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Abstract The composite Lq (0 < q < 1) minimization problem over a general
polyhedron has received various applications in machine learning, wireless commu-
nications, image restoration, signal reconstruction, etc. This paper aims to provide a
theoretical study on this problem. First, we derive the Karush–Kuhn–Tucker (KKT)
optimality conditions for local minimizers of the problem. Second, we propose a
smoothing sequential quadratic programming framework for solving this problem.
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The framework requires a (approximate) solution of a convex quadratic program at
each iteration. Finally, we analyze the worst-case iteration complexity of the frame-
work for returning an ε-KKT point; i.e., a feasible point that satisfies a perturbed
version of the derived KKT optimality conditions. To the best of our knowledge, the
proposed framework is the first one with a worst-case iteration complexity guarantee
for solving composite Lq minimization over a general polyhedron.

Keywords Composite Lq minimization · ε-KKT point · Nonsmooth nonconvex
non-Lipschitzian optimization · Optimality condition · Smoothing approximation ·
Worst-case iteration complexity

Mathematics Subject Classification 90C26 · 90C30 · 90C46 · 65K05

1 Introduction

In this paper, we consider the following polyhedral constrained composite nonsmooth
nonconvex non-Lipschitzian Lq minimization problem

min
x

F(x) := f (x) + h(x)

s.t. x ∈ X ,
(1.1)

where

– f (x) is of the form

f (x) = ‖max {b − Ax, 0}‖qq =
M∑

m=1

max
{
bm − aTmx, 0

}q
(1.2)

with A = [a1, a2, . . . , aM ]T ∈ R
M×N , b = [b1, b2, . . . , bM ]T ∈ R

M , and
0 < q < 1;

– h(x) is a continuously differentiable function with Lh-Lipschitz continuous gra-
dient in X , that is,

‖∇h(x) − ∇h(y)‖2 ≤ Lh ‖x − y‖2 , ∀ x, y ∈ X ; (1.3)

– and, X ⊆ R
N is a polyhedral set.

When h(x) = 0 and X = R
N , problem (1.1) reduces to unconstrained Lq minimiza-

tion problem

min
x

‖max {b − Ax, 0}‖qq . (1.4)

Both problems (1.1) and (1.4) find wide applications in information theory [13],
computational biology [60], wireless communications [46,47,49], machine learn-
ing [11,28], image restoration [7,23,26,53], signal processing [12,50], and variable
selection [31,40]. Three specific applications arising from machine learning, wireless
communications, and information theory are given in “Appendix 1”.
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A smoothing SQP framework for composite Lq minimization 469

1.1 Related works

Recently, many algorithms have been proposed to solve problem

min
x

h(x) + ‖x‖qq . (1.5)

In particular, when h(x) is a convex quadratic function and q = 1, problem (1.5)
is shown to be quite effective in finding a sparse vector to minimize h(x) and various
efficient algorithms [2,4,39,52,61,63] have been proposed to solve it.

When q ∈ (0, 1), problem (1.5) is nonsmooth, nonconvex, and even not Lipschitz.
Assuming that h : R

N → [0,+∞) is continuously differentiable and its gradient
satisfies (1.3), Bian andChen [6] proposed a smoothing quadratic regularization (SQR)
algorithm for problem (1.5) and established the worst-case iteration complexity result
O(ε−2) for the SQR algorithm to return an ε-KKT point (or ε-KKT solution, or ε-
stationary point, or ε-scaled stationary point, or ε-scaled first order stationary point) of
problem (1.5). In [8], Bian, Chen, and Ye proposed a first order interior-point method
(using only the gradient information) and a second order interior-point method (using
both the gradient and Hessian information) for problem (1.5) with box constraints.
They showed that the iteration complexity of their first order method for returning
an ε-scaled stationary point is O(ε−2) and the one of their second order method for
returning an ε-scaled second order stationary point is O(ε−3/2). In [24], Chen, Niu,
and Yuan derived affine-scaled second order necessary and sufficient conditions for
local minimizers of the problem

min
x

h(x) +
M∑

m=1

∣∣∣aTmx
∣∣∣
q
, (1.6)

which includes (1.5) as a special case. Furthermore, they proposed a smoothing trust
region Newton (STRN) method and proved that the sequence generated by the STRN
algorithm is globally convergent to a point satisfying the affine-scaled second order
necessary optimality condition. In [7], Bian and Chen proposed an SQR algorithm for
problem (1.6) (possibly with box constraints) and showed that the worst-case iteration
complexity of the SQR algorithm for finding an ε-stationary point is O(ε−2). Cartis
et al. [17] considered problem

min
x

h(x) + ϕ(c(x)),

where h : R
N → R and c : R

N → R
M are continuously differentiable and ϕ :

R
M → R is convex and is globally Lipschitz continuous but possibly nonsmooth.

They proved that it takes at mostO(ε−2) iterations to obtain an ε-KKT point by a first
order trust region method or a quadratic regularization method. Ghadimi and Lan [37]
generalized Nesterov’s accelerated gradient (AG) method [51], originally designed
for smooth convex optimization, to solve problem

min
x

h(x) + ψ(x),

123

Author's personal copy



470 Y.-F. Liu et al.

where h : RN → R is continuous differentiable and ψ(x) : RN → R is a (simple)
convex nonsmooth function with special structures. They showed that it takes at most
O(ε−2) iterations to reduce a first order criticality measure below ε for the generalized
AGmethod. Jiang and Zhang [43] considered the following block-structured problem

min
x

h(x1, x2, . . . , xM ) +
M∑

m=1

ψm(xm)

s.t. xm ∈ Xm, m = 1, 2, . . . , M,

where h : R
N → R is smooth, ψm(xm) : R

Nm → R are convex but nonsmooth.
They showed that the conditional gradient and gradient projection type of methods
can find an ε-KKT point of the above problem within O (

ε−2
)
iterations. Here we

should notice that the definitions of ε-KKT points in the aforementioned works are
different and thus are not comparable to each other.

In particular, when h(x) = ρ
2 ‖Ax − b‖2 , problem (1.5) becomes

min
x

ρ

2
‖Ax − b‖2 + ‖x‖qq . (1.7)

Chen et al. [22] showed that problem (1.7) is strongly NP-hard. Recently, iterative
reweighted L1 and L2 minimization algorithms were proposed to (approximately)
solve problem (1.7) (see [26,30,32,44,45] and references therein). In [25], Chen et al.
derived a lower bound theory for local minimizers of problem (1.7); i.e., each compo-
nent of any local minimizer of problem (1.7) is either zero or not less than a positive
constant which only depends on the problem inputs A, b, ρ, and q. Lu [48] extended
the lower bound theory to problem (1.5) with general h(x) satisfying (1.3). Based on
the derived lower bound theory, Lu proposed a novel iterative reweightedminimization
method for solving problem (1.5) and provided a unified global convergence analysis
for the aforementioned iterative reweighted minimization algorithms.

Another problem closely related to problem (1.7) is

min
x

‖x‖qq , s.t. Ax = b. (1.8)

In [36], Ge et al. showed that problem (1.8) and its smoothed version are strongly
NP-hard. Chartrand [18], Chartrand and Staneva [19], Foucart and Lai [32], and
Sun [57] established some sufficient conditions under which problem (1.8) is able
to recover the sparsest solution to the undetermined linear system Ax = b. Efficient
iterative reweighted minimization algorithms were proposed to solve problem (1.8)
by Chartrand and Yin [20], Foucart and Lai [32], Daubechies et al. [30], Rao and
Kreutz-Delgado [56], and Candès, Wakin, and Boyd [14]. It was shown in [30, The-
orem 7.7 (i)] that under suitable conditions, the sequence generated by the iterative
reweighted L2 minimization algorithms converges to the global minimizer of problem
(1.8). Moreover, the following related problem

min
x

‖x‖qq , s.t. Ax = b, x ≥ 0, (1.9)
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A smoothing SQP framework for composite Lq minimization 471

was also considered in [36], and the authors developed an interior-point potential
reduction algorithm for solving problem (1.8), which is guaranteed to return a scaled
ε-KKT point in nomore thanO(ε−1 log ε−1) iterations. The similar ideawas extended
by Ji et al. [41] to solve the matrix counterpart of problem (1.9) where the unknown
variable is a positive semidefinite matrix.

Although many algorithms have been mentioned in the above, they cannot be used
to solve problem (1.1). For instance, the potential reduction algorithm in [36] cannot
be applied to solve problem (1.1) where h(x) is not concave; the SQR algorithms
[6,7] and the interior-point algorithms [22] cannot deal with the composite Lq term
f (x) and the general polyhedral constraint in problem (1.1); the algorithm proposed
in [17] cannot be used to solve problem (1.1) either, since the composite Lq term
f (x) in the objective function of (1.1) cannot be expressed as a form of ϕ(c(x)). The
aforementioned iterative reweightedminimizationmethods could bemodified to solve
problem (1.1). However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear so far and global convergence of
some of them are still unknown [14]. The goal of this paper is to develop an algorithmic
framework for problem (1.1) with worst-case iteration complexity guarantee.

1.2 Our contribution

In this paper, we consider polyhedral constrained composite nonsmooth nonconvex
non-Lipschitzian Lq minimization problem (1.1), which includes problems (1.5),
(1.6), (1.7), (1.8), and (1.9) as special cases. A sharp difference between problem
(1.1) and the aforementioned problems lies in the composite term in ‖ · ‖qq , i.e., prob-
lem (1.1) tries to find a solution such that the number of positive components of the
vector b − Ax is as small as possible. However, problem (1.5), for instance, tries to
find a solution such that the number of nonzero entries of x is as small as possible.
In other words, problem (1.1) and its special case problem (1.4) considered in this
paper are essentially sparse optimization problems with inequality constraints while
all previously mentioned problems are sparse optimization with equality constraints.

We propose a smoothing sequential quadratic programming (SSQP) framework
for solving problem (1.1) (and problem (1.4)), where a convex quadratic program
(QP) is (approximately) solved at each iteration, and analyze the worst-case iteration
complexity of the proposed algorithmic framework. One iteration in this paper refers
to (approximately) solving one convex QP subproblem. To the best of our knowledge,
this is the first algorithm/framework for solving polyhedral constrained composite
non-Lipschitzian Lq minimization with worst-case iteration complexity analysis. The
main contributions of this paper are summarized as follows.

