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Abstract—In an interference limited network, joint power and
admission control (JPAC) aims at supporting a maximum number
of links at their specified signal-to-interference-plus-noise ratio
(SINR) targets while using minimum total transmission power.
Various convex approximation deflation approaches have been
developed for the JPAC problem. In this paper, we propose an
effective polynomial time non-convex approximation deflation
approach for solving the problem. The approach is based on the
non-convex approximation of an equivalent
sparse reformulation of the JPAC problem. We show that,
for any instance of the JPAC problem, there exists a
such that it can be exactly solved by solving its approximation
problem with any . We also show that finding the global
solution of the approximation problem is NP-hard. Then, we
propose a potential reduction interior-point algorithm, which
can return an -KKT solution of the NP-hard approximation
problem in polynomial time. The returned solution can be used to
check the simultaneous supportability of all links in the network
and to guide an iterative link removal procedure, resulting in the
polynomial time non-convex approximation deflation approach
for the JPAC problem. Numerical simulations show that the pro-
posed approach outperforms the existing convex approximation
approaches in terms of the number of supported links and the
total transmission power, particularly exhibiting a quite good
performance in selecting which subset of links to support.

Index Terms—Admission control, complexity, non-convex ap-
proximation, potential reduction algorithm, power control, sparse
optimization.
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I. INTRODUCTION

J OINT power and admission control (JPAC) has been rec-
ognized as an effective tool for interference management

in cellular, ad hoc, and cognitive underlay wireless networks
for more than two decades [1]–[31]. The goal of JPAC is to
support a maximum number of links at their specified signal
to interference plus noise ratio (SINR) targets while using min-
imum total transmission power when all links in the interference
limited network cannot be simultaneously supported. JPAC can
not only determine which interfering links must be turned off
and rescheduled along orthogonal resource dimensions (such as
time, space, or frequency slots), but also alleviate the difficulties
of the convergence of stand-alone power control algorithms. For
example, a longstanding issue associated with the Foschini-Mil-
janic algorithm [5] is that, it does not converge when the prese-
lected SINR levels are infeasible. In this case, a JPAC approach
must be adopted to determine which links to be removed.

A. Related Work

The JPAC problem can be solved to global optimality by
checking the simultaneous supportability of every subset of
links. However, the computational complexity of this enumer-
ation approach grows exponentially with the total number of
links. Another globally optimal algorithm, which is based on the
branch and bound strategy, is given in [10]. Theoretically, the
problem is shown to be NP-hard to solve (to global optimality)
and to approximate (to constant factor of global optimality) [1],
[2], [4]. In recent years, various convex approximation based
heuristics algorithms [1]–[11], [16]–[31] have been proposed
for the problem, since convex optimization problems, such as
linear program (LP), second-order cone program (SOCP), and
semidefinite program (SDP), are relatively easy to solve1.
Assuming perfect channel state information (CSI), [1]

proposed the so-called linear programming deflation (LPD)
algorithm. Instead of solving the original NP-hard problem
directly, the LPD algorithm solves an appropriate LP approx-
imation of the original problem at each iteration and uses its
solution to guide the removal of interfering links. The removal
procedure is repeated until all the remaining links in the net-
work are simultaneously supportable. In [2], the JPAC problem

1For any convex optimization problem and any , the ellipsoid algorithm
can find an -optimal solution (i.e., a feasible solution whose objective value is
within from being globally optimal) with a complexity that is polynomial in
the problem dimension and [32].
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is shown to be equivalent to a sparse minimization problem
and then its convex relaxation is used to derive an LP, which
is different from the one in [1]. Again, the solution to the
derived LP is used to guide an iterative link removal procedure
(deflation), leading to an efficient new linear programming
deflation (NLPD) algorithm. Another convex approximation
based heuristics algorithm is proposed in [3]. Assuming the
same SINR target for each link, the link that results in the
largest increase in the achievable SINR is removed at each
iteration until all the remaining links in the network are simul-
taneously supportable. To determine the removed link, a large
number of extreme eigenvalue problems2 need to be solved at
each iteration, making the removal procedure computationally
expensive. To reduce the computational complexity, the above
idea is approximately implemented in the Algorithm II-B [3].
Similar convex approximation deflation ideas were used in
[19], [30] to solve the joint beamforming and admission control
problem for the cellular downlink network, where at each
iteration an SDP needs to be solved to determine the link to be
removed.
Under the imperfect CSI assumption, JPAC has been studied

in [1], [28], [29]. In [1], the authors considered the worst-case
robust JPAC problem with bounded channel estimation errors.
The key there is that the relaxed LP with bounded uncertainty
can be equivalently rewritten as an SOCP. The overall approx-
imation algorithm remains similar to LPD for the case of the
perfect CSI, except that the SOCP formulation is used to carry
out power control and its solution is used to check whether links
are simultaneously supportable in the worst case. [29] studied
the JPAC problem under the assumption of the channel distri-
bution information (CDI), and formulated the JPAC problem as
a chance (probabilistic) constrained program, where each link’s
SINR outage probability is enforced to be less than or equal to
a specified tolerance. To circumvent the difficulty of the chance
SINR constraint, [29] employed the sample (scenario) approx-
imation scheme to convert the chance constraints into finitely
many simple linear constraints. Then, the sample approximation
of the chance SINR constrained JPAC problem is reformulated
as a group sparse minimization problem and approximated by
an SOCP. The solution of the SOCP approximation problem can
be used to check the simultaneous supportability of all links in
the network and to guide an iterative link removal procedure.

