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Abstract

We consider the joint power and admission control problem for a wireless network consisting of

multiple interfering links. The goal is to support a maximum number of links at their specified signal

to interference plus noise ratio (SINR) targets while using a minimum total transmission power. In this

work, we first reformulate this NP-hard problem as a sparse ℓ0-minimization problem and then relax it

to a linear program. Furthermore, we derive two easy-to-check necessary conditions for all links in the

network to be simultaneously supported at their target SINR levels, and use them to iteratively remove

strong interfering links (deflation). An upper bound on the maximum number of supported links is also

given. Numerical simulations show that the proposed approach compares favorably with the existing

approaches in terms of the number of supported links, the total transmission power, and the execution

time.
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I. INTRODUCTION

Power and admission control are effective tools for interference management in cellular, ad hoc, and

cognitive underlay wireless networks [1]–[8]. Conventionally, the processes of admission and power

control are decoupled. In particular, users are first admitted to the network based on the available

resources. Once some users are admitted, a power control procedure is invoked to reset the transmission

power levels so that all interfering links can be supported at their desired signal to interference plus noise

ratio (SINR) levels with minimum total transmission power. However, when the network experiences

strong interference, not all new and existing links can be simultaneously supported regardless of power

control used. In this case, it is necessary to remove some links since their desired service levels can no

longer be met due to mutual interference. Unfortunately, the decoupling of the admission and power

control steps often leads to unnecessary removal of many links. A more beneficial approach is to

combine the admission and power control steps so as to simultaneously determine the maximum number

of concurrently supportable links and the corresponding optimal power allocation for each transmitter.

Furthermore, joint power and admission control can determine which interfering links must be turned off

and rescheduled along orthogonal resource dimensions (such as time, space or frequency slots).

Joint power and admission control can alleviate the difficulties associated with the convergence of

stand-alone power control methods. For example, consider the well-known distributed power control

strategy by Foschini-Miljanic algorithm [4] where at each step, every transmitter independently updates

its power level by a multiplicative factor equal to the ratio of its target SINR level and its measured

SINR level. In this way, each transmitter increases its power level if its measured SINR value does

not reach its SINR target (note that in this case the multiplicative factor is strictly greater than one)

and otherwise decreases its power level. For any prespecified SINR levels that are feasible, this power

control strategy has been shown [4] to converge geometrically to a solution that supports all the links

at the given SINR targets with minimum total transmission power. A longstanding issue associated with

this power control strategy is that it does not converge when the preselected SINR levels are infeasible,

i.e., not all links in the network can be simultaneously supported at their SINR targets. In this case, we

must adopt a joint power and admission control approach to determine which links should be removed.

In this paper, we propose an efficient way to selectively remove links so that the remaining ones can

be simultaneously supported at their desired SINR levels. The goal is to maximize the number of links

simultaneously supportable at their required SINR targets while using minimum total transmission power.
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A. Related Work

The joint power and admission control problem can be solved to global optimality by checking

the simultaneous supportability of every subset of links. However, the computational complexity of

this enumeration approach grows exponentially with the total number of links. Another global optimal

algorithm based on the branch and bound strategy is considered in [9]. Theoretically, the problem is

known to be NP-hard [1], [3], so various heuristic algorithms have been proposed for this problem.

In [10] and [11], the author proposed a centralized stepwise removal algorithm (SRA) and a distributed

limited information stepwise removal algorithm (LI-SRA) respectively. Some extensions of [10] and [11]

were reported in [12]–[14]. The joint power and admission control algorithms proposed in these references

do not assume any power constraints. Assuming individual power constraints, the reference [3] proposed

a gradual removal non-restricted distributed constrained power control (GRN-DCPC) algorithm in which

the power is updated by a modified version of Foschini-Miljanic algorithm, i.e., each link’s power is

updated by taking a minimum between the one given by the Foschini-Miljanic algorithm and its power

budget. Whenever a certain link’s power level given by the Foschini-Miljanic algorithm exceeds its power

budget, we remove the link that has the largest interference plus noise footprint (called SMART removal

rule in [3]). The removal procedure is terminated until all the remaining links in the network can be

simultaneously supported.

Convex approximation algorithms for joint beamforming and admission control have been proposed in

[15] for a cellular downlink network. The techniques were further extended in [1] to the joint power and

admission control problem in cognitive underlay networks. Instead of directly solving the original NP-hard

problem, the idea of the proposed linear programming deflation (LPD) algorithm [1] is to approximate

the problem by an appropriate LP, whose solution can be used to iteratively remove interfering links (the

LP approximation and the removal strategy used in [1] will be given late). Again, the removal procedure

is terminated if all the remaining links in the network are simultaneously supportable.

A recent work [2] proposed another removal-based heuristic algorithm for the joint power and admission

control problem. Assume that each link has the same SINR target. At each step, the link that results in

the largest increase in the achievable SINR is removed until all links in the network are simultaneously

supportable. The above idea is approximately implemented in the Algorithm II-B [2] to reduce the

computational complexity. See [9], [16]–[21] for other results on joint power and admission control.
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B. Our Contribution

In this paper, we show that the joint power and admission control problem can be equivalently

reformulated as a sparse ℓ0-minimization problem. We then use the ℓ1-relaxation to derive a linear

program (different from that in [1]) whose solution can be used to check the simultaneous supportability

of all links in the network and to guide an iterative link removal procedure (deflation). We also develop

two easily checkable necessary conditions for all links in the network to be simultaneously supported at

their desired SINR requirements. These conditions allow us to iteratively remove strong interfering links

and therefore significantly accelerate the deflation process. Numerical results show that the proposed

algorithm outperforms the existing approaches in [1], [2] in terms of both the number of supported links

and the CPU time.

C. Notations

We adopt the following notations in this paper. We denote the index set {1, 2, · · · ,K} by K. Lowercase

boldface and uppercase boldface are used for vectors and matrices, respectively. For a given vector x,

the notations max{x}, (x)k, and ∥x∥0 stand for its maximum entry, its k-th entry, and the number of its

nonzero entries, respectively. We use x1 ◦ x2 to represent the Hadamard product of two vectors x1 and

x2. For any subset I ⊆ K, we use AI to denote the matrix formed by the rows of A indexed by I. For

a vector x, the notation xI is similarly defined. Moreover, for any J ⊆ K, the notation AIJ will denote

the submatrix of A obtained by taking the rows and columns of A indexed by I and J respectively.

The spectral radius of a matrix A is denoted by ρ(A). Finally, we use e to represent the vector with all

components being one and I to represent the identity matrix of an appropriate size, respectively.

II. PROBLEM FORMULATION

Consider a K-link single-input single-output (SISO) interference channel with channel gains gkj ≥ 0

(from the transmitter of link j to the receiver of link k), noise power ηk > 0, SINR target γk > 0,

and power budget pmax
k > 0 for k, j ∈ K := {1, 2, · · · ,K}. Denote the power allocation vector by

p = (p1, p2, · · · , pK)T and the power budget vector by pmax = (pmax
1 , pmax

2 , · · · , pmax
K )T . The joint

power and admission control problem can be mathematically formulated as a two-stage optimization

problem. Specifically, the first stage maximizes the number of admitted links:

max
p,S

|S|

s.t. SINRk ≥ γk, k ∈ S ⊆ K,

0 ≤ p ≤ pmax,

(1)
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where |S| denotes the cardinality of the set S, and the SINR value at the k-th receiver is

SINRk =
gkkpk

ηk +
∑
j ̸=k

gkjpj
.