– Problem (1.4) is shown to be strongly NP-hard (see Theorem 2.1);
– KKT optimality conditions for local minimizers of problem (1.1) are derived (see
Theorem 3.3);

– An SSQP algorithmic framework is proposed for solving problem (1.1) and its
worst-case iteration complexity is analyzed. In particular, we show in Theorem
5.12 that the SSQP framework can return an ε-KKT point of problem (1.1) in
Definition 5.7 within O (

εq−4
)
iterations. Here we should notice that the ε-KKT
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point defined in Definition 5.7 is stronger than the ones used in [6,7,24,25,36]
when problem (1.1) reduces to problems (1.5) and (1.6).

The rest of this paper is organized as follows. In Sect. 2, we show that problem (1.4)
is stronglyNP-hard. In Sect. 3, we show that problem (1.1) and auxiliary problem (3.2)
are equivalent in the sense that the two problems share the same local minimizers. This
equivalence result further implies the KKT optimality conditions of problem (1.1). In
Sect. 4, we give a smoothing approximation for problem (1.1). In Sect. 5, we propose
an SSQP algorithmic framework for solving problem (1.1) and analyze the worst-case
iteration complexity of the proposed algorithmic framework. Finally, we make some
concluding remarks in Sect. 6.

Notations. We denote M = {1, 2, . . . , M}. For any set K, |K| stands for its
cardinality.∇h(x) is the gradient of a continuously differentiable function h(x). PX (x)
λmax(B) is the projection of a point x onto the convex set X . IN is the N × N
identity matrix. We use λmax(B) to denote the largest eigenvalue of a real symmetric
matrix B. Throughout this paper, ‖ · ‖ denotes the Euclidean norm unless otherwise
specified.

2 Intractability analysis

In this section, we show that the unconstrained Lq minimization problem (1.4) with
any q ∈ (0, 1) is strongly NP-hard.

The proof of the NP-hardness of problem (1.4) is based on a polynomial time
transformation from the strongly NP-complete 3-partition problem [34, Theorem 4.4].
The 3-partition problem can be described as follows: given a set of positive integers
{ai }i∈S withS = {1, 2, . . . , 3m} and apositive integer B such thatai ∈ (B/4, B/2) for
all i ∈ S and

∑

i∈S
ai = mB, (2.1)

the problem is to check whether there exists a partition S1, . . . ,Sm of S such that

∑

i∈S j

ai = B, ∀ j = 1, 2, . . . ,m. (2.2)

Notice that the constraints on {ai } imply that each S j in (2.2) must contain exactly
three elements.

Theorem 2.1 For any q ∈ (0, 1), the unconstrained Lq minimization problem (1.4)
is strongly NP-hard.

Proof We prove the theorem by constructing a polynomial time transformation from
the 3-partition problem to the unconstrained Lq minimization problem (1.4) [34,55,
59]. For any given instance of the 3-partition problem with {ai }i∈S , m, and B, we
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A smoothing SQP framework for composite Lq minimization 473

construct an instance of problem (1.4) with M = 3m2 +4m and N = 3m2 as follows:

min
x

f (x) := f1(x) + f2(x) + f3(x), (2.3)

where

f1(x) =
3m∑

i=1

m∑

j=1

(
max

{
xi j , 0

}q + max
{
1 − xi j , 0

}q)
,

f2(x) =
3m∑

i=1

max

⎧
⎨

⎩

m∑

j=1

xi j − 1, 0

⎫
⎬

⎭

q

,

f3(x) =
m∑

j=1

max

{
B −

3m∑

i=1

ai xi j , 0

}q

.

It is easy to verify that f1(x) ≥ 3m2, f2(x) ≥ 0, f3(x) ≥ 0. Moreover, f (x) = 3m2

if and only if

xi j ∈ {0, 1} , ∀ i = 1, 2, . . . , 3m, ∀ j = 1, 2, . . . ,m, (2.4)
m∑

j=1

xi j ≤ 1, ∀ i = 1, 2, . . . , 3m, (2.5)

3m∑

i=1

ai xi j ≥ B, ∀ j = 1, 2, . . . ,m. (2.6)

Next, we show that the global minimum of problem (2.3) is not greater than 3m2 if
and only if the answer to the 3-partition problem is yes. We divide this into two steps.
(a) “if” direction. Assuming that there exists a partition of S such that (2.1) holds
true, the system (2.4), (2.5), and (2.6) (with inequalities in (2.5) and (2.6) replaced by
equalities) must have a feasible solution x, which further implies f (x) = 3m2. Thus
the optimal value of problem (2.3) is not greater than 3m2. (b) “only if” direction.
Assuming that there exists a point x such that f (x) = 3m2, we know that (2.4), (2.5),
and (2.6) hold true at x . In this case, by (2.6), (2.5) and (2.1), we can get that

mB ≤
m∑

j=1

3m∑

i=1

ai xi j =
3m∑

i=1

ai

m∑

j=1

xi j ≤
3m∑

i=1

ai = mB.

Thus (2.5) and (2.6) must hold with equalities. Combining this with (2.4), (2.5), and
(2.6), we can see that x corresponds to a partition of S.

Finally, since this transformation can be done in polynomial time and the 3-partition
problem is strongly NP-complete, we conclude that problem (1.4) is strongly NP-hard.

��
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474 Y.-F. Liu et al.

Theorem 2.1 indicates that, for any q ∈ (0, 1), it is computationally intractable to
find the global minimizer of problem (1.4).

Remark 2.2 Theorem 2.1 implies that problem (1.1) is strongly NP-hard, since prob-
lem (1.4) is a special case of problem (1.1). Note that although the strong NP-hardness
of problems (1.7) and (1.8) shown in [22] and [36] can imply the strongNP-hardness of
problem (1.1), they do not imply the strong NP-hardness of problem (1.4) as presented
in Theorem 2.1.

3 KKT optimality conditions

In this section, we derive the KKT optimality conditions for local minimizers of
problem (1.1) (and its special case problem (1.4)). To do so, we introduce an auxiliary
problem (3.2) and establish a key one-to-one correspondence of local minimizers of
problems (1.1) and (3.2).

For any given x̄ ∈ X , define the sets

Ix̄ = {m | (b − Ax̄)m < 0} ,

Jx̄ = {m | (b − Ax̄)m > 0} , (3.1)

Kx̄ = {m | (b − Ax̄)m = 0} ,

and the corresponding problem

min
x

∑

m∈Jx̄

(b − Ax)qm + h(x)

s.t. (b − Ax)m ≤ 0, m ∈ Kx̄ ,

x ∈ X .

(3.2)

Notice that the objective value of problem (3.2) is equal to that of problem (1.1) at point
x̄ . Moreover, the objective function of problem (3.2) is continuously differentiable in
the neighborhood of point x̄ .

It is easy to verify the following lemma.

Lemma 3.1 If x̄ is a local minimizer of problem (1.1), then it is also a local minimizer
of problem (3.2) with Jx̄ and Kx̄ given in (3.1).

The following lemma indicates that the converse of Lemma 3.1 is also true.

Lemma 3.2 If x̄ is a local minimizer of problem (3.2) with Jx̄ and Kx̄ given in (3.1),
then it is also a local minimizer of problem (1.1).

Lemma 3.2 can be verified by using the following two facts: the feasible direction cone
of problem (1.1) at any feasible point is finitely generated (because X is a polyhedral
set) and the function zq is non-Lipschitz and concave with respect to z ≥ 0. Since the
detailed proof of Lemma 3.2 is technical, we relegate it to “Appendix 2”.

We are now ready to provide the main theorem of this section, which presents the
KKT optimality conditions for local minimizers of problem (1.1).
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A smoothing SQP framework for composite Lq minimization 475

Theorem 3.3 [KKT Optimality Conditions] If x̄ ∈ X is a local minimizer of problem
(1.1), there must exist λ̄ ≥ 0 ∈ R

|Kx̄ | such that

λ̄m(b − Ax̄)m = 0, ∀ m ∈ Kx̄ (3.3)

and
x̄ − PX

(
x̄ − ∇L(x̄, λ̄)

) = 0, (3.4)

where
L(x, λ) =

∑

m∈Jx̄

(b − Ax)qm + h(x) +
∑

m∈Kx̄

λm(b − Ax)m, (3.5)

and Jx̄ and Kx̄ are defined in (3.1).

Proof By Lemmas 3.1 and 3.2, x̄ is a local minimizer of problem (1.1) if and only
if it is a local minimizer of problem (3.2) with Jx̄ and Kx̄ given in (3.1). Combining
this equivalence and the fact that L(x, λ) in (3.5) is the Lagrangian function of prob-
lem (3.2) with λ being the associated Lagrange multiplier, we obtain (3.3) and (3.4)
immediately. ��

Note that the following versions of the KKT point (or stationary point, or scaled
KKT point, or scaled stationary point, or first-order stationary point) for problems
(1.5) and (1.6) have been used in many previous works (see, e.g., [6,7,24,25,36]).

Definition 3.4 x̄ is called a KKT point of problem (1.5) if it satisfies

q|x̄ |q + X̄∇h(x̄) = 0, (3.6)

where |x̄ |q = (|x̄1|q , . . . , |x̄N |q)T and X̄ = diag (x̄1, . . . , x̄N ) .

Definition 3.5 x̄ is called a KKT point of problem (1.6) if it satisfies

ZT
x̄ ∇Fx̄ (x̄) = 0, (3.7)

where
Fx̄ (x) =

∑

aTm x̄ =0

∣∣∣aTmx
∣∣∣
q + h(x)

and Zx̄ is the matrix whose columns form an orthogonal basis for the null space of{
am | aTm x̄ = 0

}
.

In the following, we show that our definition of the KKT point for problem (1.1)
in Theorem 3.3 reduces to the ones in Definitions 3.4 and 3.5 when problem (1.1)
reduces to problems (1.5) and (1.6), respectively.

Proposition 3.6 When problem (1.1) reduces to problem (1.6), there holds

(3.3) and (3.4) ⇐⇒ (3.7); (3.8)
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When problem (1.1) reduces to problem (1.5), there holds

(3.3) and (3.4) ⇐⇒ (3.6).

