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Abstract The Barzilai and Borwein (BB) gradient method has achieved a lot of
attention since it performs much more better than the classical steepest descent
method. In this paper, we analyze a positive BB-like gradient stepsize and discuss
its possible uses. Specifically, we present an analysis of the positive stepsize for
two-dimensional strictly convex quadratic functions and prove the R-superlinear
convergence under some assumption. Meanwhile, we extend BB-like methods for
solving symmetric linear systems and find that a variant of the positive stepsize is
very useful in the context. Some useful discussions on the positive stepsize are also
given.
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1 Introduction

Consider the unconstrained quadratic optimization problem,

min f (x) =
1
2

xTAx−bTx, (1)
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where A ∈ Rn×n is a real symmetric positive definite matrix and b ∈ Rn. The
(negative) gradient method for solving (1) takes the negative gradient as its search
direction and updates the solution approximation iteratively by

xk+1 = xk −αk gk, (2)

where gk = ∇f (xk) and αk is some stepsize. Denote sk−1 = xk − xk−1 and yk−1 =
gk − gk−1. Since the matrix Bk = α−1

k I, where I is the identity matrix, can be
regarded as an approximation to the Hessian of f at xk, Barzilai and Borwein [2]
choose the stepsize αk such that Bk has a certain quasi-Newton property:

Bk = arg min
B=α−1I

‖Bsk−1 −yk−1‖, (3)

where ‖ · ‖ means the two norm, yielding the long stepsize

αBB1
k =

sT
k−1sk−1

sT
k−1yk−1

. (4)

An alternative way is to approximate the inverse Hessian by the matrix Hk = αkI
and solve

Hk = arg min
H=αI

‖sk−1 −Hyk−1‖, (5)

which gives the short stepsize

αBB2
k =

sT
k−1yk−1

yT
k−1yk−1

. (6)

Comparing with the steepest descent (SD) method, which was due to Cauchy
[4], the Barzilai–Borwein (BB) method often requires less computational work and
speeds up the convergence greatly. Due to its simplicity and efficiency, the BB
method has been extended or generalized in many occasions or applications. For
example, Raydan [17] designed an efficient global Barzilai and Borwein algorithm
for unconstrained optimization by incorporating the nonmonotone line search by
Grippo et al. [15]. In the context of neural network, Dai and Liao [12] considered
the one-delay method, that consists in the model

dx(t)
dt

=−P∇f (x(t)), t ≥ 0, (7)

where

P = I +
ssT

sTy
. (8)
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Here, s = x(t −Δ t)− x(t − 2Δ t), y = ∇f (x(t −Δ t))−∇f (x(t − 2Δ t)), and Δ t is
the time delay. One advantage of the above model is that, if some modification
is made so that the denominator in (8) is greater than zero, each eigenvalue of
P will be not less than one, which makes the model not slower than the gradient
neural network. The algorithm of Raydan was further generalized by Birgin et al.
(2000) for minimizing a differentiable function on a closed convex set, yielding an
efficient projected gradient methods. Efficient projected algorithms based on BB-
like methods have also been designed (see Serafini et al. [18] and Dai and Fletcher
[10]) for special quadratic programs arising from training support vector machine.
The BB method has also received much attention in finding sparse approximation
solutions to large underdetermined linear systems of equations from signal/image
processing and statics (for example, see Wright et al. [20]).

Several attention have been paid to theoretical properties of the BB method in
spite of the potential difficulties due to its heavy nonmonotone behavior. These
analyses proceed in the unconstrained quadratic case (this is also the case in this
paper). Specifically, Barzilai and Borwein [2] present an interesting R-superlinear
convergence result for their method when the dimension is only two. For the general
n-dimensional strong convex quadratic function, the BB method is also convergent
(see Raydan 1993) and the convergence rate is R-linear (see Dai and Liao 2002).
Further analysis on the asymptotic behavior of BB-like methods can be found in
[8, 9].