B. Our Contribution

This paper considers the JPAC problem under the perfect CSI
assumption. We remark that similar techniques can be used for
the case where the CSI is not perfectly known. As mentioned
above, most existing algorithms for JPAC are based on (suc-
cessive) convex approximations. The main contribution of this
paper is to propose an effective polynomial time non-convex ap-
proximation deflation approach for solving the JPAC problem.
To our knowledge, this is the first approach that solves the JPAC
problem by (successive) non-convex approximations. The key
idea is to approximate the sparse minimization reformula-
tion of the JPAC problem by the non-convex minimization
problem with instead of the convex minimization

2Extreme eigenvalue problems are SDP representable.

problem as in [1], [2], and to design a polynomial time algo-
rithm for computing an -KKT solution (its definition will be
given later) of the non-convex minimization problem for any
given . The main results of this paper are summarized as
follows.
• We show that the non-convex minimization approxima-
tion problem shares the same solution with the mini-
mization problem if , where is some value
in . We also give an example of the JPAC problem,
showing that the solution to its non-convex minimiza-
tion approximation problem with any solves
the original problem while its convex minimization ap-
proximation problem fails to do so. We therefore show that
the minimization problem with approximates
the minimization JPAC problem better than the min-
imization problem.

• We show that, for any , the minimization
approximation problem is NP-hard. The proof is based
on a polynomial time transformation from the partition
problem. The complexity result suggests that there is no
polynomial time algorithm which can solve the mini-
mization approximation problem to global optimality (un-
less ).

• We reformulate the minimization approximation
problem and develop a potential reduction interior-point
algorithm for solving its equivalent reformulation. We
show that, for any given , the potential reduction al-
gorithm can return an -KKT solution of the reformulated
problem in polynomial time. The obtained -KKT solution
can be used to check the simultaneous supportability of all
links in the network and to guide an iterative link removal
procedure, resulting in the polynomial time non-convex
approximation deflation approach for the JPAC problem.
Simulation results show that the proposed approach sig-
nificantly outperforms the existing convex approximation
deflation algorithms [1]–[3].

C. Notations

We adopt the following notations in this paper. We denote the
index set by . Lowercase boldface and upper-
case boldface are used for vectors and matrices, respectively.
For a given vector , the notations , , , and

stand for its maximum entry,
its -th entry, its infinity norm, and its norm3, respectively. In
particular, when , stands for the number of nonzero
entries in . For any subset , we use to denote the
matrix formed by the rows of indexed by . For a vector ,
the notation is similarly defined. Moreover, for any ,
the notation will denote the submatrix of obtained by
taking the rows and columns of indexed by and respec-
tively. The spectral radius and the infinity norm of a matrix
are denoted by and , respectively. Finally, we use
to represent the vector with all components being one and

to represent the identity matrix of an appropriate size, respec-
tively.

3Strictly speaking, with is not a norm, since it does not
satisfy the triangle inequality. However, we still call it norm for convenience
in this paper.
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II. SYSTEM MODEL, SPARSE FORMULATION, AND
NLPD ALGORITHM

Consider a -link (a link corresponds to a transmitter-re-
ceiver pair) interference channel with channel gains
(from transmitter to receiver ), noise power ,
SINR target , and power budget for

. Denote the power allocation vector
by and the power budget vector by

. Treating interference as noise, we can
write the SINR at the -th receiver as

To some extent, the JPAC problem can be formulated as a
two-stage optimization problem. The first stage maximizes the
number of admitted links:

(1)

The optimal solution of problem (1), which may not be
unique, is called maximum admissible set. The second stage
minimizes the total transmission power required to support the
admitted links in :

(2)

Due to the special choice of , power control problem (2) is
feasible and can be efficiently solved by the Foschini-Miljanic
algorithm [5].
The two-stage JPAC problem (1) and (2) is reformulated as

a single-stage sparse minimization problem in [2], which is
based on a normalized channel. Next, we first introduce the
channel normalization and then the sparse formulation of the
JPAC problem. Denote the normalized power allocation vector
by with , and the nor-
malized noise vector by with

. The normalized channel matrix is de-
noted by with the -th entry

if ;
if .

The JPAC problem can be reformulated as a single-stage
sparse minimization problem as follows

(3)

where is a parameter satisfying

(4)

Notice that the formulation (3) is capable of finding the max-
imum admissible set with minimum total transmission power

and hence is superior to the two-stage formulation (1) and (2) in
case of multiple maximum admissible sets.
The basic idea of the NLPD algorithm in [2] is to update the

power and check whether all links can be supported. If not, drop
one link from the network and update the power again. This
process is repeated until all the remaining links are supported.
More specifically, the NLPD algorithm checks whether all links
in the network can be simultaneously supported by solving the

convex approximation of the minimization problem (3)

(5)

which is equivalent to the following LP (see Theorem 2 in [2])

(6)

If all links in the network cannot be simultaneously supported,
the NLPD algorithm drops the link

(7)
To accelerate the deflation process, an easy-to-check necessary
condition

(8)

for all links in the network to be simultaneously sup-
ported is also derived in [2], where ,

, and . The necessary condition
allows to iteratively remove strong interfering links from the
network. In particular, the link

(9)

is iteratively removed in the NLPD algorithm until (8) becomes
true.
The complete description of the NLPD algorithm is given as

follows.

Algorithm 1: The NLPD Algorithm

Step 1. Initialization: Input data .
Step 2. Preprocessing: Remove link iteratively according

to (9) until condition (8) holds true.
Step 3. Power control: Solve problem (5); check whether all

links are supported: if yes, go to Step 5; else go to
Step 4.

Step 4. Admission control: Remove link according to (7),
set , and go to Step 3.