Proof For succinctness, we only show the first statement of the proposition. The
second one can be shown by using the same arguments. When problem (1.1) reduces
to (1.6), problem (3.2) reduces to

min
x

∑

m∈Îx̄

(
−aTmx

)q +
∑

m∈Ĵx̄

(
aTmx

)q + h(x)

s.t. aTmx = 0, m ∈ K̂x̄ ,

with

Îx̄ =
{
m | aTm x̄ < 0

}
, Ĵx̄ =

{
m | aTm x̄ > 0

}
, and K̂x̄ =

{
m | aTm x̄ = 0

}
.

Therefore, the KKT optimality conditions (3.3) and (3.4) in Theorem 3.3 reduce to

the following: there exists λ̄ ∈ R

∣∣∣K̂x̄

∣∣∣
such that

λ̄ma
T
m x̄ = 0, ∀ m ∈ K̂x̄ , (3.9)

and
∇ L̂(x̄, λ̄) = 0, (3.10)

where

L̂(x, λ) =
∑

m∈Îx̄

(
−aTmx

)q +
∑

m∈Ĵx̄

(
aTmx

)q + h(x) +
∑

m∈K̂x̄

λma
T
mx .

Hence, to show (3.8), it suffices to show that

(3.9) and (3.10) ⇐⇒ (3.7).

To establish the direction “�⇒”, we recall the definitions of Zx̄ (see Definition 3.5)
and L̂(x, λ). By (3.10), we immediately have

ZT
x̄ ∇Fx̄ (x̄) = ZT

x̄ ∇ L̂(x̄, λ̄) = 0.

To establish the direction “⇐�”, we have by (3.7) and the defn of Zx̄ that

∇Fx̄ (x̄) ∈ Z ⊥̄
x ⇐⇒ ∇Fx̄ (x̄) ∈ span

{
am,m ∈ K̂x̄

}

⇐⇒ ∇Fx̄ (x̄) = −
∑

m∈K̂x̄

λ̄mam for some
{
λ̄m

}
m∈K̂x̄

,
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A smoothing SQP framework for composite Lq minimization 477

which implies (3.10) in turn. Due to the definition of K̂x̄ , (3.9) holds true trivially. The
proof is completed. ��

4 Smoothing approximation

Smoothing approximations for nonsmoothminimization have been extensively studied
in [6,9,21,52] and references therein. In this section, we propose to use the smooth
function

θ(t, μ) =

⎧
⎪⎨

⎪⎩

t, if t > μ;
t2
2μ + μ

2 , if 0 ≤ t ≤ μ;
μ
2 , if t < 0

(4.1)

to approximate the max function

θ(t) = max {t, 0} .

Based on (4.1), we can construct a smoothing function F̃ of F and thus a smoothing
approximation problem of nonsmooth problem (1.1).

We first summarize some useful properties of θ(t, μ). Clearly, for any fixedμ > 0,
we have

θ(t, μ) = θ(t), ∀ t ≥ μ,

and
θ(t, μ) ≥ μ

2
, ∀ t. (4.2)

In addition, θq(t, μ) is continuously differentiable and twice continuously differen-
tiable everywhere except at the points t = 0 and t = μ. The first and second order
derivatives of θq(t, μ) with respect to t are given as follows:

[
θq(t, μ)

]′ =

⎧
⎪⎨

⎪⎩

qtq−1, if t > μ;
qθq−1(t, μ)

t

μ
, if 0 ≤ t ≤ μ;

0, if t < 0,

(4.3)

[
θq(t, μ)

]′′ =

⎧
⎪⎪⎨

⎪⎪⎩

q(q − 1)tq−2, if t > μ;
q (q − 1) θq−2(t, μ)

t2

μ2 + qθq−1(t, μ)
1

μ
, if 0 < t < μ;

0, if t < 0.

(4.4)

Lemma 4.1 For any q ∈ (0, 1) andμ ∈ (0,+∞), the following statements hold true.

(i) 0 ≤ θq(t, μ) − θq(t) ≤ (
μ
2

)q
, ∀ t ∈ (−∞, μ];

(ii) max
{
|υ| | υ ∈ ∂t

([
θq(t, μ)

]′)} ≤ 4qμq−2, ∀ t ∈ R, where ∂t denotes the

Clarke generalized gradient with respect to t [27];
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478 Y.-F. Liu et al.

(iii) Define

κ(t, μ) =
{
4qμq−2, if − μ ≤ t ≤ 2μ;
0, otherwise.

(4.5)

Then

θq(t, μ) ≤ θq(t̂, μ) + [
θq(t̂, μ)

]′ (
t − t̂

) + κ(t̂, μ)

2

(
t − t̂

)2 (4.6)

for any t and t̂ such that t − t̂ ≥ −t̂/2 if t̂ > 2μ, or t ∈ (−∞,+∞) if
−μ ≤ t̂ ≤ 2μ, or t − t̂ ≤ μ if t̂ < −μ.

Proof See “Appendix 3”. ��
Define

F̃(x, μ) = f̃ (x, μ) + h(x), (4.7)

where

f̃ (x, μ) =
∑

m∈M
θq((b − Ax)m, μ). (4.8)

Based on Lemma 4.1 and the discussions beforehand, we know that F̃(x, μ) is a
smoothing function of F(x) and satisfies

F(x) ≤ F̃(x, μ) ≤ F(x) + M
(μ

2

)q
, ∀ x, (4.9)

and

∇ F̃(x, μ) = ∇ f̃ (x, μ) + ∇h(x) = −
∑

m∈M

[
θq(t, μ)

]′
t=(b−Ax)m

am + ∇h(x).

(4.10)

Therefore,

min
x

F̃(x, μ)

s.t. x ∈ χ
(4.11)

is a smoothing approximation to problem (1.1).

5 An SSQP framework and worst-case iteration complexity analysis

In this section, we propose a smoothing SQP (SSQP) algorithmic framework for
solving problem (1.1) (and its special case problem (1.4)). The proposed algorithmic
framework (approximately) solves a convex QP at each iteration. The objective func-
tion of the QP subproblem is constructed as a local upper bound of the smoothing
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A smoothing SQP framework for composite Lq minimization 479

function F̃(x, μ) in (4.7). In the proposed SSQP framework, the smoothing parameter
is updated if the residual of the smoothing problem (4.11) is not greater than some
constant (depending on the current smoothing parameter). We shall also analyze the
worst-case iteration complexity of the proposed framework.

Specifically, we construct a local convex quadratic upper bound of F̃(x, μ) and
present the SSQP algorithmic framework for problem (1.1) in Sect. 5.1. Thenwe define
the ε-KKT point of problem (1.1) and analyze the worst-case iteration complexity of
the proposed algorithm/framework for obtaining an ε-KKT point in Sect. 5.2. Finally,
we compare the proposed SSQP algorithm/framework with some existing algorithms
in Sect. 5.3.

5.1 An SSQP algorithmic framework for problem (1.1)

For any fixed μ > 0, define the quadratic approximation of f̃ (·, μ) around xk as

Q1(x, xk, μ) = f̃ (xk, μ) + ∇ f̃ (xk, μ)T (x − xk) + 1

2
(x − xk)

T B̃(xk, μ)(x − xk),

(5.1)
where f̃ (x, μ) is given in (4.8),

B̃(x, μ) = ATDiag (κ((b − Ax)1, μ), . . . , κ((b − Ax)M , μ)) A

=
∑

m∈M
κ((b − Ax)m, μ)ama

T
m ,

and κ(·, μ) is given in (4.5). By the definition of κ(·, μ), we have

λmax

(
B̃(x, μ)

)
≤ λmax

(
∑

m∈M
4qμq−2ama

T
m

)
≤ 4qμq−2

∑

m∈M
‖am‖2 . (5.2)

Similarly, define the quadratic approximation of h(·) around xk as

Q2(x, xk) = h(xk) + ∇h(xk)
T (x − xk) + 1

2
Lk
h‖x − xk‖2,

where Lk
h > 0 is an estimation of Lh in (1.3). Define

Q(x, xk, μ) = Q1(x, xk, μ) + Q2(x, xk). (5.3)

The following lemma indicates that the convex quadratic function Q(x, xk, μ) in (5.3)
is a local upper bound of the smoothing function F̃(x, μ) defined in (4.7) around point
xk as long as

h(x) ≤ Q2(x, xk) (5.4)

holds true with Lk
h > 0.
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480 Y.-F. Liu et al.

Lemma 5.1 For any xk and x such that

(A(xk − x))m ≤ μ, m ∈ Iμ
xk , (5.5)

(A(xk − x))m ≥ − (b − Axk)m
2

, m ∈ J μ
xk , (5.6)

where

Iμ
xk = {

m | (b − Axk)m < −μ
}
,

J μ
xk = {

m | (b − Axk)m > 2μ
}
, (5.7)

if (5.4) holds true with Lk
h > 0, then

F̃(x, μ) ≤ Q(x, xk, μ), (5.8)

where Q(x, xk, μ) is defined in (5.3).

Proof Recalling the definition of Q1(x, xk, μ) in (5.1) and treating (b−Ax)m and (b−
Axk)m as t and t̂ in (iii) of Lemma 4.1, respectively, we get f̃ (x, μ) ≤ Q1(x, xk, μ).

Combining this, (5.3), and (5.4), we immediately obtain the desired result (5.8). ��
Based on Lemma 5.1, we propose our SSQP algorithmic framework for solving

problem (1.1). Some remarks on the proposed SSQP algorithmic framework are in
order.

First, to solve the nonsmooth problem (1.1), the proposed SSQP framework approx-
imately solves a series of smoothing approximation problems (4.11) with decreasing
smoothing parameters. The solution accuracy of the smoothing approximation prob-
lem (4.11) is adaptively controlled by (5.12).

Second, the convex QP problem (5.13) can be efficiently solved (in an exact man-
ner) by the active-set method or the interior-point method [3,38,54,58,62]. In fact,
performing a simple shrink projection gradient step for solving problem (5.13) in
an inexact fashion is sufficient to guarantee (5.14) (see Lemma 5.4) and hence the
worst-case iteration complexity of the proposed framework (see Theorem 5.6).