We use S0 to denote the maximum admissible set for problem (1). Notice that the maximum admissible

set S0 might not be unique. The second stage minimizes the total transmission power required to support

these admitted links in S0:
min

{pk}k∈S0

∑
k∈S0

pk

s.t. SINRk ≥ γk, k ∈ S0,

0 ≤ pk ≤ pmax
k , k ∈ S0.

(2)

Due to the choice of S0, power control problem (2) is feasible and can be efficiently solved by the

Foschini-Miljanic algorithm [4].

III. A NEW LINEAR PROGRAMMING DEFLATION ALGORITHM

Consider the K-link SISO interference channel model introduced in Section II. To facilitate the

development of the new linear programming deflation (NLPD) algorithm, we first normalize the channel

parameters to obtain an equivalent normalized channel. In particular, let us use q = (q1, q2, · · · , qK)T

with

qk =
pk

pmax
k

, ∀ k ∈ K (3)

to denote the normalized power allocation vector, and use c = (c1, c2, · · · , cK)T with

ck =
γkηk

gkkp
max
k

> 0, ∀ k ∈ K

to denote the normalized noise vector. It is obvious that p = pmax ◦ q. We define a normalized channel

matrix A ∈ RK×K by

akj =


1, if k = j,

−
γkgkjp

max
j

gkkp
max
k

, if k ̸= j,
(4)

where akj denotes the (k, j)-th entry of A, and |akj | is the normalized channel gain from the transmitter

of link j to the receiver of link k. Notice that the matrix A is a square matrix with diagonal entries equal

to one and nonpositive off-diagonal entries. This special structure of A will play an important role in

the development of the NLPD algorithm.
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With this normalization, we can see that

(Aq− c)k = qk +
∑
j ̸=k

akjqj − ck

=
pk

pmax
k

−
∑
j ̸=k

(
γkgkjp

max
j

gkkp
max
k

)(
pj

pmax
j

)
− γkηk

gkkp
max
k

=
1

gkkp
max
k

ηk +
∑
j ̸=k

gkjpj


 gkkpk

ηk +
∑
j ̸=k

gkjpj
− γk

 .

Thus, link k is supported at its desired SINR level

SINRk =
gkkpk

ηk +
∑
j ̸=k

gkjpj
≥ γk

if and only if

(Aq− c)k ≥ 0.

Consequently, problem (1) can be equivalently rewritten as

max
q,S

|S|

s.t. (Aq− c)k ≥ 0, k ∈ S ⊆ K,

0 ≤ q ≤ e,

(5)

and problem (2) can be restated as

min
{qk}k∈S0

∑
k∈S0

pmax
k qk

s.t. (Aq− c)k ≥ 0, k ∈ S0,

0 ≤ qk ≤ 1, k ∈ S0.

(6)

A. ℓ0-Minimization Reformulation

We now formulate the two-stage admission/power control problem (5) and (6) as a single-stage ℓ0-

minimization problem. To derive this reformulation, we need to use the following balancing lemma, which

was first proposed in [22] and later studied further in [10], [23]. It is a consequence of the positivity of

vector c and the special form of matrix A.

Lemma 1 (Balancing Lemma): Let A be a square matrix whose diagonal entries are equal to one and

off-diagonal entries are nonpositive. Let c be a vector with positive entries. Suppose that Aq̃ ≥ c for
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some q̃ ≥ 0. Then there exists a vector q̄ satisfying c ≤ q̄ ≤ q̃ and Aq̄ = c. In addition, for any θ > 0,

the vector q̄ solves the optimization problem

min
q

θTq

s.t. Aq ≥ c,

q ≥ 0.

Lemma 1 implies that if all links can be supported with a power allocation 0 ≤ q ≤ e, then the

minimum total power allocation must support all links in the network exactly at their target SINR levels.

Supporting any link above its target SINR level will mean a waste of the total transmission power.

Using Lemma 1, we can reformulate the two-stage joint power and admission control problem (1) and

(2) (equivalent to problem (5) and (6)) as a single-stage sparse optimization problem

min
x,q

∥x∥0 + α (pmax)T q

s.t. x = Aq− c,

0 ≤ q ≤ e,

(7)

where α is a constant satisfying

0 < α < α1 :=
1

(pmax)T e
. (8)

Actually, if there are more than one maximum admissible set (i.e., the solution for problem (1) is not

unique), the formulation (7) is capable of picking the one with minimum total transmission power as a

result of the second term in the objective of (7).

Theorem 1: Suppose (x∗,q∗) is the solution to problem (7). Then the optimal value of problem (1)

is M if and only if ∥x∗∥0 = K −M . In fact, the set of links indexed by { k ∈ K | x∗k = 0 } (whose

cardinality is M ) is simultaneously supportable by the power allocation p∗ = pmax ◦ q∗ in the original

channel. Moreover, (pmax)T q∗ is the minimum total transmission power required to support any M links

in the network.

We prove Theorem 1 by first establishing the equivalence of (1) with the following intermediate problem

min
x,q

∥x∥0

s.t. x = Aq− c,

0 ≤ q ≤ e,

(9)

and then proving the equivalence of this intermediate problem with (7). We relegate the proof of

Theorem 1 to Appendix A.
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It is shown in [1] that the joint power and admission control problem (1) and (2) can be equivalently

formulated as the following integer program

min
p, t

ϵ
∑
k∈K

pk + (1− ϵ)
∑
k∈K

tk

s.t.
gkkpk + δ−1

k tk
ηk +

∑
j ̸=k gkjpj

≥ γk, k ∈ K,

tk ∈ {0, 4} , k ∈ K,

0 ≤ p ≤ pmax,

(10)

where the parameters ϵ and δk (k ∈ K) satisfy

0 < ϵ <
4

eTpmax + 4
, (11)

δk ≤ 4

γk

(∑
j ̸=k gkjp

max
j + ηk

) . (12)

In (10), tk ∈ {0, 4} is the admission variable of link k (tk = 0 means link k is admitted while tk = 4

means link k is dropped), ϵ is used to prioritize the admission control term (
∑

k∈K tk) over the power

control term (
∑

k∈K pk), and δk (k ∈ K) are some small positive constants used to guarantee the feasibility

of problem (10).

Interestingly, the above formulation (10) can be viewed as a sparse optimization problem. Notice that

the solution (p∗, t∗) to problem (10) satisfies

gkkp
∗
k + δ−1

k t∗k
ηk +

∑
j ̸=k gkjp

∗
j

= γk, k ∈ K,

so we have

t∗k = δk

γk(ηk +
∑
j ̸=k

gkjp
∗
j )− gkkp

∗
k

 ∈ {0, 4} , k ∈ K,

which further implies that

∥t∥0 = ∥c−Aq∥0 = ∥x∥0.

Therefore, the vector t in (10) plays the similar role as the vector x in (7).

The ℓ0-norm reformulation (7) has a discontinuous objective function due to the first term ∥x∥0.