Step 5. Postprocessing: Check the removed links for possible
admission.
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III. A NON-CONVEX APPROXIMATION DEFLATION
APPROACH FOR JPAC

In this section, we develop a polynomial time non-convex
approximation deflation algorithm for the JPAC

problem. The motivation for developing such a non-convex
approximation deflation algorithm is that the minimization
problem with should perform better than the
minimization problem in approximating the minimiza-
tion problem (3) and thus the deflation algorithm based on
non-convex approximations should have a better perfor-
mance than the NLPD algorithm, which is based on convex
approximations.
In the following, we first analyze exact recovery of the

minimization approximation in solving the minimization
problem in Section III-A. Then, we prove in Section III-B that
the minimization problem with any is NP-hard.
In Section III-C, we develop a polynomial time interior-point
algorithm for approximately solving the minimization
problem. The approximate solution of the minimization
problem can be used to check the simultaneous supportability
of all links in the network and to guide an iterative link removal
procedure, thus resulting in the polynomial time non-convex
approximation deflation approach for the JPAC problem in
Section III-D.

A. Exact Recovery of Non-Convex Approximation
The sparse minimization problem (3) is successively ap-

proximated by the minimization problem (5) in the NLPD
algorithm. Intuitively, the minimization problem with

,

(10)

should approximate (3) “better” than (5). To provide such an
evidence, we give the following lemma.
Lemma 1: For any , problem (10) is equivalent to

(11)

The above lemma can be verified in a similar way as the proof
of Theorem 2 in [2] and a detailed proof is provided in [33,
Section I]. Based on Lemma 1, we can show the following result
(see Appendix A for its proof).
Theorem 1: For any given instance of problem (3), there ex-

ists (depending on ) such that when ,
any global solution to problem (10) is one of the global solu-
tions to problem (3).
Theorem 1 states that the minimization problem (10)

shares the same solution with the minimization problem (3)
if the parameter (depending on ) is chosen to be
sufficiently small. In general, the minimization problem (5)
does not enjoy this exact recovery property, which is in sharp
contrast to the results in [34]–[36].
It is shown in [34] that the problem of minimizing

is equivalent to the problem of minimizing with high

probability if the vector at the true solution is sparse,
where and , and if the entries of the matrix
are independent and identically distributed (i.i.d.) Gaussian. The
reason why the minimization problem (10) fails to recover
the solution of problem (3) is that the two assumptions required
in [34] do not hold true for problem (3). Specifically, the vector

may not be sparse even at the optimal power allocation
vector . This depends on whether the (normalized) channel is
strongly interfered or not. More importantly, the matrix in (3)
is a square matrix and has a special structure; i.e., all diagonal
entries are one and all non-diagonal entries are non-positive.
Next we give an example to illustrate the advantage of the

use of norm with over the use of norm to
approximate problem (3). Suppose in (3) are given as
follows:

It can be shown that the optimal solution to the sparse optimiza-
tion problem (3) is

if the parameter is chosen satisfying (cf. (4)).
We can also obtain the solutions to problems (5) and (10).
• By writing the KKT optimality conditions, we can check
that is the unique global minimizer of problem (5)
with any .

• Lemma 1 implies that problem (10) is equivalent to

(12)

For any given , define

(13)

It can be checked (although tedious) that, as long as in
problem (12) is chosen such that , the unique
global minimizer of problem (12) is ; see [33, Section
II].

We remark that, for a given instance of problem (3), it is gen-
erally not easy to determine in Theorem 1. However, our sim-
ulation results in Section IV-A show that it is generally not very
small for small networks. In practice, we could set the parameter
in problem (10) to be a constant in (more on the choice

of the parameter will be discussed in Section IV). Therefore,
the solution to problem (10) might not be able to solve the
minimization problem (3). This is the reason why we do not just
use the minimization (10) to approximate problem (3), but in-
stead employ a deflation technique to successively approximate
problem (3) in our proposed algorithm below.
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B. Complexity Analysis of Minimization (10)
Roughly speaking, convex optimization problems are rela-

tively easy to solve, while non-convex optimization problems
are difficult to solve. However, not all non-convex problems are
computationally intractable since the lack of convexity may be
due to an inappropriate formulation. In fact, many non-convex
optimization problems admit a convex reformulation; see
[37]–[44] for some examples. Therefore, convexity is useful
but unreliable to evaluate the computational intractability of an
optimization problem. A more robust tool is the computational
complexity theory [45], [46].
In this subsection, we show that problem (10) is NP-hard for

any given . The NP-hardness proof is based on a poly-
nomial time transformation from the partition problem: given
a set of positive integers , determine whether
there exists a subset of such that

The partition problem is known to be NP-complete [45].
Theorem 2: For any given , the minimization

problem (10) is NP-hard.
The proof of Theorem 2 is relegated to Appendix B. Theorem

2 suggests that there is no efficient algorithm which can solve
problem (10) to global optimality in polynomial time (unless

), and finding an approximate solution for it is more
realistic in practice.
We remark that some related problems

(14)

and
(15)

are shown to be NP-hard in [47] and [48], where and
. However, these NP-hardness results cannot imply

our result in Theorem 2, since the considered problems are dif-
ferent. A key difference between our problem (10) and problems
(14) and (15) is that problem (10) (equivalent to (11)) tries to
find an such that the number of positive entries of the vector

is as small as possible while problems (14) and (15) try
to find a solution such that the number of nonzero entries of is
as small as possible. Moreover, the matrix and the vector
in (10) have special structures, i.e., all diagonal entries of are
one, all non-diagonal entries of are non-positive, and all en-
tries of are positive. This restriction on and makes it more
technical and intricate to show the NP-hardness of problem (10)
compared to show that of problems (14) and (15) for general
and in [47] and [48]. The NP-hardness of a general composite

minimization problem is also shown in [49]. Again, this re-
sult does not imply our result in Theorem 2, which is due to the
special structure and in our problem (10).