Third, the Lipschitz constant Lh , when is unknown, is adaptively updated in Step
4, which is also used in [1,10,29,42,48,61]. If Lh is known, we can set Lmax

h =
Lmin
h = L0

h = Lh in the proposed algorithm, and the rk in (5.15) satisfies rk ≤ 1 at
each iteration. Other adaptive ways of updating Lh can also be found in [6,15–17].
However, this will not affect the worst-case iteration complexity order of the proposed
framework.

Finally, the parameter μ0 in (5.9) is chosen such that the final smoothing parameter
μ is equal to ε once the framework is terminated. This simplifies the worst-case
iteration complexity analysis, but does not affect the worst-case iteration complexity
order.

In the following analysis, we assume, without loss of generality, that F(x) ≥ 0 for
all x ∈ X . This, together with (4.9), immediately implies that F̃(x, μ) in (4.7) with
any μ ≥ 0 satisfies
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A smoothing SQP framework for composite Lq minimization 481

An SSQP Algorithmic Framework for Problem (1.1)
Step 1. Initialization. Choose the initial feasible point x0 and the parameters ε ∈ (0, 1], 0 < σ < 1,
η > 1, and Lmax

h ≥ L0h ≥ Lmin
h > 0 with Lmax

h ≥ Lh . Set i = 0 (outer iteration index), k =
0 (inner iteration index),

μ0 = ε

σ �logσ ε� ∈ (σ, 1], (5.9)

and

J0 = max

{
8q

∑

m
‖am‖2 + 2L̄h , 2max

m
{‖am‖} + 2

}
, (5.10)

where

L̄h ≥ max
{
L0h , Lmax

h , ηLh
}

. (5.11)

Step 2. Termination of the inner iteration. Set μ = μi . If xk satisfies
∥∥∥PX

(
xk − ∇ F̃ (xk , μ)

)
− xk

∥∥∥ ≤ μ, (5.12)

go to Step 5; else go to Step 3.
Step 3. Calculating the new iterate. Let xk+1 be an (approximate) solution of the following convex QP

min
x∈X Q(x, xk , μ)

s.t. (A(xk − x))m ≤ μ, m ∈ Iμ
xk ,

(A(xk − x))m ≥ − (b−Axk)m
2 , m ∈ J μ

xk

(5.13)

such that

F̃(xk , μ) − F̃(xk+1, μ) ≥ μ4−q

J0
, (5.14)

where Q(x, xk , μ) is defined in (5.3) and Iμ
xk ,J

μ
xk are defined in (5.7), respectively. Compute

sk+1 = xk+1 − xk , yk+1 = ∇h(xk+1) − ∇h(xk ), and

rk = h
(
xk+1

) − h(xk ) − ∇h(xk )
T (

xk+1 − xk
)

1
2 L

k
h‖xk+1 − xk‖2

. (5.15)

Step 4. Updating the estimated Lipschitz constant. If rk ≤ 1, compute Lk+1
h by

Lk+1
h = max

{
min

{
Lmax
h ,

sTk+1yk+1

‖sk+1‖2
}

, Lmin
h

}
, (5.16)

set k = k + 1, and go to Step 2; else set

Lkh = ηLkh ,

and go to Step 3.
Step 5. Termination of the outer iteration. If μ ≤ ε, terminate the algorithm; else go to Step 6.
Step 6. Updating the smoothing parameter. Set

μi+1 = σμi ,

i = i + 1, x0 = xk , k = 0, and go to Step 2.
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482 Y.-F. Liu et al.

F̃(x, μ) ≥ 0, ∀ x ∈ X , ∀ μ ≥ 0. (5.17)

Next, we show that the proposed SSQP framework iswell defined andwill terminate
after finitely many iterations.

Lemma 5.2 For any μ > 0 and k ≥ 0, Step 3 in the proposed SSQP framework will
be executed at most

K0 :=
⌈
logη

Lh

Lmin
h

⌉
+ 1 (5.18)

times, i.e., the convex QP in the form of (5.13) with any μ > 0 and k ≥ 0 will be
(approximately) solved at most K0 times.

Proof It follows from (5.16) that Lk
h ≥ Lmin

h for any k ≥ 0. Since

Lk
hη

K0−1 ≥ Lmin
h ηK0−1 ≥ Lh,

it follows from (1.3) that

h(xk+1) ≤ h(xk) + ∇h(xk)
T (xk+1 − xk) + 1

2
Lh‖xk+1 − xk‖2

≤ h(xk) + ∇h(xk)
T (xk+1 − xk) + 1

2
Lk
hη

K0−1‖xk+1 − xk‖2,

which further implies that rk in (5.15) satisfies rk ≤ 1. According to Step 4 of the
SSQP framework, the inner iteration index k will be incremented after solving the
convex QP in the form of (5.13) at most K0 times. ��
Lemma 5.3 For any k ≥ 0 in the SSQP framework, we have

Lk
h ≤ L̄h, (5.19)

where L̄h is given in (5.11).

Proof From (1.3), for any x ∈ X , we have

h (x) − h(xk) − ∇h(xk)T (x − xk)
1
2 Lh‖x − xk‖2

≤ 1.

According to Step 4 of the SSQP framework, Lk
h is set to be ηLk

h only when rk > 1,
and in this case there must hold Lk

h < Lh . Hence, (5.11) is true.

The following Lemma 5.4 guarantees the existence of xk+1 satisfying the relation
(5.14).

Lemma 5.4 For any μ ∈ (0, 1] and k ≥ 0 in the proposed SSQP framework, suppose
that
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A smoothing SQP framework for composite Lq minimization 483

– xexactk+1 is the solution of problem (5.13),
– xsnormk+1 is the solution of the following problem

min
x∈X

Q(x, xk, μ)

s.t. ‖A (x − xk)‖∞ ≤ μ,
(5.20)

– and
xprojk+1 = xk + ξkτkdk, (5.21)

where

τk = μ

(maxm {‖am‖} + 1) ‖dk‖ , (5.22)

ξk = min

⎧
⎨

⎩
−dTk ∇ F̃ (xk, μ)

τkdTk

(
B̃k + Lh IN

)
dk

, 1

⎫
⎬

⎭ , (5.23)

and

dk = PX (xk − ∇ F̃ (xk, μ)) − xk .

If (5.12) is not satisfied, then

F̃(xk, μ) − F̃(xexactk+1 , μ) ≥ F̃(xk, μ) − F̃(xsnormk+1 , μ)

≥ F̃(xk, μ) − F̃(xprojk+1, μ) ≥ μ4−q

J0
, (5.24)

where J0 and L̄h are given in (5.10) and (5.11), respectively.

Proof For simplicity, denote B̃(xk, μ) and∇ F̃ (xk, μ) by B̃k and∇ F̃k , respectively in
the proof. Since dk = PX (xk − ∇ F̃k) − xk, it follows from the property of projection
that

− ∇ F̃T
k dk ≥ ‖dk‖2 ≥ 0. (5.25)

This implies that ξk in (5.23) satisfies ξk ∈ [0, 1].
Next, we first show the last inequality F̃(xk, μ)− F̃(xprojk+1, μ) ≥ μ4−q/J0 in (5.24)

holds true.
We claim that xk (ξ) := xk + ξτkdk is feasible to problem (5.13) for all ξ ∈ [0, 1].

First of all, since (5.12) is not satisfied, we have

‖dk‖ > μ. (5.26)

By this and (5.22), we get

τk ≤ μ

(maxm {‖am‖} + 1) μ
= 1

maxm {‖am‖} + 1
≤ 1.
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Hence, xk (ξ) = (1 − ξτk) xk +ξτk PX (xk −∇ F̃k) is a convex combination of xk ∈ X
and PX (xk − ∇ F̃k) ∈ X . By the convexity of X , we have

xk(ξ) ∈ X , ∀ ξ ∈ [0, 1]. (5.27)

Moreover, by the definition (5.22) of τk, we have

∣∣(A(xk − xk(ξ)))m
∣∣ =

∣∣∣aTm(xk − xk(ξ))

∣∣∣ = ξτk |aTmdk | ≤ ξτk ‖am‖ ‖dk‖ ≤ μ

(5.28)
for all ξ ∈ [0, 1] and m ∈ M. This shows that xk (ξ) satisfies (5.5) and (5.6) for all
ξ ∈ [0, 1]. Hence, xk (ξ) is feasible to problem (5.13) for all ξ ∈ [0, 1] and hence
xprojk+1 in (5.21) (due to ξk ∈ [0, 1]).

Now, we consider the univariate box constrained QP problem

ξk = arg min
0≤ξ≤1

Q(xk + ξτkdk, xk, μ), (5.29)

which admits a closed-form solution (5.23). We first consider the case ξk = 1, which

implies that −∇ F̃T
k dk ≥ τkdTk

(
B̃k + Lh IN

)
dk . Here, we have

τk∇ F̃T
k dk + 1

2
τ 2k dk(B̃k + Lh IN )dk ≤ τk

2
∇ F̃T

k dk ≤−τk

2
‖dk‖2 = −μ‖dk‖

2 (max {‖am‖}+1)
,

(5.30)

where the second inequality is due to (5.25). For the other case where ξk =
−∇ F̃T

k dk

τkdTk

(
B̃k+Lh IN

)
dk
, we have

ξkτk∇ F̃T
k dk + 1

2
ξ2k τ 2k dk(B̃k + Lh IN )dk = −

(
∇ F̃T

k dk
)2

2dTk

(
B̃k + Lh IN

)
dk

≤ − ‖dk‖4
2λmax

(
B̃k + Lh IN

)
‖dk‖2

(5.31)

≤ − ‖dk‖2μ2−q

2
(
4q

∑
m ‖am‖2 + Lh

) ,

where the first inequality is due to (5.25) and the last inequality is due to (5.2). Com-
bining (5.8), (5.30), and (5.31), we obtain

F̃(xk, μ) − F̃(xprojk+1, μ) = F̃(xk, μ) − F̃(xk + ξkτkdk, μ)

≥ F̃(xk, μ) − Q(xk + ξkτkdk, μ)
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A smoothing SQP framework for composite Lq minimization 485

= −ξkτk∇ F̃T
k dk − 1

2
ξ2k τ 2k dk(B̃k + Lh)dk

≥ min

{
μ‖dk‖

2 (max {‖am‖} + 1)
,

‖dk‖2μ2−q

2
(
4q

∑
m ‖am‖2 + Lh

)
}

.