One disadvantage of the BB stepsize, however, is that it may become negative for
non-convex objective functions. In this case, one remedy used in [17] is to restrict
the BB stepsize into some interval like [10−30,1030]. The setting of such interval
seems very artificial. The main purpose of this paper is to analyze the following
positive stepsize

αk =
‖sk−1‖
‖yk−1‖ . (9)

This stepsize is exactly the geometrical mean of the long BB stepsize and the short
BB stepsize. Here we should remark that the stepsize (9) has been noticed by the
authors for several times (see (4.28) in [7], an unpublished preprint [9] therein,
Dai and Yang [13], or Cheng and Dai [5]). This stepsize has also been noticed
by Al-Baali [1]. Vrahatis et al. [19] directly replaced the Lipschitz constant L in
the constant stepsize 1

2L by the estimate ‖yk−1‖
‖sk−1‖ , yielding a stepsize similar but not

identical to (9). Nevertheless, there is no any theoretical analysis for the stepsize (9)
yet.

For simplicity, we refer to the gradient method (2) with the stepsize formula (9)
as method (9). In the quadratic case, since sk−1 =−αk−1gk−1 and yk−1 = Ask−1, an
equivalent expression of formula (9) is

αk =
‖gk−1‖
‖Agk−1‖ . (10)
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Therefore formula (10) can be regarded with the one-retard extension of the stepsize
considered in [13],

αDY
k =

‖gk‖
‖Agk‖ . (11)

Interestingly enough, for the gradient method with the stepsize formula (11), it
was shown in [13] that the stepsize (11) will eventually tend to the stepsize that
minimizes the modulus ‖I − αA‖ (this stepsize is called the optimal stepsize in
[14]). More exactly,

liminf
k→∞

αDY
k =

2
λ1 +λn

, (12)

where λ1 and λn are the minimal and maximal eigenvalues of the matrix A,
respectively. Simultaneously, the eigenvectors corresponding to λ1 and λn can be
recovered from

gk

‖gk‖ +
gk+1

‖gk+1‖ and
gk

‖gk‖ − gk+1

‖gk+1‖ ,

respectively.
Though simple, the two-dimensional analysis has a special meaning to the BB

method. As was just mentioned, the BB method is significantly faster than the SD
method in practical computations, but there is still lack of theoretical evidences
that explain why the BB method is better than the SD method in the n-dimensional
case. Nevertheless, the notorious zigzagging phenomenon of the SD method is well
known to us; namely, the search directions in the SD method usually tend to two
orthogonal directions when applied to any-dimensional quadratic functions. Unlike
the SD method, however, the BB method will not produce zigzags due to its R-
superlinear convergence in the two-dimensional case. This explains to some extent
the efficiency of the BB method over the SD method. In this paper, we shall also
analyze the convergence properties of method (9) for two-dimensional quadratic
functions.

The rest of this paper is organized as follows. In the next section, we devote
ourselves into the analysis of method (9) in the two-dimensional case. After giving
some basic analysis in Section 2.1, we will establish the R-superlinear convergence
of method (9) under some assumptions in Section 2.2. Then we make some
discussions in Section 2.3. In the third section, we provide the use of the BB-
like methods for solving symmetric linear systems. A typical numerical example is
presented in Section 3.1, which shows that BB-like gradient methods are still very
useful for solving symmetric systems. Specifically, we will see that formula (9)
has a stronger ability to approximate the eigenvalues (except the signs) of a
symmetric (but not necessarily positive definite) matrix A than the BB stepsizes,
since formula (53) is more efficient. Some related discussions on the topic are made
in Section 3.2. Finally, concluding remarks are given in the last section.
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2 Analysis of Method (9) for Solving (1)

2.1 Some Basic Analysis on Method (9)

We focus on method (9) for minimizing the quadratic function (1) with n = 2.
In this case, since the method is invariant under translations and rotations, we
assume without loss of generality that