C. A Polynomial Time Potential Reduction Algorithm for
Problem (10)
In this subsection, we develop a polynomial time potential

reduction interior-point algorithm for solving problem (10).

Based on Lemma 1, by introducing slack variables, we see that
problem (10) can be equivalently formulated as

(16)

where

We extend the potential reduction algorithm in [47], [50], [51]
to solve problem (16) to obtain one of its -KKT points (the def-
inition of the -KKT point shall be given later). It can be shown
that the potential reduction interior-point algorithm returns an
-KKT point of problem (16) in polynomial time.
Before going into the details, we first give a high level pre-

view of the proposed algorithm. The two basic ingredients of
the potential reduction interior-point algorithm is the potential
function (cf. (20)) and the update rule (cf. (25)). The potential
function measures the progress of the algorithm, and the update
rule guides to compute the next iterate based on the current one.
More specifically, the next iterate is chosen as the feasible point
that achieves the maximum potential reduction. The algorithm
is terminated either when the potential function is below some
threshold (cf. (21)) or when the potential reduction (cf. (26)) is
smaller than a constant. In the former case, the algorithm re-
turns an -optimal solution of problem (16), and in the latter
case an -KKT point of problem (16). Moreover, the polyno-
mial time convergence of the algorithm can be guaranteed by
showing that the value of the potential function is decreased by
at least a constant at each iteration and the potential function is
bounded above and below by some thresholds.
Definition of -KKT Point: Since is not differentiable

when some entries of are zero, the common definitions of
the KKT point do not apply to problem (16). We thus define a
weaker concept, the so-called -KKT point (or -KKT solution)
for problem (16), in a similar way as done in [47], [50], [52].
Suppose that is a local minimizer of problem (16), and define

. Then should be
a local minimizer of problem

(17)

where . The KKT
condition of problem (17) is: there exists a Lagrange multiplier
vector such that

(18)

and
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Notice that given , if for , we have

Therefore, the -KKT point of problem (16) can be defined as
follows.
Definition 1: is called an -KKT point of problem (16) if
(a) it is feasible;
(b) there exists such that (18) holds true; and
(c) the complementarity gap

(19)

where and are upper and lower bounds on the objec-
tive value of problem (16), respectively.

In addition, is called an -optimal solution to problem (16)
if .
It is worthwhile remarking that if in (19), the above

definition reduces to the definition of the KKT point of problem
(17). For simplicity, we set in (19) in this paper, since the
objective function of problem (16) is always nonnegative.
Potential Function: For any given strictly feasible , define the
following potential function

(20)

where is a parameter to be specified later.
Lemma 2: Let and be fixed. Suppose that is

strictly feasible and satisfies

(21)

Then is an -optimal solution to problem (16).
Lemma 2 actually gives a lower bound of the potential func-

tion . Its proof can be found in Appendix C. In the fol-
lowing, we provide an upper bound for . Let

It can be verified that in the above is an interior point of
problem (16) by the use of the special structures of and .
Since the potential function values are decreasing at each itera-
tion of the potential reduction algorithm (see “Update Rule
” further ahead), it follows that

(22)

Update Rule: Consider one iteration update from to by
minimizing the potential reduction . Suppose
that , where satisfies . From
the concavity of , we have

(23)

On the other hand, we have the following standard lemma [53,
Theorem 9.5].

Lemma 3: Let . Suppose that
. Then, we have

It is worthwhile remarking that if , then
. By combining (23) and Lemma 3, we have

(24)
Let . To achieve the maximum potential reduction,
one can solve the following problem

(25)

where

Problem (25) is simply a projection problem. Theminimal value
of problem (25) is

(26)

and the solution to problem (25) is , where

and

To establish the polynomial time complexity[32] of the above
potential reduction interior-point algorithm for solving problem
(16), we make the following assumption.
Assumption 1: There exist and such

that the inputs of problem (16) (equivalent to problem (10)) sat-
isfy and .
Theorem 3: Suppose Assumption 1 holds true. Then the

potential reduction interior-point algorithm returns an -KKT
point or an -optimal solution of problem (16) in no more than

iterations.
The proof of Theorem 3 can be found in Appendix D. Note

that for fixed and , the iteration complexity
bound in Theorem 3 polynomially depends on the size and the
bit length (number of bits) of the input data of problem (16).
This shows the polynomial time complexity of the potential re-
duction interior-point algorithm for solving problem (16).
Since one projection problem in the form of (25) needs to be

solved at each iteration of the potential reduction algorithm, and
the complexity of solving problem (25) is , we immedi-
ately have the following corollary.
Corollary 1: Suppose Assumption 1 holds true. Then the

potential reduction interior-point algorithm returns an -KKT
point or -optimal solution of problem (16) (equivalent to
problem (10)) in no more than
operations.
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One may ask why we restrict ourselves to use interior-point
algorithms for solving problem (16) (equivalent to problem
(10)). The reasons are the following. First, the objective func-
tion of problem (16) is differentiable in the interior feasible
region. Moreover, we are actually interested in finding a fea-
sible such that is as sparse as possible; if we start from a
, some entries of are already zero, then it is very hard to

make it nonzero. In contrast, if we start from an interior point,
the interior-point algorithm may generate a sequence of interior
points that bypasses solutions with the wrong zero supporting
set and converges to the true one. This is exactly the idea of the
interior-point algorithm developed in [50] for the non-convex
quadratic programming.
To further improve the solution quality, we propose to run

the above potential reduction algorithm multiple times to solve
problem (16) and pick the best one among (potentially different)
returned -KKT solutions, where at each time the potential re-
duction algorithm is initialized with a randomly generated inte-
rior point. Thanks to the special structure of and , it can be
verified that the random point

(27)

is an interior point to problem (16) with probability one, where
each entry of obeys the uniform distribution in the interval

and is the Hadamard product operator.