Actually, the ℓ0-minimization problem (7) is NP-hard. This follows from Theorem 1, which says problem

(7) is equivalent to the joint problem (1) and (2), and the fact that problem (1) is NP-hard [1]. The

NP-hardness proof in [1] is based on a polynomial-time reduction from the maximum independent set

problem. Moreover, we know from [24] that for a K-node graph, there does not exist a polynomial-time

K−c-approximate algorithm for the maximum independent set problem with constant c > 0. Therefore,
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problem (7) is not only hard to solve (to global optimality) but also hard to approximate (to constant

factor global optimality). However, the reformulation (7) of the joint power and admission control problem

allows for a simple convex relaxation.

B. Linear Programming Relaxation

Since ℓ0-optimization problem (7) is still NP-hard, it is natural to consider its ℓ1-convex relaxation

min
x,q

∥x∥1 + α (pmax)T q

s.t. x = Aq− c,

0 ≤ q ≤ e.

(13)

By introducing auxiliary variables and additional constraints, the above problem (13) is easily converted

to a linear program (LP). Interestingly, by exploiting the special structure of A, we can convert (13) to

an equivalent LP (14) without using any auxiliary variables. The proof of this result (Theorem 2) can be

found in Appendix B.

Theorem 2: The ℓ1-relaxation problem (13) is equivalent to the following linear program

min
q

eT (c−Aq) + α (pmax)T q

s.t. c−Aq ≥ 0,

0 ≤ q ≤ e.

(14)

We now compare the LP approximation (14) with the one used in [1]. The LP approximation in [1]

min
p, t

ϵ
∑
k∈K

pk + (1− ϵ)
∑
k∈K

tk

s.t.
gkkpk + δ−1

k tk
ηk +

∑
j ̸=k gkjpj

≥ γk, k ∈ K,

0 ≤ tk ≤ 4, k ∈ K,

0 ≤ p ≤ pmax,

(15)

is obtained by relaxing the integer constraint tk ∈ {0, 4} in (10) to the linear constraint tk ∈ [0, 4].

From the forms of LP approximations (14) and (15), we can see that the reversed SINR constraints

make problem (14) always feasible (q = 0 is a certificate for the feasibility), whereas extra parameters

δk (k ∈ K) need be chosen to guarantee the feasibility of problem (15). In addition, the introduction of

auxiliary admission variables tk (k ∈ K) makes the number of unknown variables in problem (15) twice

as large as that in (14). Further, for any e ≥ q ≥ 0 satisfying c−Aq ≥ 0, we define

qek = (c−Aq)k , ∀ k ∈ K. (16)
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We know from [1] that qek measures the excess transmission power that the transmitter of link k needs in

the normalized channel in order to be served with its desired SINR target, assuming all other links keep

their transmission powers unchanged. Therefore, LP (14) actually minimizes a weighted sum of the total

excess transmission power eT (c−Aq) and the total real transmission power (pmax)T q.

In general, we can consider the weighted ℓ1-convex approximation of problem (7) as follows:

min
x,q

∥w ◦ x∥1 + α (pmax)T q

s.t. x = Aq− c,

0 ≤ q ≤ e,

(17)

where w is a nonnegative weight vector. The ideal weight vector w should be

wk =

 1, if k ∈ K∗,

0, if k /∈ K∗,

where K∗ is the optimal maximum admissible set of problem (7). If we choose the weight vector w in

this way, then the solution to problem (17) solves the ℓ0-minimization problem (7). In a similar manner

to problem (13), problem (17) can be transformed into an LP without introducing any auxiliary variables.

It is worth pointing out that the LP approximation (15) used in [1] can be seen as a weighted ℓ1-

relaxation of problem (7). Since the solution (p∗, t∗) to problem (15) satisfies

gkkp
∗
k + δ−1

k t∗k
ηk +

∑
j ̸=k gkjp

∗
j

= γk, k ∈ K,

we have

t∗k = δk

γk(ηk +
∑
j ̸=k

gkjp
∗
j )− gkkp

∗
k

 ≥ 0, k ∈ K.

Recall the choice of δk in (12), it follows that t∗k ≤ 4, k ∈ K. Therefore, problem (15) is equivalent to

min
p

ϵ
∑
k∈K

pk + (1− ϵ)
∑
k∈K

δk

γk(ηk +
∑
j ̸=k

gkjpj)− gkkpk


s.t. γk(ηk +

∑
j ̸=k

gkjpj)− gkkpk ≥ 0, k ∈ K,

0 ≤ p ≤ pmax,

(18)

which is further equivalent to problem (17) with

wk = δkgkkp
max
k (k ∈ K) and α =

ϵ

1− ϵ
.
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If we rewrite the LP relaxation (14) in terms of the original channel parameters, we obtain

min
p

α
∑
k∈K

pk +
∑
k∈K

1

gkkp
max
k

γk(ηk +
∑
j ̸=k

gkjpj)− gkkpk


s.t. γk(ηk +

∑
j ̸=k

gkjpj)− gkkpk ≥ 0, k ∈ K,

0 ≤ p ≤ pmax,

(19)

which is equivalent to problem (17) with w = e. Although both of (18) and (19) can be viewed as

weighted linear programming approximations of problem (7), they are technically different. The chosen

weight vector w plays the key role in the approximation performance. In (19), we set wk = 1 (treating

all links equally), which is natural as all links’s direct-channel gains, power budgets, and SINR targets

are one in the normalized channel. We also notice that

1 ≤
4gkkp

max
k

γk

(∑
j ̸=k gkjp

max
j + ηk

) (20)

may not hold true (the left hand side of (20) is our chosen weight, while the right hand side of (20) is

the upper bound of the chosen weight in [1]). This means our choice of the weight vector is not a special

one of (18).

We now discuss the choice of parameter α in (14). If there exists some vector q̄ such that 0 ≤ q̄ ≤ e

and Aq̄ = c, then ρ(I − A) < 1 [22]. Thus A is nonsingular and A−1 is nonnegative [25, Theorem

1.15], which further implies that

z = (AT )−1pmax > 0. (21)

Let us define

α2 :=
1

max {z}
> 0. (22)

By checking the KKT condition of (14), we can see that the vector q̄ (satisfying 0 ≤ q̄ ≤ e and Aq̄ = c)

solves LP (14) provided that 0 ≤ α ≤ α2. This shows that the solution to LP (14) with 0 ≤ α ≤ α2 can

simultaneously support all links at their desired SINR targets (will not over remove links) as long as all

links in the network are simultaneously supportable. Combining (8) and (22), we propose to choose the

parameter α in (14) according to

α =

 c1α1, if ρ(I−A) ≥ 1,

c2min {α1, α2} , if ρ(I−A) < 1,
(23)

where 0 < c1 ≤ c2 < 1 are two constants. The motivation of the choice (23) is that, if ρ(I−A) ≥ 1, in

which case it is not possible to simultaneously support all links in the network, a smaller α is preferable

to give more priority to the admission control term so that more links could be supported.
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The solution of LP (14) can be used to guide our link removal process. In particular, by solving (14)

with α given in (23), we know whether all links in the network can be simultaneously supported by

simply checking if the solution q satisfies Aq = c. Furthermore, having obtained the solution of (14),

we can use the efficient removal strategy in [1] to drop the link k0 defined by

k0 = argmax
k∈K

∑
j ̸=k

|ajk|qek +
∑
j ̸=k

|akj |qej

, (24)

where akj and qek are defined in (4) and (16), respectively.