A =

[
1 0
0 λ

]
, b = 0, (13)

where λ ≥ 1. Assume that x1 and x2 are given with

g(i)1 �= 0, g(i)2 �= 0, for i = 1 and 2. (14)

To analyze ‖gk‖ for all k ≥ 3, we denote gk = (g(1)k , g(2)k )T and define

qk =

(
g(1)k

)2

(
g(2)k

)2 . (15)

Then it follows that

‖gk‖2 =
(

g(2)k

)2(
1+qk

)
,

αk =
‖sk−1‖
‖yk−1‖ =

‖gk−1‖
‖Agk−1‖ =

√
1+qk−1√
λ 2 +qk−1

.

Noticing that xk+1 = xk −αk gk and gk = Axk, we have that

gk+1 = (I −αkA)gk. (16)

Writing the above relation in componentwise form,

(
g(1)k+1

g(2)k+1

)
=

([
1

1

]
−

√
1+qk−1√
λ 2 +qk−1

[
1

λ

])(
g(1)k

g(2)k

)

=

⎡
⎢⎣
√

λ 2+qk−1−
√

1+qk−1√
λ 2+qk−1 √

λ 2+qk−1−λ
√

1+qk−1√
λ 2+qk−1

⎤
⎥⎦
(

g(1)k

g(2)k

)
.



64 Y.-H. Dai et al.

Therefore we get for all k ≥ 2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
g(1)k+1

)2
=

(
√

λ 2 +qk−1 −
√

1+qk−1)
2

λ 2 +qk−1

(
g(1)k

)2
,

(
g(2)k+1

)2
=

(
√

λ 2 +qk−1 −λ
√

1+qk−1)
2

λ 2 +qk−1

(
g(2)k

)2
.

(17)

In the case that λ = 1, which means that the object function has sphere contours,
the method will take a unit stepsize α2 = 1 and give the exact solution at the third

iteration. If g(1)2 = 0 but g(2)2 �= 0, we have that q2 = 0 and hence by (17) that g(1)k = 0

for k ≥ 3 and g(2)4 = 0, which means that the method gives the exact solution in at

most four iterations. This is also true if g(2)2 = 0 but g(1)2 �= 0 due to symmetry of

the first and second components. If g(1)1 = 0 but g(2)1 �= 0, we have that q1 = 0 and

g(2)3 = 0. Then by considering x2 and x3 as two starting points, we must have gk = 0

for some k ≤ 5. The symmetry works for the case that g(2)1 = 0 but g(1)1 �= 0. Thus,
similarly to the analysis for the BB method in [8], we may assume that λ > 1 and the
assumption (14) holds, for otherwise the method has the finite termination property.

On the other hand, if (14) holds, then we will have g(1)k �= 0 and g(2)k �= 0 for all k ≥ 1
and hence qk is always well defined.

Now, substituting (17) into the definition of qk+1, we can obtain the following
recurrence relation

qk+1 =

( √
λ 2 +qk−1 −

√
1+qk−1√

λ 2 +qk−1 −λ
√

1+qk−1

)2

qk

=

(
(
√

λ 2 +qk−1 −
√

1+qk−1)(
√

λ 2 +qk−1 +λ
√

1+qk−1)

(λ 2 −1)qk−1

)2

qk

=

(
λ −qk−1 +

√
τ(qk−1)

λ +1

)2
qk

q2
k−1

, (18)

where τ is the following quadratic function

τ(w) = (1+w)(λ 2 +w), where w ≥ 0. (19)

To proceed with our analysis, we denote Mk = logqk and

h(w) =
λ −w+

√
τ(w)

λ +1
, where w ≥ 0. (20)

It follows from the recurrence relation (18) that

Mk+1 = Mk −2Mk−1 +2logh(qk−1). (21)
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2.2 R-Superlinear Convergence of Method (9)

Lemma 1.2.1 Assume that λ > 1. The function h(w) in (20) is monotonically
increasing for w ∈ [0,+∞). Further, we have that

h(w) ∈
[

2λ
λ +1

,
λ +1

2

)
, for any w ≥ 0. (22)