D. A Polynomial Time Non-Convex Approximation Deflation
Approach

The proposed minimization deflation (LQMD) algorithm,
based on successive minimization approximations, is given
as follows. The key difference between the LQMD algorithm
and the NLPD algorithm lies in the power control step (i.e., Step
3), albeit the framework of the two algorithms are the same.

Algorithm 2: The LQMD Algorithm

Step 1. Initialization: Input data , , and
positive integer .

Step 2. Preprocessing: Remove link iteratively according
to (9) until condition (8) holds true.

Step 3. Power control: Compute the parameter by (28)
and run the potential reduction algorithm with
randomly generated initial points (27) to solve
problem (10); check whether all links are supported:
if yes, go to Step 5; else go to Step 4.

Step 4. Admission control: Remove link according to (7),
set , and go to Step 3.

Step 5. Postprocessing: Check the removed links for possible
admission.

Two remarks on the LQMD algorithm are in order. First, the
parameter in minimization (10) is computed by

if ;
if , (28)

where , are three constants. In the
above, is determined by the equivalence between problem
(3) and the joint problem (1) and (2) (cf. (4)), and is de-
termined by the so-called “Never-Over-Removal” property (cf.
[2, (22)]). Second, the LQMD has a polynomial time worst-case
complexity under Assumption 1, which is

(29)

This is because that at most links will be dropped and the
complexity of dropping one link needs solving problem (10)
times in the LQMD algorithm. Combining this with Corollary
1, we immediately obtain the complexity result in (29).

IV. NUMERICAL SIMULATIONS

In this section, we carry out two sets of numerical experi-
ments to illustrate the effectiveness of the non-convex ap-
proximation (10) and the LQMD algorithm (Algorithm 2), re-
spectively. We employ the number of supported links and the
total transmission power as the comparison metrics to compare
different approximations and algorithms. In our simulations, the
parameters in (28) are set to be and .
We generate the same channel parameters as in [1] in our

simulations; i.e., each transmitter’s location obeys the uniform
distribution over a 2 Km 2 Km square and the location of
its corresponding receiver is uniformly generated in a disc with
radius 400 m; channel gains are given by

(30)

where is the Euclidean distance from the link of transmitter
to the link of receiver . Each link’s SINR target is set to

be and the noise power is set to be
. The power budget of the link of

transmitter is

(31)

where is the minimum power needed for link to meet its
SINR requirement in the absence of any interference from other
links.

Algorithm 3: A Heuristic Algorithm for Computing

Step 1. Input data , positive integer , and
nonempty set .

Step 2. Compute the parameter by (28). Use the
enumeration method to solve problem (3) and
denote the global solution by .

Step 3. If is empty, set , return failure and terminate
the algorithm; else pick the largest and run
the potential reduction algorithm with randomly
generated initial points (27) to solve problem (10).
Denote the best point by .

Step 4. If , set , return success and terminate
the algorithm; else set and go to Step
3.
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Fig. 1. The computed of 100 channel realizations with and .

A. Non-Convex Versus Convex Approximations
In this subsection, we do numerical simulations in two small

networks where there are and links, respec-
tively.
We first test how small needs to be for the minimization

problem (10) to exactly recover the global solution of problem
(3). We propose Algorithm 3 to heuristically compute in The-
orem 1. In Algorithm 3, the parameters and are set to be

(32)

Fig. 1 depicts the computed of 100 random channel realiza-
tions where and . It shows that the parameter
required in Theorem 1 is heavily problem-dependent. Fortu-

nately, it is generally not very small, i.e., the average of the 100
random channel realizations for the two networks where
and are 0.5364 and 0.1951, respectively. Fig. 1 also
suggests that a smaller tends to be required as the number of
total links in the network becomes large.
Among the above 100 random channel realizations, the

minimization problem (10), with the parameter being judi-
ciously chosen by Algorithm 3, successfully finds the global
solution of problem (3) 99 times and 82 times for the two net-
works where and , respectively. This is consis-
tent with our analysis in Theorem 1. The simulation results also
show good performance of the potential reduction algorithm
with multiple random initializations in finding the global solu-
tion of problem (10). As we can see, there are some instances
that problem (10) fails to find the global solution of problem
(3). The possible reasons are: a) the required in Theorem 1 for
these instances might be less than 0.01, which is the smallest
value we test in our simulations (cf. in (32)); and/or b) the
potential reduction algorithm (even with 100 random initializa-
tions) does not find the global solution of problem (10), which
is NP-hard as shown in Theorem 2.
We now compare the performance of the minimization

problem (10) with being fixed to be 0.1 and the minimiza-
tion problem (5) in approximating the minimization problem
(3). The corresponding minimization problem (10) is solved

Fig. 2. Comparison of and for 10 random channel realizations for the
network where .