Let us rewrite the removal strategy (24) in terms of the original channel parameters. Define the excess

transmission power pek in the original channel [1] as

pek =
γk

(
ηk +

∑
j ̸=k gkjpj

)
− gkkpk

gkk
.

By (3) and (16), we can relate pek to qek as follows,

pek = pmax
k (pek/p

max
k ) = pmax

k (c−Aq)k = pmax
k qek.

Consequently, the removal strategy (24) can be rewritten as

k0 = argmax
k∈K

∑
j ̸=k

γj
gjjpmax

j

gjkp
e
k +

∑
j ̸=k

γk
gkkp

max
k

gkjp
e
j

 . (25)

Therefore, due to the presence of normalization, the proposed removal strategy (24) (equivalent to (25))

is different from the one used in [1] which is given by

k0 = argmax
k∈K

∑
j ̸=k

gjkp
e
k +

∑
j ̸=k

gkjp
e
j

 . (26)

Comparing (25) and (26), we can see that the removal strategy (25) takes more factors into consideration,

including target SINRs, direct-link channel gains, and power budgets.

Next, we give a sufficient condition for the solution to the LP (14) solves the ℓ0-minimization problem

(7). Without loss of generality, suppose that

A =

 A11 A12

A21 A22

 , q =

 q1

q2

 , c =

 c1

c2

 ,

and q∗ =

 q∗
1

0

 is the solution to the ℓ0-minimization problem, then we have

A11q
∗
1 = c1 > 0, e ≥ q∗

1 > 0, q∗
2 = 0. (27)
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Proposition 1: The ℓ0-minimization problem (7) and the LP (14) share the same optimal solution if

the following conditions e+
(
AT

11

)−1
AT

21e− α
(
AT

11

)−1
pmax
1 > 0

AT
12

(
AT

11

)−1
AT

21e−AT
22e− αAT

12

(
AT

11

)−1
pmax
1 + αpmax

2 > 0
(28)

are satisfied.

The proof of Proposition 1 can be found in Appendix C. To prove Proposition 1, it is sufficient to prove

that the solution q∗ to the ℓ0-minimization problem (7) is the unique solution to the LP (14). Notice that if

the interference level from group 1 (corresponding to supported links in (27)) to group 2 (corresponding

to unsupported links in (27)) is low and the interference level from group 2 to group 1 is high1 in

the sense that the entries in A21 ≤ 0 are close to zero and the entries in A12 ≤ 0 are small enough,

then the sufficient condition (28) holds automatically and the ℓ0-minimization and the ℓ1-minimization

are equivalent, as long as we choose α to be sufficiently small. This is intuitively appealing since the

links in group 1 cause weak interference to the links in group 2 and the links in group 2 cause strong

interference to the links in group 1, we expect that the links in group 1 will be supported simultaneously

by transmitting appropriate power and the links in group 2 will be shut down (transmitting zero power).

We remark that in general the solution to the LP approximation (14) does not solve the ℓ0-minimization

problem (7). This is the reason why we do not just use the LP (14) to approximate the sparse optimization

problem (7), but instead employ a deflation technique to successively approximate the ℓ0-optimization

problem.

C. A New Linear Programming Deflation Algorithm

The basic idea of the proposed NLPD algorithm is to solve LP (14) and check whether all links can

be supported or not; if not, remove a link (mathematically, delete the corresponding row and column

of A and the corresponding entry of c) from the network, and solve a reduced LP (14) again until all

the remaining links are supported. To accelerate the deflation procedure (avoid solving too many LPs in

the form of (14)), we derive two easy-to-check necessary conditions for all links in the network to be

simultaneously supported.

Define

µ = ATe,

1both low and high here are relative to the direct-link channel.
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then a necessary condition for all links in the network to be supported is that there exists an index k

such that

(µ)k =
(
ATe

)
k
= 1 +

∑
j ̸=k

ajk > 0. (29)

This is because otherwise, if µ ≤ 0 and the linear system q ≥ 0, Aq = c is feasible, then it follows

from c > 0 that

0 ≥ µTq = (ATe)Tq = (Aq)Te = cTe > 0,

which is a contradiction. Thus, if µ ≤ 0, then at least one link in the network cannot be supported.

Using condition (29), an upper bound can be derived for the cardinality of the maximum admissible set

S0. Specifically, for any k ∈ K, denote Rk to be the minimum removal set such that (µ)k > 0. Sort

{ajk}j∈K such that

ak1k ≤ ak2k ≤ · · · ≤ akrk ≤ akr+1k ≤ · · · ≤ akK−1k ≤ 0 ≤ akKk = 1,

and pick r such that 1 +
∑K−1

j=r+1 akjk > 0 and 1 +
∑K−1

j=r akjk ≤ 0. Then Rk = {k1, k2, · · · , kr} , and

the cardinality of the maximum admissible set S0 is bounded by

|S0| ≤ K −min
k∈K

{|Rk|} .

We can strengthen the necessary condition (29) by involving the noise power c. Suppose that all links

can be simultaneously served. Then there exists a vector q such that 0 ≤ q ≤ e and Aq = c. By the

definition of A, we have q ≥ Aq = c. Denote µ+ = max {µ,0} and µ− = max {−µ,0}. It is obvious

that µ = µ+ − µ−. Multiplying eT from both sides of Aq = c, we get that (µ+ − µ−)
T q = eTc.

Moreover, we can obtain

µT
+e ≥ µT

+q = µT
−q+ eTc ≥ (µ− + e)T c,

where the first inequality is due to q ≤ e and the last one is due to q ≥ c. Therefore, the condition

µT
+e− (µ− + e)T c ≥ 0 (30)

is necessary for all links in the network to be simultaneously supported. Notice that if the necessary

condition (29) is not true, then µ+ = 0 and (30) will not be satisfied. This implies that the necessary

condition (30) is stronger than (29).

We can use the necessary condition (30) in the link removal process. In particular, if (30) is violated,

then we should drop at least one link from the network. We propose to remove the link k0 according to

k0 = argmax
k∈K

∑
j ̸=k

|akj |+
∑
j ̸=k

|ajk|+ ck

 , (31)
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which corresponds to applying the SMART rule [3] to the normalized channel and substituting q = e.

The complete description of the NLPD algorithm, based on the new LP relaxation (14), the new

removal strategy (24), and the necessary condition (30), is given as follows.

A New Linear Programming Deflation (NLPD) Algorithm

Step 1. Initialization: Input data (A, c,pmax) .

Step 2. Preprocessing: Remove link k0 iteratively according to (31) until

condition (30) holds true.

Step 3. Power control: Compute parameter α by (23) and solve LP (14);

check whether all links are supported: if yes, go to Step 5; else go to Step 4.

Step 4. Admission control: Remove link k0 according to (24), set K =

K/ {k0} , and go to Step 3.

Step 5. Postprocessing: Check the removed links for possible admission.