Proof. By the definition of τ in (19), we have that

(τ ′)2 −4τ = (λ 2 −1)2. (23)

Then by direct calculations, we get

h′(w) =
−1+

1
2

τ−
1
2 τ ′

λ +1

=
(τ ′)2 −4τ

2(λ +1)τ
1
2 (τ ′+2τ

1
2 )

=
(λ 2 −1)2

2(λ +1)(τ
1
2 τ ′+2τ)

. (24)

Thus we see that h′(w) > 0 for w ≥ 0, which indicates that h(w) is monotonically
increasing. Noticing that

h(0) =
2λ

λ +1
and lim

w→∞
h(w) =

λ +1
2

,

we know that (22) holds. This completes our proof. 
�
Lemma 1.2.2 Assume that λ > 1. Consider the function

ψ(w) =
wh′(w)
h(w)

, where w ≥ 0, (25)

where h(w) is given in (20). Then ψ(w) ≥ 0 for all w ≥ 0. Further, it reaches its
maximal value at wmax = λ and

ψmax := ψ(wmax) =
1
2
−

√
λ

λ +1
. (26)

Proof. The nonnegativity of ψ(w) over [0,+∞) is obvious due to Lemma 1.2.1. To
analyze the maximal value of ψ(w) for w > 0, by setting ψ ′(w) = 0 and noting that
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h′(w) �= 0 for λ �= 1, we can get that

1
w
− h′(w)

h(w)
=−h′′(w)

h′(w)
. (27)

Direct calculations show that

1
w
− h′(w)

h(w)
=

1
w
−

−1+
1
2

τ−
1
2 τ ′

λ −w+ τ
1
2

=
λ + τ

1
2 − 1

2
wτ−

1
2 τ ′

w(λ −w+ τ
1
2 )

=
λτ + τ

1
2 (τ − 1

2
wτ ′)

wτ(λ −w+ τ
1
2 )

=
2λτ + τ

1
2
[
2λ 2 +(λ 2 +1)w

]
2wτ(λ −w+ τ

1
2 )

. (28)

On the other hand, noticing that τ ′′ = 2, we have by (23) and direct calculations that

(λ +1)h′′(w) =−1
4

τ−
3
2
[
(τ ′)2 −2ττ ′′

]
=−1

4
(λ 2 −1)2τ−

3
2 .

The above relation indicates that h(w) is a concave function. It follows from this
relation and (24) that

− h′′(w)
h′(w)

= τ−
1
2 (1+

1
2

τ−
1
2 τ ′). (29)

Substituting (28) and (29) into the Equation (27) and noticing that τ ′ = 1+λ 2+2w,
we can get

2λτ + τ
1
2
[
2λ 2 +(λ 2 +1)w

]
= w

(
λ −w+ τ

1
2

)(
1+λ 2 +2w+2τ

1
2

)
. (30)

The relation (30) is equivalent to

(λ −w)
[
−w(1+λ 2 +2w)+2λτ

1
2 +2τ

]
= 0.

Substituting τ = (1+w)(λ 2 +w) into the above relation yields

(λ −w)
[
2λ 2 +(1+λ 2)w+2λτ

1
2

]
= 0. (31)

Thus, to meet (27), which is equivalent to (31), we must have that w = λ . Since
ψ(0) = 0 and ψ(w) > 0 for w > 0, we know that ψ(w) must reach its maximal
value at its unique stationary point w = λ . Therefore wmax = λ . Noticing that



A Positive Barzilai–Borwein-Like Stepsize and an Extension for Symmetric. . . 67

h(λ ) =
√

λ and h′(λ ) =
(
√

λ −1)2

2(λ +1)
√

λ
,

we can deduce (26). 
�
In addition to the function ψ(w) in (25), we consider the function

φ(w) =

⎧⎪⎨
⎪⎩

logh(w)− logh(1)
logw , if w > 0 but w �= 1;

h′(1)
h(1)

, if w = 1.
(32)

Lemma 1.2.3 For the function φ(w) defined in (32), we have that

0 < φ(w)≤ ψmax, for all w > 0,

where ψmax is given by (26).

