∗ denotes the angle between

∇xk∗f(zi+1
k∗−1) and di+1

k∗ .

Now we can use (23)-(25) of Claim 1 to obtain a contradiction. In particular, we consider

+∞ >
∑

i

(
f(xi)− f(xi+1)

) ≥
∑

i∈I0

(
f(xi)− f(xi+1)

) ≥
∑

i∈I0

(
f(zi+1

k∗−1)− f(zi+1
k∗ )

)

≥
∑

i∈I0




2γc1(1− c1)
(
∇xk∗f(zi+1

k∗−1)
T
di+1

k∗

)2

B‖di+1
k∗ ‖2




=
∑

i∈I0

(
2γc1(1− c1)

(‖∇xk∗f(zi+1
k∗−1)‖‖di+1

k∗ ‖ cos θi+1
k∗

)2

B‖di+1
k∗ ‖2

)

=
∑

i∈I0

(
2γc1(1− c1)

(‖∇xk∗f(zi+1
k∗−1)‖ cos θi+1

k∗
)2

B

)

≥
∑

i≥i0, i∈I0

(
γc1(1− c1)δ4

k∗

8BM2

)
= +∞,

(31)

which is a contradiction. The fourth inequality is due to Claim 1. Therefore, x̄ is a stationary point.
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