A few remarks on the proposed algorithm are in order. First, strong interfering links are successively

removed in the preprocessing step. This can accelerate the algorithm (especially for strong interference

channels). Second, the computation of α by (23) in the power control step can be simplified. That is, once

the nonnegative matrix I−A (from the definition of A) satisfies ρ(I−A) < 1, we do not need to check

this spectrum condition any more and can just proceed to solve the linear system (21). This is due to the

fact that any principal minor X̄ of X satisfies 0 ≤ ρ(X̄) ≤ ρ(X) when X ≥ 0 (see [25, Theorem 1.14]).

Third, the postprocessing step is an attempt to admit those removed links, which might be able to be

supported but are removed in the preprocessing and admission control steps. Specifically, we enumerate

all the removed links and admit one of them if it can be supported simultaneously with the already

supported links. If there are more than one such candidates, we pick the one such that the minimum

total transmission power is needed to simultaneously support it with the already supported links. The

postprocessing step is terminated if no such candidate exists. We also remark that the proposed NLPD

algorithm can be easily extended to cognitive underlay networks [1] by changing constraints in (14) to
(c−Aq)k = 0, ∀ k ∈ K1,

(c−Aq)k ≥ 0, ∀ k ∈ K2,

0 ≤ q ≤ e,

where K1 and K2 denote the set of primary users and secondary users, respectively.

We compare the proposed NLPD algorithm and the LPD algorithm in [1] in terms of the computational

complexity needed to drop one link from the network. Since both require solving a linear program, their
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asymptotic complexities are both equal to O
(
|K|3.5

)
[26], although the LPD algorithm solves a LP with

twice as many variables. By comparison, the Algorithm II-B in [2] has a complexity of O(|K|4), since it

needs to solve |K| eigenvalue problems [27] to check whether all links in the network can be supported.

Finally, we give an illustrative instance to show the efficiency of the NLPD algorithm based on the

newly derived LP approximation (14) and the removal strategy (24) compared to the LPD algorithm [1]

based on the LP approximation (15) and the removal strategy (26). The original channel gain matrix

G = [gkj ], the power budget vector pmax, the SINR target and the noise power at the receiver of link

k (k = 1, 2, 3, 4) are

G =


0.05 0.008 0 0.002

0.02 0.4 0 0.01

0 0 0.8 0

0.001 0.01 0 0.05

 , pmax =


55

7

3

55

 , γk = 1.6, ηk = 1.

For the above instance, the NLPD algorithm can support 3 links with the total transmission power 41.06,

and the corresponding power allocation

p = (0, 5.35, 2.00, 33.71)T

is globally optimal, while the LPD algorithm supports 3 links with the total transmission power 69.21,

and the corresponding power allocation vector is

p = (34.12, 0, 2.00, 33.09)T .

We remark that the first link in the above instance is removed by the NLPD algorithm in the admission

control step not in the preprocessing step, and therefore the comparison of the NLPD algorithm and the

LPD algorithm is fair.

IV. NUMERICAL SIMULATIONS

We now present some numerical simulation results to illustrate the effectiveness of the proposed NLPD

algorithm. In our simulations, we generate the channel parameters in the same way as in [1], i.e., each

transmitter’s location obeys the uniform distribution over a 2 Km × 2 Km square and the location of

each receiver is uniformly generated in a disc with center at its corresponding transmitter and radius 400

m, excluding a radius of 10 m; (original) channel gains are given by gkj = 1/d4kj (∀ k, j ∈ K), where

dkj is the Euclidean distance from the link of transmitter j to the link of receiver k. Each link’s SINR

target is set to be γk = 2 dB (∀ k ∈ K) and the noise power is set to be ηk = −90 dBm (∀ k ∈ K).
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Fig. 1. The ratio of average number of supported links by different algorithms to the cardinality of the maximum admissible

set versus the number of total links in small networks.

The power budget of the link of transmitter k is pmax
k = 2pmin

k (∀ k ∈ K), where pmin
k is the minimum

power needed by link k to meet its SINR requirement without any interference from other links.

All figures are averaged over 200 Monte-Carlo runs. The parameter c1 and c2 in (23) are set to be

0.1 and 0.999 in all simulations2. The number of supported links, the total transmission power, and

the execution time are the metrics we use for comparison. We compare the performance of the NLPD

algorithm with that of two existing gradual removal algorithms3: the LPD algorithm in [1] and the

Algorithm II-B in [2], since both of them have been reported to have close-to-optimal performance and

perform much better than the GRN-DCPC algorithm in [3] in terms of the number of supported links

[1], [2]. For completeness, we also compare the proposed algorithm with an existing gradual admission

algorithm (GAA4) in [9]. When feasible, we use the global optimal solution obtained by “brute force”

enumeration as benchmark.

2The numerical performance of the NLPD algorithm is not sensitive to the choice of c1 and c2 as long as 0 < c1 ≤ c2 < 1.

3Notice that the derived necessary conditions for all links in the network to be simultaneously supported can be used to

accelerate other deflation algorithms (say the LPD algorithm in [1]). However, here we do not use the necessary conditions to

accelerate these algorithms.
4In general, the heuristics based on gradual admission such as the GAA [9] are suitable to solve the problem in the strong

interference channel where a low proportion of total links can be simultaneously supported, while the heuristics based on gradual

removal such as the LPD algorithm [1] and the Algorithm II-B [2] are suitable to solve the problem in the low interference

channel where a high proportion of total links can be simultaneously supported.
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Fig. 2. Average execution time (in seconds) versus the number of total links in small networks.
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Fig. 3. Average total transmission power versus the number of total links in small networks.

Figs. 1 to 3 plot the performance comparison of various admission and power control algorithms for

small networks. The vertical axis “Average Percentage of Optimality” in Fig. 1 shows the ratio of average

number of supported links by different algorithms to the cardinality of the maximum admissible set. As

depicted in Fig. 1, the NLPD algorithm can support the maximum number of links when K = 2 and 4;

however, it does not always find the maximum admissible set with minimum total transmission power.

This can be observed from Fig. 3 since it requires more total transmission power than the global minimum

found by enumeration. Fig. 1 shows that the proposed NLPD algorithm supports the largest number of

links among all the tested algorithms. In fact, compared to the LPD algorithm, the proposed NLPD
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Fig. 4. Average number of supported links versus the number of total links in large networks.

algorithm can support more links with less total transmission power, and does so with substantially less

CPU time in small networks.

The comparison of the GAA and the ENU algorithm in Figs. 1 and 3 reveals the fact that a small

difference of the number of supported links may lead to a large difference of the total transmission power5.

For instance, when the number of total links is 18, the difference of average number of supported links

between the ENU algorithm and the GAA is 9.4350− 9.0950 = 0.3400, while the difference of average

total transmission power between these two algorithms is 74.7772−62.7146 = 12.0626. This fact explains

why the NLPD algorithm transmits more power than the Algorithm II-B and the GAA, since the NLPD

algorithm supports (despite a little) more links than the two algorithms.

In particular, Fig. 2 shows that the GAA performs the best in terms of the CPU time, and the NLPD

algorithm ranks the second, which is slightly slower than the GAA. We remark that the CPU time

comparison of these two algorithms depends on the simulation scenario. Since the NLPD algorithm

gradually removes links from the network until all the remaining links can be simultaneously supported

and the GAA gradually admits links until no link can be simultaneously supported with the already

admitted links, we expect that the NLPD algorithm will take less CPU time than the GAA in the

weak interference channel where a high proportion of total links in the network can be simultaneously

supportable.