This, together with (5.10), (5.11), and (5.26), immediately implies the desired result

F̃(xk, μ) − F̃(xprojk+1, μ) ≥ μ4−q

J0
.

Now we show the first two inequalities in (5.24). From the above analysis (cf.
(5.27) and (5.28)), we know that xprojk+1 is feasible to problem (5.20). Since xsnormk+1 is
the solution of problem (5.20), it follows that

F̃(xk, μ) − F̃(xsnormk+1 , μ) ≥ F̃(xk, μ) − F̃(xprojk+1, μ).

Moreover, since the feasible region of problem (5.20) is a subset of the one of problem
(5.13), we immediately get

F̃(xk, μ) − F̃(xexactk+1 , μ) ≥ F̃(xk, μ) − F̃(xsnormk+1 , μ).

The proof is completed. ��
As shown in Lemma 5.4, for the next iterate xk+1 to achieve a decrease of μ4−q/J0

as required in (5.14), problem (5.13) is not necessarily to be solved in an exact manner;
a simple shrink projection gradient step, i.e., xprojk+1 = xk + ξkτkdk, suffices to satisfy
(5.24). This gives the flexibility to choose subroutines for solving problem (5.13)
inexactly.

It is also worthwhile remarking that Lemma 5.4 holds true for any convex set X ,
which is not necessarily a polyhedron. IfX = R

N , then problem (5.20) is a trust region
subproblem with a scaled infinity norm constraint. The infinity norm in (5.20) could
be replaced by the Euclidean norm, and the solution to the corresponding counterpart
still satisfies (5.14).

Without loss of generality, we focus on analyzing the SSQP framework when xk+1

in Step 3 is chosen to be xprojk+1 in (5.21) in the rest part of this section. The same results
hold true if xk+1 in Step 3 is chosen such that (5.14) is satisfied. For instance, xk+1
can also be chosen to be xexactk+1 or xsnormk+1 in Lemma 5.4.

The following lemma states that the inner loop termination criterion (5.12) of the
SSQP framework can be satisfied after finite number of iterations.

Lemma 5.5 Let xk+1 = xprojk+1 in the proposed SSQP framework. Then, for any μ ∈
(0, 1], Step 2 of the proposed SSQP framework will be executed at most

⌈
F̃(x0, 1)J0μ

q−4
⌉
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486 Y.-F. Liu et al.

times, and the inner termination criterion (5.12) is satisfied after at most

⌈
F̃(x0, 1)J0K0μ

q−4
⌉

iterations, where J0 and K0 are given in (5.10) and (5.18), respectively.

Proof For anyμ ∈ (0, 1], we use k̂ to denote the first inner iteration index such that xk̂
satisfies (5.12). Then (5.26) holds true for all k ≤ k̂ − 1. Combining this and Lemma
5.4, we obtain

F̃(x0, μ) − F̃(xk̂, μ) =
k̂∑

k=1

(
F̃(xk−1, μ) − F̃(xk, μ)

)
≥ k̂

μ4−q

J0
.

By using (5.17), we conclude

k̂ ≤ F̃(x0, μ)J0μ
q−4 ≤ F̃(x0, 1)J0μ

q−4.

This, together with Lemma 5.2, immediately implies the second statement of Lemma
5.5. ��

Now, we are ready to show that the proposed SSQP framework terminates after
finite number of iterations.

Theorem 5.6 Let xk+1 = xprojk+1 in the proposed SSQP framework. Then, for any
ε ∈ (0, 1], the framework will terminate within at most

⌈
JqT εq−4

⌉
(5.32)

iterations, where

JqT =
σ q−4

(
F̃(x0, 1)J0K0 + 1

)

σ q−4 − 1
, (5.33)

and K0 and J0 are defined in (5.18) and (5.10), respectively.

Proof Define I0 = ⌊
logσ ε

⌋
. According to the SSQP framework, we have

μi = μ0σ
i ≥ μ0σ

I0 = ε, ∀ i = 0, 1, . . . , I0. (5.34)

In particular, we have
μI0 = μ0σ

I0 = ε. (5.35)

By (5.34) and Lemma 5.5, for any fixedμ > 0, the number of iterations that the SSQP
framework takes to return a point satisfying (5.12) is at most

⌈
F̃(x0, 1)J0K0μ

q−4
⌉

=
⌈
F̃(x0, 1)J0K0

(
μ0σ

i
)q−4

⌉
.
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Therefore, the total number of iterations for the proposed framework to terminate is
at most

I0∑

i=0

⌈
F̃(x0, 1)J0K0

(
μ0σ

i
)q−4

⌉

≤
(
F̃(x0, 1)J0K0 + 1

)
μ
q−4
0

σ (q−4)(I0+1) − 1

σ q−4 − 1
≤ JqT εq−4,

where the last inequality is due to (5.33) and (5.35). ��
The worst-case iteration complexity function in (5.32) is a strictly decreasing func-

tion with respect to q ∈ (0, 1) for fixed ε ∈ (0, 1). This is intuitive because problem
(1.1) becomes more difficult to solve as q decreases.

5.2 Worst-case iteration complexity analysis

In this subsection, we show that the point returned by the proposed SSQP framework
is an ε-KKT point of problem (1.1). To do this, we need to give the definition of the
ε-KKT point first. Our definition of the ε-KKT point of problem (1.1) is given as
follows, which is a perturbation of the KKT optimality conditions in Theorem 3.3.

Definition 5.7 (ε-KKT Point) For any given ε > 0, x̄ ∈ X is called an ε-KKT point
of problem (1.1) if there exists λ̄ ≥ 0 ∈ R

|Kε
x̄ | such that

∣∣λ̄m(b − Ax̄)m
∣∣ ≤ εq , m ∈ Kε

x̄ (5.36)

and ∥∥x̄ − PX
(
x̄ − ∇Lε(x̄, λ̄)

)∥∥ ≤ ε, (5.37)

where
Lε(x, λ) =

∑

m∈J ε
x̄

(b − Ax)qm + h(x) +
∑

m∈Kε
x̄

λm(b − Ax)m (5.38)

with

Iε
x̄ = {m | (b − Ax̄)m < −ε} ,

J ε
x̄ = {m | (b − Ax̄)m > ε} , (5.39)

Kε
x̄ = {m | − ε ≤ (b − Ax̄)m ≤ ε} .

Notice that if ε = 0 in (5.36), (5.37), and (5.39), then the ε-KKT point in Definition
5.7 reduces to the KKT point of problem (1.1) (cf. Theorem 3.3).

The following definition of the ε-KKT point for problem (1.6) has been used in
[7,24].
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Definition 5.8 For any ε ∈ (0, 1], x̄ is called an ε-KKT point of problem (1.6) if it
satisfies ∥∥∥

(
Z ε
x̄

)T ∇Fε
x̄ (x̄)

∥∥∥∞ ≤ ε, (5.40)

where
Fε
x̄ (x) =

∑

|aTm x̄|>ε

∣∣∣aTmx
∣∣∣
q + h(x)

and Z ε
x̄ is the matrix whose columns form an orthogonal basis for the null space of{

am | ∣∣aTm x̄
∣∣ ≤ ε

}
.

Our definition of the ε-KKT point in Definition 5.7 reduces to Definition 5.9 when
problem (1.1) reduces to problem (1.6).

Definition 5.9 For any given ε > 0, x̄ is called an ε-KKT point of problem (1.6) if

there exists λ̄ ∈ R
|K̂ε

x̄ | such that
∣∣∣λ̄maTm x̄

∣∣∣ ≤ εq , m ∈ K̂ε
x̄ (5.41)

and ∥∥∥∇ L̂ε(x̄, λ̄)

∥∥∥ ≤ ε, (5.42)

where

L̂ε(x, λ) =
∑

m∈Îε
x̄

(−aTmx)
q +

∑

m∈Ĵ ε
x̄

(aTmx)
q + h(x) +

∑

m∈K̂ε
x̄

λm(b − Ax)m

with

Îε
x̄ =

{
m | aTm x̄ < −ε

}
,

Ĵ ε
x̄ =

{
m | aTm x̄ > ε

}
, (5.43)

K̂ε
x̄ =

{
m | − ε ≤ aTm x̄ ≤ ε

}
.

Remark 5.10 The ε-KKT point for problem (1.6) in Definition 5.9 is stronger than the
one in Definition 5.8. On one hand, it is clear that (5.42) implies (5.40). On the other
hand, if (5.40) is true, then there must exist λ̄ such that (5.42) is satisfied.1 However,
this λ̄ does not necessarily satisfy (5.41).

In the next, we show that the point returned by the proposed SSQP framework is
an ε-KKT point of problem (1.1) defined in Definition 5.7.

For any given ε ∈ (0, 1], let x̄ be the point returned by the proposed SSQP frame-
work. When the framework is terminated, there holds μ = ε (cf. (5.35)). Then, it

1 Here, the differences between two norms (‖ · ‖∞ in (5.40) and ‖ · ‖ in (5.42)) are neglected.
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follows from (5.12) that x̄ ∈ X satisfies

∥∥∥x̄ − PX (x̄ − ∇ F̃(x̄, ε))
∥∥∥ ≤ ε. (5.44)

Define Iε
x̄ ,J ε

x̄ , and Kε
x̄ as in (5.39), and

λ̄m = [
θq(t, ε)

]′
t=(b−Ax̄)m

, m ∈ Kε
x̄ . (5.45)

It is obvious that λ̄m ≥ 0 for all m ∈ Kε
x̄ .

Theorem 5.11 For any ε ∈ (0, 1], let x̄ be the point returned by the proposed SSQP
framework and λ̄ be defined in (5.45). Then x̄ and λ̄ satisfy (5.36) and (5.37).

Proof Let us first show that x̄ and λ̄ satisfy (5.36).