TABLE I
STATISTICS OF AND APPROXIMATIONS FOR 100

RANDOM CHANNEL REALIZATIONS

again by running the potential reduction algorithm with 100
random initializations and the corresponding minimization
problem (5) is solved by using the simplex method to solve its
equivalent LP reformulation (6). The global solution obtained
by “brute-force” enumeration is used as benchmark. Simulation
results are summarized in Table I and Fig. 2. Table I reports
the performance comparison of and approximations in
terms of average number of supported links, average total trans-
mission power, and percentage of finding the global solution of
problem (3) in the 100 random channel realizations. Fig. 2 illus-
trates the number of supported links and the total transmission
power of 10 random channel realizations for the network where

.
Table I shows that the minimization approximation sig-

nificantly outperforms the minimization approximation in
terms of the number of supported links. It can be observed from
Table I that the minimization problem can find the max-
imum admissible set for all of the 100 random channel realiza-
tions and successfully finds the maximum admissible set with
minimum total transmission power with a percentage of 69%
for the case . For the case , the percentage of the

minimization problem for finding the ‘optimal’ maximum
admissible set decreases to 26%, but still it performsmuch better
than the minimization problem in the sense that it supports
1.04 more links than minimization in average; see Table I.
Fig. 2 shows that the minimization problem finds the max-
imum admissible set for all these 10 channel realizations, and
successfully finds the ‘optimal’ one for the first 4 channel re-
alizations. Therefore, the minimization problem (10) indeed
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Fig. 3. The difference of average number of supported links by the LQMD
algorithm with different and the one by the LQMD algorithm with best

versus the number of total links.

exhibits a significantly better capability in approximating the
minimization problem (3) compared to the minimization

problem (5).

B. Effectiveness of LQMD

We present some numerical simulation results to evaluate the
effectiveness of the proposed LQMD algorithm in this part. We
set in the LQMD algorithm. All figures in this subsection
are obtained by averaging over 200 Monte-Carlo runs.
We first test whether the performance of the LQMD algorithm

is sensitive to the choice of the parameter . Figs. 3 and 4 plot the
performance comparison of the LQMD algorithm with different
choices of the parameter . More specifically, for each fixed
and , we use the LQMD algorithm
to solve 200 randomly generated JPAC problems, and denote
the average number of supported links by . Each point
in Fig. 3 denotes

It can be observed from Figs. 3 and 4 that the performance
of the LQMD algorithm is somehow sensitive to the choice of
the parameter , which is mainly due to our implementation of
the LQMD algorithm. Theoretically, the parameter should be
chosen as small as possible according to Theorem 1 (if the ap-
proximation problem can be solved to global optimality). How-
ever, as shown in Theorem 2, finding the global solution of the

minimization problem is NP-hard for any . In our
implementation of the LQMD algorithm, we run the potential
reduction algorithm with 5 random initializations to solve the
minimization problem at affordable complexity. As can be seen
from Fig. 3, the performance of the LQMD algorithm in terms of
the number of supported links with is not as good as ex-
pected. The main reason for this is because the minimization
problem in the LQMD algorithm is solved by the potential re-
duction algorithm where the number of random initializations is
set to be 5 and in this case the potential reduction algorithm will

Fig. 4. Average total transmission power by the LQMD algorithm with dif-
ferent versus the number of total links.

get stuck at a local minimizer of the minimization problem
with a higher probability for a small compared to a large . One
may set the number of random initializations to be very large,
then the minimization problem with will be solved
to global optimality with a high probability and thus the cor-
responding LQMD algorithm will enjoy a good performance.
However, this will lead to excessively high computational costs
and make the corresponding LQMD algorithm impractical. On
the other hand, a large is also not suitable for the LQMD algo-
rithm, since minimization with a large cannot approximate
the minimization problem as good as the one with a small .
This can be clearly seen from Figs. 3 and 4, where the perfor-
mance of the LQMD algorithm with in
terms of the number of supported links gradually deteriorate as
the number of total links increases and the corresponding total
transmission power is larger than that of in the
whole range.
The above simulation results and discussions provide us

useful insights into the choice of the parameter , i.e., both
small and large are not suitable for the LQMD algorithm due
to either the practical implementation issue or the theoretical
approximation issue and a median is preferred in the LQMD
algorithm in terms of leveraging the implementation issue and
enjoying a relatively good approximation property. Figs. 3 and
4 suggest that are the best ones in terms of
the number of supported links and the total transmission power.
We thus set in all of the following simulations.
We now compare the performance of the proposed LQMD al-

gorithm with that of the LPD algorithm in [1], the NLPD algo-
rithm in [2], and the Algorithm II-B in [3], since all of them have
been reported to have close-to-optimal performance in terms of
the number of supported links. Figs. 5 – 6 plot the performance
comparison of aforementioned various admission and power
control algorithms. Fig. 5 shows that the proposed LQMD al-
gorithm and the NLPD algorithm can support more links than
the other two algorithms (the LPD algorithm and the Algorithm
II-B) over the whole range of the tested number of total links.
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Fig. 5. Average number of supported links versus the number of total links.

Fig. 6. Average total transmission power versus the number of total links.

Figs. 5 and 6 show that, compared to the LPD algorithm and
the Algorithm II-B, the proposed LQMD algorithm can support
more links with much less total transmission power.
Next, we focus on the performance comparison of the LQMD

algorithm and the NLPD algorithm, since these two algorithms
outperform the other two in terms of the number of supported
links. The comparison results are presented in Figs. 7 and 8.
The vertical axis “Win Ratio” in Fig. 7 shows the ratio of the
number that the LQMD algorithm (the NLPD algorithm) win-
ning the NLPD algorithm (the LQMD algorithm) to the total run
number 200. Given an instance of the JPAC problem, the LQMD
algorithm is said to win the NLPD algorithm if the former can
support strictly more links than the latter for this instance. In
a similar fashion, we can define that the NLPD algorithm wins
the LQMD algorithm. It can be observed from Fig. 7 that the
win ratio of the two algorithms are almost the same when the
number of total links is less than or equal to 30,4 but the pro-
posed LQMD algorithmwins the NLPD algorithmwith a higher
ratio when the number of total links is greater than 30. As de-
picted in Fig. 7, when there are links in the network,

Fig. 7. Win ratio comparison of LQMD and NLPD versus the number of total
links.