The comparison of the NLPD algorithm, the LPD algorithm, and the Algorithm II-B in large networks

5Notice that the GAA always transmits less power than the ENU algorithm.
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Fig. 5. Average execution time (in seconds) versus the number of total links in large networks.
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Fig. 6. Average total transmission power versus the number of total links in large networks.

is illustrated as Figs. 4 to 6. We can see from them that the NLPD algorithm supports more links and at

the same time takes significantly less execution time than the LPD algorithm and the Algorithm II-B.

In a nutshell, the performance of the NLPD algorithm is better than that of the other two gradual removal

algorithms (the Algorithm II-B and the LPD algorithm) in terms of the number of supported links and

the execution time, while the Algorithm II-B transmits the least power among the tested algorithms. The

reason why the NLPD algorithm transmits more power than the Algorithm II-B is because it supports more

links than the Algorithm II-B. When compared to the LPD algorithm, the proposed NLPD algorithm can

not only use less (or nearly equal) total power to support more links, but also has a significant reduction
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in CPU time. This performance improvement is a result of the new LP reformulation (14), the new

removal strategy (25), and the necessary condition (30). In particular, the new LP approximation (14) is

the key to the increase in the number of supported links and the save of the total transmission power.

As we have mentioned before, although both the LP approximation (14) and the LP approximation (15)

used in the NLPD algorithm and the LPD algorithm can be viewed as weighted ℓ1-relaxations of the

sparse optimization problem, the choice of the weight vector plays the key role in the approximation

performance. Due to the introduction of the scaled channel, our choice of the weight vector is natural.

Moreover, we offer a choice of the parameter α, which combines the admission control term with the

power control term. Our choice of the parameter α not only exactly characterizes the original joint power

and admission control problem, but also ensures the corresponding linear programming relaxation never

removes a link unnecessarily. The significant reduction in the CPU time is because of the use of the

necessary condition (30). We can iteratively remove the strong interfering links from the network until

the necessary condition holds true, and therefore accelerate the deflation process significantly.

V. CONCLUSIONS

In this paper, we consider the NP-hard problem of joint power and admission control and reformulate it

as a sparse optimization problem based on the balancing lemma. We propose a new linear programming

relaxation for this problem and derive two easy-to-check necessary conditions for all links in the network

to be simultaneously supportable. The new LP relaxation and the two necessary conditions can be used

to guide an iterative link removal procedure (the NLPD algorithm), resulting in an efficient and effective

solution for the joint power and admission control problem. We remark that the proposed NLPD algorithm

can be easily extended to the cognitive underlay networks.

APPENDIX A

PROOF OF THEOREM 1

We first establish the equivalence between problem (1) and the intermediate problem (9) in the sense

that the optimal value of problem (1) is M if and only if the minimum value of problem (9) is K −M.

Let us first show the “only if” direction. Suppose a set I ⊆ K of M links can be supported in (1), so

SINRk ≥ γk for some power allocation p̃ for all k ∈ I. Notice that this is equivalent to the existence of

0 ≤ q̃ ≤ e such that AI q̃− cI ≥ 0. Consider the linear subsystem in the sub-vector qI

AIIqI − (cI −AIIc q̃Ic) ≥ 0, (32)
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where Ic denotes the complement of I with respect to K. Since

AII q̃I − (cI −AIIc q̃Ic) = AI q̃− cI ≥ 0,

it follows that qI = q̃I ≥ 0 is a feasible solution of (32). Moreover, notice that the off-diagonal entries

of A are nonpositive, so we have AIIc ≤ 0, implying cI − AIIc q̃Ic ≥ cI > 0. Since the submatrix

AII still satisfies the assumptions of Lemma 1, we can invoke Lemma 1 to the linear subsystem (32)

to deduce the existence of a feasible cI ≤ q̄I ≤ q̃I such that

AII q̄I − cI +AIIc q̃Ic = 0.

Define q̄Ic = q̃Ic and let x̄ = Aq̄ − c. Then the above equality means x̄I = 0, which further implies

that at most K −M components of x̄ are nonzero. Hence the optimal value of problem (9) is at most

K −M .

To show the “if” direction, suppose that the optimal value of (9) is K −M and (x∗,q∗) is an optimal

solution. Then ∥x∗∥0 = K − M , implying x∗
I = 0 for some index set I ⊆ K with |I| = M . Since

x∗
I = AIq

∗ − cI = 0, it follows from the definition of A and c that

SINRk = γk, ∀ k ∈ I.

Thus, all links in I are supported at their target SINR levels, implying that the optimal value of (1) is

at least M . This establishes the equivalence between (1) and (9).

We now establish the equivalence between problems (7) and (9) (in the sense of supporting the

maximum number of links). We claim that the optimal value of (9) is M if and only if the optimal

value of (7) is in the interval (M,M + 1). We argue the “only if” and “if” directions separately. Recall

the fact 0 < α < α1 = 1/(pmax)T e (cf. (8)) which implies

α (pmax)T q < 1, for any 0 ≤ q ≤ e.

Consequently, the total contribution from the second term in the objective function of (7) cannot exceed

1, regardless of the power allocation q. This immediately shows that if the optimal value of (9) is M ,

then the optimal value of (7) must be in the interval (M,M + 1). To argue the converse, we note that

the function ∥x∥0 is discontinuous with an increment of 1, implying that

∥x∥0 + α (pmax)T q ≥ ∥x∥0 ≥ M + 1 > M + α (pmax)T q∗,

for any choice of 0 ≤ q ≤ e, as long as ∥x∥0 > M . Thus, the global minimum of (7) must be achieved

at a power allocation for which ∥x∥0 = M holds, i.e., ∥x∥0 is fully minimized by (9). This establishes

the equivalence between (9) and (7).
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Finally, if there are multiple sets of M links that are simultaneously supportable, then they all induce

the same objective value in the first term of the objective function in (7). In this case, the second term

(i.e., (pmax)T q) will play the role to select the one set of M links which requires the least amount of

total transmission power. In other words, (pmax)T q∗ = eTp∗ is the minimum total power required to

support any M links in the network.

APPENDIX B

PROOF OF THEOREM 2

Notice that the problem (14) is equivalent to

min
x,q

∥x∥1 + α (pmax)T q

s.t. x = Aq− c, x ≤ 0,

0 ≤ q ≤ e.

Thus, to show the equivalence of (14) and (13) we only need to show that any optimal solution (x̃, q̃)

of (13) always satisfies x̃ = Aq̃− c ≤ 0.

Denote K+= { k | x̃k > 0 }, K== { k | x̃k = 0 }, and K− ={ k | x̃k < 0 }. We claim |K+| = 0,

or equivalently x̃ ≤ 0. Assume the contrary so that |K+| ≥ 1. We will derive a contradiction. Let

I = K+ ∪ K=. Then x̃I = AI q̃− cI ≥ 0, which further implies

AII q̃I − (cI −AIIc q̃Ic) ≥ 0.