– For any m ∈ Kε
x̄ with −ε ≤ (b − Ax̄)m ≤ 0, it follows from (4.3) and (5.45) that

λ̄m = 0, and thus
∣∣λ̄m(b − Ax̄)m

∣∣ = 0 ≤ εq;
– For any m ∈ Kε

x̄ with 0 < (b − Ax̄)m ≤ ε, we have

∣∣λ̄m(b − Ax̄)m
∣∣= qθq−1((b−Ax̄)m, ε)

(b−Ax̄)m
ε

(b−Ax̄)m ≤q
(ε

2

)q−1
ε≤εq ,

where the equality comes from (4.3) and (5.45), the first inequality is due to (4.2)
and 0 < (b−Ax̄)m ≤ ε, and the second inequality is due to the fact that q21−q ≤ 1
for all q ∈ (0, 1).

Now we show that x̄ and λ̄ satisfy (5.37). By (5.44) and the nonexpansive property
of the projection operator PX (·), we get

∥∥x̄ − PX (x̄ − ∇Lε(x̄, λ̄))
∥∥

≤
∥∥∥x̄ − PX (x̄ − ∇ F̃(x̄, ε))

∥∥∥ +
∥∥∥PX (x̄ − ∇ F̃(x̄, ε)) − PX (x̄ − ∇Lε(x̄, λ̄))

∥∥∥

≤ ε + ‖∇ F̃(x̄, ε) − ∇Lε(x̄, λ̄)‖. (5.46)

From (4.10), (5.38), and (5.45), we have ∇ F̃(x̄, ε)−∇Lε(x̄, λ̄) = 0. Combining this
with (5.46) immediately yields (5.37). The proof is completed. ��

By combining Theorems 5.6 and 5.11, we obtain the following worst-case iteration
complexity result.

Theorem 5.12 For any ε ∈ (0, 1], the total number of iterations for the SSQP frame-
work to return an ε-KKT point of problem (1.1) satisfying (5.36) and (5.37) is at
most

⌈
JqT εq−4

⌉
,

where JqT is given in (5.33).
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As a direct consequence of Theorem 5.12, we have the following corollary.

Corollary 5.13 For any ε ∈ (0, 1], let x̄ be the point returned by the SSQP framework
when applied to solve problem (1.6), and define

λ̄m = sgn
(
aTm x̄

) [
θq(t, ε)

]′
t=|aTm x̄| , m ∈ K̂ε

x̄ ,

where K̂ε
x̄ is given in (5.43). Then, x̄ and λ̄ satisfy (5.41) and (5.42). Moreover, the

total number of iterations for the SSQP framework to return the ε-KKT point x̄ of
problem (1.6) is at most

O
(
εq−4

)
.

5.3 Comparisons of SSQP and SQR

In this subsection, we compare the proposed SSQP framework with the SQR algo-
rithms proposed in [7] and [24] for solving problem (1.6) (possibly with box
constraints) and problem (1.5), respectively.

First of all, the SSQP algorithmic framework is designed for solving amore difficult
problem, i.e., problem (1.1) with a composite non-Lipschitzian objective and a general
polyhedral constraint, which includes problems (1.5) and (1.6) as special cases.

Now, we give a detailed comparison of the SQR algorithm in [7] and the proposed
SSQP framework with xk+1 chosen to be xprojk+1 at each iteration from the perspective
of iteration complexity and solution quality when both of them are applied to solve
the unconstrained problem (1.6); see Table 1, where F̃(x, ε) reduces to

F̃(x, ε) =
∑

m∈M

(
θq

(
aTmx, ε

)
+ θq

(
−aTmx, ε

))
+ h(x).

It is shown in [7] that the SQR algorithm returns an ε-KKT point x̄ satisfying (5.40)
within O(ε−2) iterations. The SSQP framework with xk+1 = xprojk+1, when applied to

Table 1 Comparisons of the SQR algorithm in [7] and the proposed SSQP framework with xk+1 = x
proj
k+1

in (5.21) for solving problem (1.6)

SQR [7] SSQP

Complexity

Iteration number O(ε−2) O(εq−4)

Subproblem per iteration n-Dimensional QP (2.9) in [7] Univariate QP (5.29)

Quality

Optimality residual I
∥∥∥
(
Zε
x̄

)T ∇Fε
x̄ (x̄)

∥∥∥∞ ≤ ε

∥∥∥∇ L̂ε(x̄, λ̄)

∥∥∥ ≤ ε

Optimality residual II
∥∥∥∇ F̃ (x̄, ε)

∥∥∥≤O
(
ε2−2/q

) ∥∥∥∇ F̃ (x̄, ε)
∥∥∥ ≤ ε

Complementary violation Not guaranteed
∣∣∣λ̄maTm x̄

∣∣∣ ≤ εq , m ∈ K̂ε
x̄
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solve problem (1.6), can return an ε-KKT point x̄ satisfying (5.41) and (5.42) in no
more than O(εq−4) iterations (see Corollary 5.13). Here, one iteration in the SQR
algorithm needs solving exactly an n-dimensional box constrained QP (problem (2.9)
in [7]), and the exact solution of the QP subproblem is necessary for Lemma 2.3 there
to hold true. Since the condition number of the quadratic objective in (2.9) in [7]
increases asymptotically with O(μq−2) as the smoothing parameter μ decreases, the
n-dimensional box constrained QP (2.9) becomes more and more difficult to solve. In
contrast, one iteration in the SSQP framework with xk+1 = xprojk+1 only needs solving
approximately the QP problem (5.13). As shown in Lemma 5.4, a good approximate
solution (5.21) of problem (5.13) can be obtained by solving an univariate box con-
strained QP (5.29), which admits a closed-form solution (5.23).

From the perspective of solution quality, the SSQP framework (with xk+1 = xprojk+1)
actually returns a better solution compared to the SQR algorithm. As discussed in
Remark 5.10, the ε-KKT point returned by the SSQP framework is stronger than
the one returned by the SQR algorithm. In addition, in terms of the residual of
smoothing problem, the SSQP framework actually returns an ε-KKT point x̄ sat-

isfying
∥∥∥∇ F̃ (x̄, ε)

∥∥∥ ≤ ε, while the SQR algorithm outputs an ε-KKT point x̄ with
∥∥∥∇ F̃ (x̄, ε)

∥∥∥ ≤ O (
ε2−2/q

)
. To derive this bound, it suffices to use (2.13) and (2.19) of

[7]. Notice that both of the parameters γ and ρ in (2.13) are zero in the unconstrained
case.

Finally, we remark that the proposed SSQP framework can be directly applied to
solve problem (1.1) with q = 1 and is guaranteed to return an ε-Clarke KKT point
of problem (1.1) withinO(ε−3) iterations. The worst-case iteration complexity of the
proposed SSQP framework for computing an ε-Clarke KKT point of problem (1.1)
with q = 1 is thus the same as the one of the SQR1 algorithm for problem (1.5) with
q = 1 in [6] and better thanO(ε−3 log ε−1) of the smoothing direct search algorithm
for unconstrained Lipschitzian minimization problems in [35].

In the following, we first extend the definition of ε-Clarke KKT point for uncon-
strained locally Lipschitz continuous optimization problem in [35] to constrained
locally Lipschitz continuous optimization problem (1.1) with q = 1, and then present
the worst-case iteration complexity of the proposed SSQP framework for obtaining
such an ε-Clarke KKT point.

Definition 5.14 The point x̄ is called an ε-Clarke KKT point of problem (1.1) with
q = 1 if it satisfies

∥∥∥PX
(
x̄ − ∇ F̃(x̄, μ)

)
− x̄

∥∥∥ ≤ ε and μ ≤ ε.

Using the same argument as in the proof of Theorem 5.6, we can show the following
iteration complexity result.

Theorem 5.15 For any ε ∈ (0, 1], the total number of iterations for the SSQP frame-
work to return an ε-Clarke KKT point of problem (1.1)with q = 1 is at mostO (

ε−3
)
.
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6 Concluding remarks

In this paper, we considered the composite nonsmooth nonconvex non-Lipschitzian
Lq (0 < q < 1) minimization problem (1.1) over a general polyhedral set. We
derived KKT optimality conditions for problem (1.1). These conditions unify vari-
ous optimality conditions for non-Lipschitzian optimization problems developed in
[6,7,24,25,36].Moreover, we proposed an SSQP framework for solving problem (1.1)
and showed that the proposed framework is guaranteed to return an ε-KKT point of
problem (1.1) satisfying (5.36) and (5.37) within O(εq−4) iterations. To the best of
our knowledge, this is the first algorithmic framework for the polyhedral constrained
composite Lq minimization with worst-case iteration complexity analysis. The pro-
posed SSQP framework can directly be applied to solve problem (1.1) with q = 1 and
its worst-case iteration complexity for returning an ε-Clarke KKT point is O(ε−3).

Although we focused on the Lq minimization problem (1.1) in this paper, the
techniques developed here can be useful for developing and analyzing algorithms
for problems with other regularizers such as the ones given in “Appendix 1” of [6].
Moreover, most of the results presented in this paper can be easily generalized to
problem (1.1) where the unknown variable is a positive semidefinite matrix.
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for many useful discussions on an early version of this paper. We also thank Prof. Alexander Shapiro, the
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the presentation of the paper.

Appendix 1: Three motivating applications

Support Vector Machine [11,28]. The support vector machine (SVM) is a state-of-
the-art classification method introduced by Boser, Guyon, and Vapnik in 1992 in [11].

Given a database
{
sm ∈ R

N−1, ym ∈ R
}M
m=1 , where sm is called pattern or example

and ym is the label associated with sm . For convenience, we assume the labels are +1
for positive examples and −1 for negative examples. If the data are linearly separable,
the task of SVM is to find a linear discriminant function of the form �(s) = ŝT x with
ŝ = [sT , 1]T ∈ R

N such that all data are correctly classified and at the same time the
margin of the hyperplane � that separates the two classes of examples is maximized.
Mathematically, the above problem can be formulated as

min
x

1

2

N−1∑

n=1

x2n

s.t. ymŝ
T
m x ≥ 1, m = 1, 2, . . . , M.

(6.1)

In practice, data are often not linearly separable. In this case, problem (6.1) is not
feasible, and the following problem can be solved instead:
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min
x

M∑

m=1

max
{
1 − ymŝ

T
m x, 0

}q + ρ

2

N−1∑

n=1

x2n , (6.2)

where the constant ρ ≥ 0 balances the relative importance of minimizing the clas-
sification errors and maximizing the margin. Problem (6.2) with q = 1 is called the
soft-margin SVM in [28]. It is clear that problem (6.2) is a special instance of (1.1)
with

A =
⎡

⎢⎣
y1ŝT1

...

yM ŝTM

⎤

⎥⎦ , b = e, h(x) = ρ

2

N−1∑

n=1

x2n , and X = R
N .