Fig. 8. Average total transmission power comparison of NLPD and LQMD
when the two algorithms find the admissible set with same cardinality versus
the number of total links.

the LQMD algorithm wins the NLPD algorithm 52 times, while
the NLPD algorithm wins the LQMD algorithm only 15 times
(among the total 200 runs). The two algorithms find the ad-
missible set with same cardinality for the remaining 133 times.
However, this does not mean that the two algorithms find the
same admissible set in these cases. Fig. 8 plots the average total
transmission power when the two algorithms can support the
same number of links, which demonstrates that the LQMD al-
gorithm is able to select a “better” subset of links to support,
and can use much less total transmission power to support the
same number of links (compared to the NLPD algorithm). As
the number of total links in the network increases, the LQMD
algorithm savesmore power. In a nutshell, the LQMD algorithm

4In fact, it is impossible for the LQMD algorithm to achieve a large margin
of the number of supported links over the NLPD algorithm for small networks,
since it has been shown in [2] that the NLPD algorithm can achieve more than
98% of global optimality (by “brute force” enumeration) in terms of the number
of supported links when .
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TABLE II
RATIOS OF AVERAGE NUMBER OF SUPPORTED LINKS AND TOTAL TRANSMISSION POWER IN SETUP1 TO THAT IN SETUP2

exhibits a substantially better performance (than the NLPD al-
gorithm) in selecting which subset of links to support, and thus
yields a much better total transmission power performance.
Finally, we test the performance of the LQMD algorithm in

setups with different levels of interference. For convenience, we
call the former simulation setup as Setup1. We decrease the dis-
tances between all transmitters and receivers by a factor of 0.707
in Setup1 and call the obtained setup as Setup2. Notice that all
the direct-link and cross-link channel gains and thus interfer-
ence levels in Setup2 is times larger than that
of Setup1 according to (30).
Table II summarizes the ratio of the average number of sup-

ported links and total transmission power in Setup1 to that in
Setup2. It can be observed from it that the average number of
supported links in both setups are roughly equal to each other,
but the average total transmission power in Setup1 is approxi-
mately 4 times as large as that in Setup2. This is because when
the simulation setup is switched from Setup1 to Setup2, all the
channel gains increase by a factor of 4 and power budgets of
all links decrease by a factor of 4 (cf. (31)). As the channel
gains are increased and power budgets are decreased by a same
factor while the noise powers remain to be fixed, the number of
supported links in problem (3) remains unchanged. However,
it brings a benefit of a 75% reduction in the total transmission
power, which is consistent with our engineering practice. Since
the channel parameters in Setup1 and Setup2 are independently
randomly generated, the ratios of average number of supported
links and total transmission power in Setup1 to that in Setup2
in Table II are approximately (but not exactly) 1 and 4.

V. CONCLUSIONS
In this paper, we have proposed a polynomial time

non-convex approximation deflation approach for the NP-hard
joint power and admission control (JPAC) problem. Different
from the existing convex approximation approaches, the pro-
posed one solves the JPAC problem by successive non-convex

minimization approximations. We have shown
exact recovery of the minimization problem, i.e., any global
solution to the minimization problem is one of the global so-
lutions to the JPAC problem as long as the parameter is chosen
to be sufficiently small. We have also developed a polynomial
time potential reduction interior-point algorithm for solving the

minimization problem, which makes the proposed deflation
approach enjoy a polynomial time worst-case complexity.
Numerical simulations demonstrate that the proposed approach
is very effective, exhibiting a significantly better performance
in selecting which subset of links to support compared to the
existing convex approximation approaches.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we first introduce the following lemma.

Lemma 4 ([2]): Suppose is an admissible set5 of problem
(3) and is its complement. Then the following
statements hold.

(1) For any admissible set , is invertible and
.

(2) For any admissible set and any feasible satisfying
,

(33)

(3) Let be the optimal maximum admissible set of problem
(3). Then with

(34)

is the solution to problem (3).
We are now ready to prove Theorem 1. We first prove that

the theorem is true under the assumptions that the solution
of problem (3) is unique and the maximum admissible set
of problem (3) is also unique. Then, we remove these two
assumptions and prove that the theorem remains true.
Case I: Assume in (34) is the unique global minimizer of
problem (3) and is the corresponding maximum admissible
set, which is also unique. Next, we show is the unique global
minimizer of problem (10). By Lemma 1, it is equivalent to
show is the unique global minimizer of problem (11). We
divide the proof into two parts.
Part A: In this part, we show that when is sufficiently small,

is the unique global minimizer of problem

(35)

Consider the following problem

(36)

We claim that the optimal value of problem (36) is greater than
or equal to . Otherwise, there must exist a
feasible point of problem (36) such that

where . This contradicts the fact that is the maximum
admissible set.