Hence, q̃I is a feasible solution to the following linear subsystem in qI :

AIIqI − (cI −AIIc q̃Ic) ≥ 0. (33)

Since AIIc ≤ 0 (the off-diagonals of A are nonpositive), it follows that cI − AIIc q̃Ic ≥ cI > 0. It

can be checked that the other assumptions of Lemma 1 all hold for (33) so that there exists a vector q̄I

such that cI ≤ q̄I ≤ q̃I and AII q̄I − (cI −AIIc q̃Ic) = 0. Define q̄Ic = q̃Ic . Then we have

AI q̄− cI = AII q̄I − (cI −AIIc q̃Ic) = 0. (34)

Moreover, we have 0 ≤ q̄ ≤ q̃ ≤ e, so q̄ is a feasible power allocation. With this new power allocation

q̄, there holds

AIc q̄− cIc = AIcIc q̃Ic +AIcI q̄I − cIc ≥ AIcIc q̃Ic +AIcI q̃I − cIc = AIc q̃− cIc ,

where the inequality follows from AIcI ≤ 0 and q̄ ≤ q̃. This further implies

(cIc −AIc q̄)+ ≤ (cIc −AIc q̃)+
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where (·)+ denotes the projection to the nonnegative orthant. Since cI −AI q̄ = 0 (cf. (34)), it follows

that

(c−Aq̄)+ ≤ (c−Aq̃)+ (35)

with the inequality holds true strictly for entries indexed by K+. Define a potential function

p(q) = eT (c−Aq)+ + α (pmax)T q.

Clearly, we have

p(q) ≤ ∥Aq− c∥1 + α (pmax)T q, ∀ q ≥ 0,

where the equality holds whenever Aq− c ≤ 0. Since 0 ≤ q̄ ≤ q̃, we can use (35) to obtain

p(q̄) = eT (c−Aq̄)+ + α (pmax)T q̄ < eT (c−Aq̃)+ + α (pmax)T q̃ = p(q̃).

Moreover, it follows from |K+| ≥ 1 that

∥Aq̄− c∥0 = K − |I| = K − |K=| − |K+| < K − |K=| = ∥Aq̃− c∥0.

We claim that, without loss of generality, we can assume AIc q̄−cIc ≤ 0 so that Aq̄−c ≤ 0. This is

because otherwise we can repeat the above steps by replacing the vector q̃ with q̄ to find a new vector

0 ≤ q̂ ≤ q̄ such that

p(q̂) < p(q̄) < p(q̃) and ∥Aq̂− c∥0 < ∥Aq̄− c∥0 < ∥Aq̃− c∥0.

Since the ℓ0-norm can be reduced at most finitely many times, it follows that by repeatedly applying the

above steps we will eventually obtain a power allocation (still denote by q̄) such that

0 ≤ q̄ ≤ q̃ ≤ e, p(q̄) < p(q̃), Aq̄− c ≤ 0.

Notice that when Aq̄− c ≤ 0 we have

∥Aq̄− c∥1 + α (pmax)T q̄ = p(q̄) < p(q̃) ≤ ∥Aq̃− c∥1 + α (pmax)T q̃.

This contradicts the optimality of (x̃, q̃). The proof is complete.
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APPENDIX C

PROOF OF PROPOSITION 1

Let us first show that q∗ satisfying (27) solves the LP (14). The KKT condition of problem (14) can

be written as: 

−ATe+ αpmax +ATλ− ξ + η = 0,

λT (c−Aq) = 0, ξTq = 0, ηT (e− q) = 0,

λ ≥ 0, ξ ≥ 0, η ≥ 0,

c−Aq ≥ 0, q ≥ 0, e− q ≥ 0,

(36)

where λ, ξ, and η are the Lagrangian variables corresponding to the constraints c−Aq ≥ 0, q ≥ 0, and

e ≥ q, respectively. Thus, to prove q∗ solves the LP (14), we need to prove that there are nonnegative

vectors

λ =

 λ1

λ2

 , ξ =

 ξ1

ξ2

 , η =

 η1

η2


such that when the conditions in (28) hold, then (λ, ξ, η, q∗) will satisfy all the conditions in (36).

Recalling (27) and setting η = 0, ξ1 = 0, and λ2 = 0, the conditions in (36) reduce to −AT
11e−AT

21e+ αpmax
1 +AT

11λ1 = 0,

−AT
12e−AT

22e+ αpmax
2 +AT

12λ1 − ξ2 = 0.
(37)

Since the conditions in (28) are satisfied, it follows that λ1 = e+
(
AT

11

)−1
AT

21e− α
(
AT

11

)−1
pmax
1 ≥ 0,

ξ2 = AT
12

(
AT

11

)−1
AT

21e−AT
22e− αAT

12

(
AT

11

)−1
pmax
1 + αpmax

2 ≥ 0.
(38)

Hence q∗ is a solution to the LP (14).

We now show that q∗ is the unique solution to the LP (14). According to [28], a solution to the LP

P is unique if and only if it remains a solution to all LPs obtained from P by arbitrary but sufficiently

small perturbation of its cost vector. Thus, to show the uniqueness of q∗, it is sufficient to show that for

each d, there exists an ϵ > 0 such that q∗ remains a solution to the perturbed LP

min
q

eT (c−Aq) + α (pmax)T q+ ϵdTq

s.t. c−Aq ≥ 0,

0 ≤ q ≤ e.

(39)

Similar to the first part, we can write the KKT condition of problem (39), and check that for any perturbed

vector d, there exists ϵ > 0 such that q∗ is still a solution to the LP (39) if the conditions in (28) are

satisfied. This completes the proof of Proposition 1.

November 28, 2012 DRAFT



26

ACKNOWLEDGMENT

The authors wish to thank N. D. Sidiropoulos of University of Minnesota for his help in numerical

simulations. The authors also would like to thank the anonymous reviewers for their useful comments.

REFERENCES

[1] I. Mitliagkas, N. D. Sidiropoulos, and A. Swami, “Joint power and admission control for ad-hoc and cognitive underlay

networks: Convex approximation and distributed implementation,” IEEE Trans. Wireless Commun., vol. 10, no. 12, pp.

4110–4121, Dec. 2011.

[2] H. Mahdavi-Doost, M. Ebrahimi, and A. K. Khandani, “Characterization of SINR region for interfering links with constrained

power,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2816–2828, Jun. 2010.

[3] M. Andersin, Z. Rosberg, and J. Zander, “Gradual removals in cellular PCS with constrained power control and noise,”

Wireless Netw., vol. 2, no. 1, pp. 27–43, Mar. 1996.

[4] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans.

Veh. Technol., vol. 42, no. 4, pp. 641–646, Nov. 1993.

[5] N. Bambos, S.-C. Chen, and G. J. Pottie, “Channel access algorithms with active link protection for wireless communication

networks with power control,” IEEE Trans. Netw., vol. 8, no. 5, pp. 583–597, Oct. 2000.

[6] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Sel. Areas Commun., vol. 13, no.

7, pp. 1341–1347, Sept. 1995.

[7] S. A. Grandhi, J. Zander, and R. Yates, “Constrained power control,” Wireless Personal Commun., vol. 1, no. 4, pp. 257–270,

Dec. 1994.