Here, e is the all-one vector of dimension M .
Joint Power andAdmissionControl [46,49]. Consider awireless network consisting
of K interfering links (a link corresponds to a transmitter/receiver pair) with channel
gains gkj ≥ 0 (from the transmitter of link j to the receiver of link k), noise power
ηk > 0, signal-to-interference-plus-noise-ratio (SINR) target γk > 0, and power
budget p̄k > 0 for k, j = 1, 2, . . . , K .Denoting the transmission power of transmitter
k by xk , the SINR at the kth receiver can be expressed as

SINRk = gkkxk

ηk +
∑

j =k

gk j x j
, k = 1, 2, . . . , K . (6.3)

Due to the existence of mutual interferences among different links [which correspond
to the term

∑
j =k gk j x j in (6.3)], the linear system

SINRk ≥ γk, p̄k ≥ xk ≥ 0, k = 1, 2, . . . , K

may not be feasible. The joint power and admission control problem aims at supporting
amaximumnumber of links at their specifiedSINR targetswhile using aminimum total
transmission power. Assuming without loss of generality that gkk = γk = p̄k = 1 for
all k = 1, 2, . . . , K , the joint power and admission control problem can be formulated
as follows (see [46])

min
x

‖max {b − Ax, 0}‖qq + ρeT x

s.t. 0 ≤ x ≤ e,
(6.4)

where ρ > 0 is a parameter, b = [η1, η2, . . . , ηK ]T , and A = [akj ] ∈ R
K×K with

akj =
{
1, if k = j;
−gkj , if k = j.

By utilizing the special structure of A, i.e., all of its diagonal entries are positive and
off-diagonal entries are nonpositive, it is shown in [47, Theorem 1] that the solution
of problem (6.4) can maximize the number of supported links using a minimum total
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transmission power as long as q is chosen to be sufficiently small (but not necessarily
to be zero). Clearly, (6.4) is a special case of (1.1) with

M = K , N = K , h(x) = ρeT x, and X = {x | 0 ≤ x ≤ e} ⊆ R
N .

Linear Decoding Problem [13]. Given the coding matrixC ∈ R
K1×K2 and corrupted

measurement c = Cx + eu ∈ R
K1 , where eu is an unknown vector of errors, the

linear decoding problem is to recover x from c. It is shown in [13] that, if C satisfies
the restricted isometry property, x can be exactly recovered by solving the convex
minimization problem

min
x

‖c − Cx‖1

provided that eu is sparse. By [33, Theorem 4.10], Lq (q ∈ (0, 1)) minimization

min
x

‖c − Cx‖qq (6.5)

has a better capability of recovering x than L1 minimization. By using the equation
|a| = max {a, 0} +max {−a, 0} , it is simple to see problem (6.5) is a special case of
(1.1) with

M = 2K1, N = K2, A =
⎡

⎣
C

−C

⎤

⎦ , b =
⎡

⎣
c

−c

⎤

⎦ , h(x) = 0, and X = R
N .

Appendix 2: Proof of Lemma 3.2

Let x̄ be any local minimizer of problem (3.2) with Ix̄ , Jx̄ , and Kx̄ given in (3.1).
For convenience, we denote Ix̄ , Jx̄ , Kx̄ as I, J , K in this proof. We prove that x̄
is a local minimizer of problem (1.1) by dividing the proof into two parts. The first
one is the easy case whereK = ∅ and the second one deals with the complicated case
where K = ∅.

Part 1: K = ∅. In this case, x̄ is a local minimizer of problem

min
x

‖(b − Ax)J ‖qq + h(x)

s.t. x ∈ X .

By the definition, x̄ is a local minimizer of problem (1.1).
Part 2: K = ∅. Consider the feasible direction cone Dx̄ of problem (1.1) at point

x̄, i.e.,
Dx̄ = { d | x̄ + αd ∈ X for some α > 0} .

For simplicity, we use D to denote Dx̄ in the subsequent proof. For any subset Kp of
K indexed by p = 1, 2, . . . , P := 2|K|, let Kc

p = K \ Kp, and define

Dp =
{
d | (Ad)Kp ≤ 0, (Ad)Kc

p
≥ 0

}⋂
D.
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By theMinkowski–WeylTheorem [5, Proposition 3.2.1], there existd1p, d
2
p, . . . , d

gp
p ∈

Dp, such that

Dp = Cone
{
d1p, d

2
p, . . . , d

gp
p

}
,

and thus

D =
P⋃

p=1

Cone
{
d1p, d

2
p, . . . , d

gp
p

}
.

Without loss of generality, assume ‖d j
p‖ = 1 for all j = 1, 2, . . . , gp, p =

1, 2, . . . , P. For any d ∈ ⋃P
p=1

{
d1p, d

2
p, . . . , d

gp
p

}
⊆ D, define

←−K d = {m ∈ K | (Ad)m < 0} . (6.6)

Next, we consider the two cases where
←−K d is nonempty and empty, respectively. The

former happens when d is not a feasible direction of problem (3.2) at point x̄; while
the latter happens when d is a feasible direction of problem (3.2) at point x̄ .

Case 1:
←−K d = ∅. Since d ∈ D, there must exist εd0 so that x̄ + εd ∈ X holds for

all 0 ≤ ε ≤ εd0 . Define −→J d = {m ∈ J | (Ad)m > 0} . (6.7)

Choose εd1 small enough such that

(
b − Ax̄ − εd1 Ad

)

m
≤ 0, ∀ m ∈ I (6.8)

and (
b − Ax̄ − εd1 Ad

)

m
≥ (b − Ax̄)m

2
> 0, ∀ m ∈ −→J d . (6.9)

Therefore, for 0 ≤ ε ≤ min
{
εd0 , εd1

}
, we obtain

f (x̄ + εd) − f (x̄)

= ‖max {b − A (x̄ + εd) , 0} ‖qq − ‖max {b − Ax̄, 0} ‖qq
=

∑

m∈←−K d∪J
(b − Ax̄ − εAd)

q
m −

∑

m∈J
(b − Ax̄)qm (6.10)

≥
∑

m∈←−K d

(−Ad)
q
mεq +

∑

m∈−→J d

(
(b − Ax̄ − εAd)

q
m − (b − Ax̄)qm

)
(6.11)

≥
∑

m∈←−K d

(−Ad)
q
mεq +

∑

m∈−→J d

q (b − Ax̄ − εAd)
q−1
m (−ε(Ad)m) (6.12)

≥
∑

m∈←−K d

(−Ad)
q
mεq +

∑

m∈−→J d

q

(
(b − Ax̄)m

2

)q−1

(−ε(Ad)m) , (6.13)
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where (6.10) is due to (3.1), (6.6), and (6.8); (6.11) is due to (6.7); (6.12) is due to
the concavity of the function zq with respect to z > 0; (6.13) is due to (6.9) and

the definition of
−→J d in (6.7). Moreover, by (1.3) and the Taylor’s expansion, for any

0 ≤ ε ≤ 1, there exists ξ ∈ (0, 1) such that

h(x̄ + εd) − h(x̄) = ε∇h(x̄ + ξεd)T d

≥ −ε ‖∇h(x̄ + ξεd)‖
≥ −ε (‖∇h(x̄)‖ + εLh) (6.14)

≥ −ε (‖∇h(x̄)‖ + Lh) .

Combining (6.13) with (6.14), for any 0 ≤ ε ≤ min
{
εd0 , εd1 , 1

}
, we obtain

F(x̄ + εd) − F(x̄) ≥ λd1ε
q − λd2ε,

where

λd1 :=
∑

m∈←−K d

(−Ad)
q
mεq > 0,

λd2 :=
∑

m∈−→J d

q

(
(b − Ax̄)m

2

)q−1

(Ad)m + ‖∇h(x̄)‖ + Lh > 0.

Define

εd2 :=
(

λd1

λd2

) 1
1−q

and

ε̄d := min
{
εd0 , εd1 , εd2 , 1

}
> 0.

From the above analysis, we can conclude that, for any d ∈ ⋃P
p=1

{
d1p, d

2
p, . . . , d

gp
p

}

with
←−K d = ∅, F(x̄ + εd) ≥ F(x̄) holds for all ε ∈ [0, ε̄d ].

Case 2:
←−K d = ∅. Recall the definition of

←−K d (cf. (6.6)).
←−K d = ∅ implies that

d is a feasible direction of problem (3.2) at point x̄ . From the assumption that x̄ is a
local minimizer of problem (3.2), we know that there exists an ε̃ > 0 such that for all

d ∈ ⋃P
p=1

{
d1p, d

2
p, . . . , d

gp
p

}
with

←−K d = ∅, there holds F(x̄ + εd) ≥ F(x̄) for all

ε ∈ [0, ε̃].
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We now combine the above two cases: Case 1 and Case 2. Since there are finitely

many directions
⋃P

p=1

{
d1p, d

2
p, . . . , d

gp
p

}
, it follows that

ε̄ := min

{
min←−K d =∅, j=1,...,gp, p=1,...,P

{
ε̄d

j
p
}

, ε̃

}
> 0

and

x̄ + εd j
p ∈ X , F(x̄ + εd j

p) ≥ F(x̄), ∀ j = 1, 2, . . . , gp, p = 1, 2, . . . , P

(6.15)

hold true for all ε ∈ [0, ε̄].
Let Convp(x̄, ε̄) denote the convex hull spanned by points x̄ and x̄ + ε̄d j

p, j =
1, 2, . . . , gp. Then, for any x ∈ ⋃P

p=1 Convp(x̄, ε̄), we have F(x) ≥ F(x̄) by (6.15)
and the fact that f (x) is concave in Convp(x̄, ε̄). Furthermore, one can always choose
a sufficiently small but fixed ε > 0 such that B(x̄, ε)

⋂X ⊆ ⋃P
p=1 Convp(x̄, ε̄).

Therefore, x̄ is a local minimizer of problem (1.1). ��

Appendix 3: Proof of Lemma 4.1

We show the three items of Lemma 4.1 separately.