5The subset is called admissible if there exists a feasible such that
.
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Suppose is the gradient of the objective function in (35).
Then

where denotes the entry-wise absolute value
of the matrix . If is sufficiently small (say,

, where is a positive
number such that for any , we have

), then the gradient
of the objective function in (35) is component-wise

positive at any feasible point. In addition, to guarantee
, we need (cf. (33) and

(34)). Therefore, is the unique global minimizer of problem
(35), since for any feasible , we have and .
Part B: In this part, we show that when is sufficiently small,

is the unique global minimizer of problem (11). To show this,
it suffices to show that, for any given admissible set with

, the minimum value of problem

(37)

is greater than the one of problem (35). Without loss of gener-
ality, suppose the solution of problem (37) is attainable.
Otherwise, there must exist such that at
the optimal point. In this case, we consider problem (37) with
replaced by . According to the assumption that the max-
imum admissible set of problem (3) is unique, we still have

unless .
Suppose is achievable, there must exist such

that

(38)

where depends on . Since the number of admis-
sible sets , with which the solution of problem (37) is
achievable, is finite, then

(39)

Here, only depends on and . Define

(40)

Let be a positive number such that for any
, we have

(41)

Therefore, if

(42)

for any admissible with :

• if , there holds

(43)
(44)
(45)
(46)

where (43) is due to (38), (39), and , (44) is due
to the fact , (45) is due to (41) and (42), and (46)
is by the definition of (cf. (40));

• if , then

where the first strict inequality is due to (39), and the
second inequality can be obtained in a similar fashion as
in the case of .

Case II: Consider the case when problem (3) has multiple max-
imum admissible sets, but its solution remains unique. Then,
for any feasible set such that , we have

where is the solution to problem (37). The above strict
inequality is because is the unique solution to problem (3).
Therefore, there exists such that for all

, there holds

Since problem (3) has at most maximum admissible sets,
we can take the minimum among , and obtain
a such that when , it
has

This, together with Case I, implies that when is sufficiently
small, is the unique global minimizer of problem (11) under
the assumption that the solution of problem (3) is unique.
Case III: The remaining case is that when problem (3) has mul-
tiple solutions. Without loss of generality, we assume that there
are two different solutions and . Then, the choice of (cf.
(4)) immediately implies

If there exists an bijective mapping from to
such that for all

, then both and are global minimizers of problem
(11). Otherwise, we can find such that when

, we have either
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or

Combining the above with Cases I and II, we know that (or
) is the global minimizer of problem (11). This completes the

proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

Given an instance of the partition problem with
, define . Next, we construct an

instance of problem (10), where
• ;
• all entries of are set to be 1;
• the first entries of are set to be 1, and the
last two entries of are set to be 0.5;

• all diagonal entries of are one, and
non-diagonal entries of are
— for , set except

;
— for , set except

;
— for , set except

for ;
— for , set except for

; and
• the parameter satisfies

(47)

Then the constructed instance of problem (10) becomes problem
(48).

(48)
where

Notice that for all , it
follows that

(49)
Next, we claim that the partition problem has a “yes” answer

if and only if the optimal value of problem (48) is less than or
equal to . We prove the “if” and “only if”
directions separately.

Let us first prove the “only if” direction. Suppose the par-
tition problem has a “yes” answer and let be the subset of

such that

(50)

We show that there exists a feasible power allocation vector
such that the optimal value of problem (48) is less

than or equal to . In particular, let
if ;
if ,

(51)
and

It is simple to check

Thus, we have

which implies that the optimal value of problem (48) is less than
or equal to .
To show the “if” direction, suppose that the optimal solution

of problem (48) is less than or equal to . Con-
sider a relaxation of problem (48) by dropping the constraints

and :

(52)

Clearly, the optimal value of problem (52) is less than or equal
to the optimal value of problem (48). The relaxed problem (52)
can be equivalently rewritten as
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where, for , is defined as
the optimal value of the problem

(53)
Since problem (53) is an univariate optimization
problem and satisfies (47), we can verify that, for any

, there holds

(54)

where
(55)

By the definition of (cf. (53)), we
have

As a result, problem (52) can be decomposed into subprob-
lems

(56)
We know from (49) that in (56) is strictly con-
cave with respect to and in . Since the
minimum of a strictly concave function is always attained at a
vertex [54], we immediately obtain that the optimal solution of
(56) must be , , , or . It is easy to see that

This, together with the facts and (cf.
(47)), shows the optimal solution of (56) is

(57)

Now, we can use (55) and (57) to conclude that the optimal value
of problem (52) is

Since the optimal value of problem (48) is less than or equal
to (the assumption of the “if” direction), it
follows from (55) that

Combining this with (57) yields

where . Therefore, there exists a subset
such that (50) holds true, which shows that the partition problem
has a “yes” answer.

Finally, this transformation can be finished in polynomial
time. Since the partition problem is NP-complete, we conclude
that problem (10) is NP-hard.

APPENDIX C
PROOF OF LEMMA 2

Since is feasible, it follows that

(58)
and

(59)

where (59) comes from

For any strictly feasible , by the definition of (cf. (20)),
we obtain

(60)
where the first inequality is because for any feasible
, and the second is by (58) and (59). Therefore, if (21) holds,

we must have , which shows that is an -optimal
solution.

APPENDIX D
PROOF OF THEOREM 3

We first show that the potential reduction interior-point al-
gorithm can return an -KKT point or an -optimal solution of
problem (16) (equivalent to problem (10)). Towards this end,
we consider the following two cases.
• If , then we know

The potential function value is reduced by a constant
if we set . If this case would hold for

(61)
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iterations (cf. (21) and (22)), we would obtain an -optimal
solution of (16).

• If , then, from the definition of , we must
have

In other words,

By choosing

(62)

we have

Therefore,

Recalling Definition 1, we know that is an -KKT point
of problem (16).

Next we establish the iteration complexity of the potential
reduction algorithm. To do so, it suffices to bound . By
Assumption 1 and the special structure of , it can be easily
shown that

From the above, (21), (61), and (62), we know that the algorithm
terminates within at most

(63)

iterations. The proof of Theorem 3 is completed.
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