[8] M. Andersin, Z. Rosberg, and J. Zander, “Soft and safe admission control in cellular networks,” IEEE/ACM Trans. Netw.,

vol. 5, no. 2, pp. 255–265, Apr. 1997.

[9] D. I. Evangelinakis, N. D. Sidiropoulos, and A. Swami, “Joint admission and power control using branch & bound and

gradual admissions,” Proc. Int. Workshop Signal Process. Advances Wireless Commun., Jun. 2010, pp. 1–5.

[10] J. Zander, “Performance of optimum transmitter power control in cellular radio systems,” IEEE Trans. Veh. Technol., vol.

41, no. 1, pp. 57–62, Feb. 1992.

[11] J. Zander, “Distributed cochannel interference control in cellular radio systems,” IEEE Trans. Veh. Technol., vol. 41, no.

3, pp. 305–311, Aug. 1992.

[12] T.-H. Lee, J.-C. Lin, and Y.-T. Su, “Downlink power control algorithms for cellular radio systems,” IEEE Trans. Veh.

Technol., vol. 44, no. 1, pp. 89–94, Feb. 1995.

[13] T.-H. Lee and J.-C. Lin, “A fully distributed power control algorithm for cellular mobile systems,” IEEE J. Sel. Areas

Commun., vol. 14, no. 4, pp. 692–697, May 1996.

[14] J.-T. Wang and T.-H. Lee, “Non-reinitialized fully distributed power control algorithm,” IEEE Commun. Lett., vol. 3, no.

12, pp. 329–331, Dec. 1999.

[15] E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas, “Convex approximation techniques for joint multiuser

downlink beamforming and admission control,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2682–2693, Jul. 2008.

[16] M. H. Ahmed, “Call admission control in wireless networks: A comprehensive survey,” IEEE Commun. Surveys, vol. 7,

no. 1, pp. 50–69, First Quarter, 2005.

November 28, 2012 DRAFT



27

[17] A. Behzad, I. Rubin, and P. Chakravarty, “Optimum integrated link scheduling and power control for ad hoc wireless

networks,” Proc. IEEE Int. Conf. Wireless and Mobile Computing, Netw., and Commun., vol. 3, Aug. 2005, pp. 275–283.

[18] J.-T. Wang, “Admission control with distributed joint diversity and power control for wireless networks,” IEEE Trans. Veh.

Technol., vol. 58, no.1, pp. 409–419, Jan. 2009.

[19] T. Elbatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,” IEEE Trans. Wireless

Commun., vol. 3, no. 1, pp. 74–85, Jan. 2004.

[20] Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, “Joint power and admission control via linear programming deflation,” Proceeding of

ICASSP, Mar. 2012, pp. 2873–2876.

[21] T. Holliday, A. Goldsmith, P. Glynn, and N. Bambos, “Distributed power and admission control for time varying wireless

networks,” Proc. Global Telecommun. Conf., Nov. 2004, pp. 768–774.

[22] J. M. Aein, “Power balancing in systems employing frequency reuse,” COMSAT Tech. Rev., vol. 3, no. 2, Fall 1973.

[23] R. W. Nettleton and H. Alavi, “Power control for a spread-spectrum cellular mobile radio system”, Proc. IEEE Veh. Technol.

Conf., May 1983, pp. 242–246.

[24] L. Trevisan, “Inapproximability of combinatorial optimization problems,” Technical Report TR04-065, Electronic Collo-

quium on Computational Complexity, Jul. 2004.

[25] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. New York, U.S.A.: PSW publishing, Jan. 2000.

[26] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. Philadelphia, U.S.A.: SIAM-MPS Series on

Optimization, SIAM Publications, 2001.

[27] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, U.S.A.: The Johns Hopkins Press, 1996.

[28] O. L. Mangasarian, “Uniqueness of solution in linear programming,” Computer Sciences Technical Report #316, Feb. 1978.

Ya-Feng Liu received his B.Sc. degree in Applied Mathematics in 2007 from Xidian University, Xi’an,

China, and the Ph.D degree in Computational Mathematics in 2012 from Chinese Academy of Sciences

(CAS). During his Ph.D study, he was supported by Academy of Mathematics and Systems Science, CAS

to visit Professor Zhi-Quan (Tom) Luo at the University of Minnesota (Twins Cities) from February

2011 to February 2012. After his graduation, he joined the Institute of Computational Mathematics

and Scientific/Engineering Computing, Beijing, China in July 2012, and currently he is an assistant

professor there. His main research interests are nonlinear optimization and its applications to wireless multi-user multi-antenna

communication systems and multi-user multi-carrier communication systems. He is especially interested in charactering the

computational complexity of and designing efficient algorithms for optimization problems arising from communications.

Dr. Liu received the Best Paper Award from the IEEE International Conference on Communications (ICC) in 2011.

November 28, 2012 DRAFT



28

Yu-Hong Dai received the B.Sc. degree in applied mathematics from the Beijing Institute of Technology,

Beijing, China, in 1992. He then studied nonlinear optimization in the Institute of Computational Math-

ematics and Scientific/Engineering Computing, Chinese Academy of Sciences, and received the Ph.D.

degree in nonlinear programming in 1997.

After his graduation, he worked in the Academy of Mathematics and Systems Science (AMSS), Chinese

Academy of Sciences, Beijing, China, and became a Full Professor in 2006. He is currently also Vice-

Director of the Center for Optimization and Applications (COA) of AMSS. His research interests include nonlinear optimization

and various optimization applications.

Dr. Dai has held editorial positions for several journals, including Asia Pacific Journal of Optimization, Numerical Algebra,

Control and Optimization, and Advances in Mathematics (China), OR Transactions. He received the fifth ZhongJiaQing Math-

ematics Award in 1998, Second Prize of the National Natural Science of China in 2006 (rank 2), and the tenth Science and

Technology Award for Chinese Youth in 2007. He also won the China National Funds for Distinguished Young Scientists in

2011.

Zhi-Quan (Tom) Luo (F’2007) is a professor in the Department of Electrical and Computer Engineering at

the University of Minnesota (Twin Cities) where he holds an endowed ADC Chair in digital technology.

He received his B.Sc. degree in Applied Mathematics in 1984 from Peking University, China, and a

Ph.D degree in Operations Research from MIT in 1989. From 1989 to 2003, Dr. Luo was with the

Department of Electrical and Computer Engineering, McMaster University, Canada, where he later served

as the department head and held a senior Canada Research Chair in Information Processing. His research

interests lie in the union of optimization algorithms, data communication and signal processing.

Dr. Luo is a fellow of SIAM. He is a recipient of the IEEE Signal Processing Society’s Best Paper Award in 2004, 2009

and 2011, the EURASIP Best Paper Award in 2011, and a Best Paper Award from the IEEE International Conference on

Communications in 2011. He was awarded the 2010 Farkas Prize from the INFORMS Optimization Society. Dr. Luo currently

chairs the IEEE Signal Processing Society’s Technical Committee on Signal Processing for Communications and Networking

(SPCOM) and serves as the editor-in-chief for IEEE Transactions on Signal Processing. He has held editorial positions for

several international journals including Journal of Optimization Theory and Applications, Mathematics of Computation, SIAM

Journal on Optimization, Management Sciences and Mathematics of Operations Research.

November 28, 2012 DRAFT