(i) of Lemma 4.1: it follows directly from the inequality

θq(t) ≤ θq(t, μ) ≤
(
θ(t) + μ

2

)q ≤ θq(t) +
(μ

2

)q
, ∀ t ≤ μ.

(ii) of Lemma 4.1: When t = 0 and t = μ, θq(t, μ) is twice continuously differ-
entiable with respect to t . Recall θq(t, μ) ≥ (μ/2)q for all t (cf. (4.2)). Then it
follows from (4.4) that

∣∣∣
[
θq(t, μ)

]′′∣∣∣ ≤ 4qμq−2, ∀ t /∈ {0, μ} .

This further implies (ii) of Lemma 4.1.
(iii) of Lemma 4.1: By the mean-value theorem [27, Theorem 2.3.7], we have

θq(t, μ) = θq(t̂, μ) + [
θq(t̂, μ)

]′ (
t − t̂

) + υ

2

(
t − t̂

)2
, (6.16)

where υ ∈ ∂t

([
θq(ξ t̂ + (1 − ξ)t, μ)

]′) and ξ ∈ [0, 1]. We consider the follow-

ing three cases.
– Case t̂ > 2μ : Since t − t̂ ≥ −t̂/2, it follows for any ξ ∈ [0, 1] that

ξ t + (1 − ξ)t̂ = t̂ + ξ(t − t̂) ≥ t̂/2 > μ.
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This, together with (4.4) and (4.5), implies that the υ in (6.16) satisfies

υ ≤ 0 = κ(t̂, μ).

From this and (6.16), we obtain (4.6).
– Case t̂ ∈ [−μ, 2μ] : From (ii) of Lemma 4.1, |υ| is uniformly bounded by

κ(t̂, μ) = 4qμq−2. Combining this with (6.16) yields (4.6).
– Case t̂ < −μ : Since t − t̂ ≤ μ, for any ξ ∈ [0, 1], it follows

ξ t + (1 − ξ)t̂ = t̂ + ξ(t − t̂) < 0.

From this, (4.4), (4.5), and (6.16), we can obtain (4.6).

This completes the proof of Lemma 4.1. ��

References

1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148
(1988)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS–SIAM Series on Opti-
mization. SIAM, Philadelphia (2001)

4. Berg, E.V.D., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci.
Comput. 31(2), 890–912 (2008)

5. Bertsekas, D.P.: Convex Analyis and Optimization. Athena Scientific, Massachusetts (2003)
6. Bian, W., Chen, X.: Worst-case complexity of smoothing quadratic regularization methods for non-

Lipschitzian optimization. SIAM J. Optim. 23(3), 1718–1741 (2013)
7. Bian, W., Chen, X.: Smoothing quadratic regularization methods for box constrained non-Lipschitz

optimization in image restoration. Technical report, Hong Kong Polytechnic University (2014)
8. Bian, W., Chen, X., Ye, Y.: Complexity analysis of interior point algorithms for non-Lipschitz and

nonconvex minimization. Math. Program. 149(1–2), 301–327 (2015)
9. Birbil, S.I., Fang, S.C., Frenk, J.B.G., Zhang, S.: Recursive approximation of the high dimensional

max function. Oper. Res. Lett. 33(5), 450–458 (2005)
10. Birgin, E.G.,Martínez, J.M., Raydan,M.:Nonmonotone spectral projected gradientmethods on convex

sets. SIAM J. Optim. 10(4), 1196–1211 (2000)
11. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: The Fifth

Annual Workshop of Computational Learning Theory, pp. 144–152 (1992)
12. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse

modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
13. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215

(2005)
14. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted �1 minimization. J. Fourier

Anal. Appl. 14(5), 877–905 (2008)
15. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-

mization. Part I: motivation, convergence and numerical results. Math. Program. 127(2), 245–295
(2011)

16. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. 130(2),
295–319 (2011)

17. Cartis, C., Gould,N.I.M., Toint, P.L.: On the evaluation complexity of composite functionminimization
with applications to nonconvex nonlinear programming. SIAM J. Optim. 21(4), 1721–1739 (2011)

123

Author's personal copy



A smoothing SQP framework for composite Lq minimization 499

18. Chartrand,R.:Exact reconstructionof sparse signals via nonconvexminimization. IEEESignal Process.
Lett. 14(10), 707–710 (2007)

19. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse
Probl. 24(3), 1–14 (2008)

20. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Internal Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3869–3872 (2008)

21. Chen,X.: Smoothingmethods for nonsmooth, nonconvexminimization.Math. Program. 134(1), 71–99
(2012)

22. Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained l2-l p minimization. Math. Program.
143(1–2), 371–383 (2014)

23. Chen, X., Ng, M.K., Zhang, C.: Non-Lipschitz l p-regularization and box constrained model for image
restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

24. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and a smoothing trust region newton method for
nonLipschitz optimization. SIAM J. Optim. 23(3), 1528–1552 (2013)

25. Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of �2-�p minimization.
SIAM J. Sci. Comput. 32(5), 2832–2852 (2010)

26. Chen, X., Zhou, W.: Smoothing nonlinear conjugate gradient method for image restoration using
nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 3(4), 765–790 (2010)

27. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)
28. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
29. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J.

Numer. Anal. 22(1), 1–10 (2002)
30. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares mini-

mization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)
31. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.

Stat. Assoc. 96(456), 1348–1359 (2001)
32. Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via �q -minimization for

0 < q ≤ 1. Appl. Comput. Harmon. Anal. 26(3), 395–407 (2009)
33. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York

(2013)
34. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

W. H. Freeman, New York (1979)
35. Garmanjani, R., Vicente, L.N.: Smoothing and worst case complexity for direct-search methods in

non-smooth optimization. IMA J. Numer. Anal. 33(3), 1008–1028 (2013)
36. Ge, D., Jiang, X., Ye, Y.: A note on the complexity of l p minimization.Math. Program. 129(2), 285–299

(2011)
37. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic program-

ming. Math. Progam. (2015). doi:10.1007/s10107-015-0871-8
38. Gould, N.I.M., Toint, P.L.: Preprocessing for quadratic programming. Math. Program. 100(1), 95–132

(2004)
39. Hale, E.T., Yin,W., Zhang, Y.: Fixed-point continuation applied to compressed sensing: implemetation

and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010)
40. Huang, J., Ma, S., Xie, H., Zhang, C.H.: A group bridge approach for variable selection. Biometrika

96(2), 339–355 (2009)
41. Ji, S., Sze, K.F., Zhou, Z., So, A.M.C., Ye, Y.: Beyond convex relaxation: A polynomial-time

non-convex optimization approach to network localization. In: IEEE Conference on Computer Com-
munications (INFOCOM), pp. 2499–2507 (2013)

42. Jiang, B., Dai, Y.H.: A framework of constraint preserving update schemes for optimization on stiefel
manifold. Math. Program. (2015). doi:10.1007/s10107-014-0816-7

43. Jiang, B., Zhang, S.: Iteration bounds for finding ε-stationary points of structured nonconvex optimiza-
tion. Technical report, University of Minnesota (2014)

44. Lai, M.J., Wang, J.: An unconstrained �q minimization with 0 < q ≤ 1 for sparse solution of
underdetermined linear systems. SIAM J. Optim. 21(1), 82–101 (2011)

45. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed
lq minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

46. Liu, Y.F., Dai, Y.H., Luo, Z.Q.: Joint power and admission control via linear programming deflation.
IEEE Trans. Signal Process. 61(6), 1327–1338 (2013)

123

Author's personal copy

http://dx.doi.org/10.1007/s10107-015-0871-8
http://dx.doi.org/10.1007/s10107-014-0816-7


500 Y.-F. Liu et al.

47. Liu, Y.F., Dai, Y.H., Ma, S.: Joint power and admission control: non-convex lq approximation and an
effective polynomial time deflation approach. IEEE Trans. Signal Process. 63(14), 3641–3656 (2015)

48. Lu, Z.: Iterative reweighted minimization methods for l p regularized unconstrained nonlinear pro-
gramming. Math. Program. 147(1–2), 277–307 (2014)

49. Mitliagkas, I., Sidiropoulos, N.D., Swami, A.: Joint power and admission control for ad-hoc and cogni-
tive underlay networks: convex approximation and distributed implementation. IEEE Trans. Wireless
Commun. 10(12), 4110–4121 (2011)

50. Mourad, N., Reilly, J.P.:Minimizing nonconvex functions for sparse vector reconstruction. IEEETrans.
Signal Process. 58(7), 3485–3496 (2010)

51. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2).
Sov. Math. Dokl. 27(2), 372–376 (1983)

52. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
53. Nikolova,M., Ng,M.K., Zhang, S., Ching,W.K.: Efficient reconstruction of piecewise constant images

using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)
54. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
55. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Massachusetts (1994)
56. Rao, B.D., Kreutz-delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans.

Signal Process. 47(1), 187–200 (1999)
57. Sun, Q.: Recovery of sparsest signals via �q -minimization. Appl. Comput. Harmon. Anal. 32(3),

329–341 (2012)
58. Sun, W., Yuan, Y.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York

(2006)
59. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)
60. Wagner, M., Meller, J., Elber, R.: Large-scale linear programming techniques for the design of protein

folding potentials. Math. Program. 101(2), 301–318 (2004)
61. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.

IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)
62. Ye, Y.: Interior Point Algorithms-Theory and Analysis. Wiley, New York (1997)
63. Yun, S., Toh, K.C.: A coordinate gradient descent method for l1-regularized convex minimization.

Comput. Optim. Appl. 48(2), 273–307 (2011)

123

Author's personal copy


	A smoothing SQP framework for a class of composite Lq minimization over polyhedron
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Our contribution

	2 Intractability analysis
	3 KKT optimality conditions
	4 Smoothing approximation
	5 An SSQP framework and worst-case iteration complexity analysis
	5.1 An SSQP algorithmic framework for problem (1.1)
	5.2 Worst-case iteration complexity analysis
	5.3 Comparisons of SSQP and SQR

	6 Concluding remarks
	Acknowledgments
	Appendix 1: Three motivating applications
	Appendix 2: Proof of Lemma 3.2
	Appendix 3: Proof of Lemma 4.1
	References