Proof. It is obvious that φ is continuous in (0,+∞) and continuously differentiable
over (0,1)∪ (1,+∞). Due to Lemma 1.2.1, we can also see that φ(w) tends to zero
when w tends to zero or when w tends to +∞. Further, by setting the derivative of
φ(w) to be zero, we know that the optimal w∗ that maximize φ(w) over (0,1)∪
(1,+∞) must satisfy

φ(w∗) =
w∗h′(w∗)

h(w∗)
.

Consequently, by Lemma 1.2.2, we have for w > 0,

0 < φ(w)≤ max{φ(w∗),φ(1)}= max{ψ(w∗),ψ(1)} ≤ ψmax.

This completes our proof. 
�
Now, noticing the relation (21) and using the definition of φ , we can get that

Mk+1 = Mk −2(1−φ(qk−1))Mk−1 +2logh(1). (33)

By Lemma 1.2.3, we know that the coefficient of Mk−1 belongs to the interval

(
−2,−1− 2

√
λ

λ +1

]
. (34)

This interval, however, cannot enable us to find some suitable parameter γ such
that the sequence of |Mk + γMk−1| is monotonically increasing with k. To do so,
we have to strengthen the upper bound of φ(w) in Lemma 1.2.3. Meanwhile, we
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still need some suitable assumption on the initial value of M1 and M2 similarly
to Lemma 1.2.4. Based on this reason, we directly work with the recursive
relation (21). Pick γ to be any root of the equation γ2 − γ +2 = 0; namely,

γ =
1±

√
7i

2
, (35)

where i is the imaginary unit (sometimes i is also used as an index, but it is easy for
the reader to tell). We have the following lemma.

Lemma 1.2.4 Consider the sequence {Mk} satisfying (21). Denote ξk = Mk+
(γ −1)Mk−1, where γ is given in (35). If

|ξ2|> 2log
λ +1

2
, (36)

there exist some positive constants c1 and c2 such that

|ξk| ≥ c12k−2 + c2, for all k ≥ 2. (37)

Proof. It follows from the definition of ξk, the relation (21) and the choice of γ that

ξk+1 = γMk −2Mk−1 +2logh(qk−1) = γ ξk +2logh(qk−1).

Noticing that |γ | = 2 and by Lemma 1.2.1, | logh(qk−1)| < log λ+1
2 , we have from

the above relation that

|ξk+1| ≥ 2 |ξk|− c2, (38)

where c2 = 2log λ+1
2 . The relation (38) is equivalent to

|ξk+1|− c2 ≥ 2(|ξk|− c2) . (39)

Denoting c1 = |ξ2|− c2, which is strictly greater than zero by assumption, we can
know from the repeated use of (39) that (37) holds. 
�

Notice that |γ −1|= 2 and hence

|ξk| ≤ |Mk|+2|Mk−1| ≤ 3max{|Mk|, |Mk−1|}.

This with (37) gives that

max{|Mk|, |Mk−1|} ≥ 1
3

(
c12k−2 + c2

)
, for all k ≥ 2. (40)
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Lemma 1.2.5 Consider the sequence {Mk} satisfying (21). Under the same
assumption in Lemma 1.2.4, we have for all k ≥ 2 that

max
−1≤i≤3

Mk+i ≥ 1
3

c12k−2 −4log
λ +1

2
(41)

and

min
−1≤i≤3

Mk+i ≤−1
3

c12k−2 +4log
λ +1

2
. (42)

Proof. It follows from the recursive relation (21) that

Mk+2 =−Mk −2Mk−1 +2logh(qk)+2logh(qk−1). (43)

We focus on the relation (40). If there exists some i = 0 or 1 such that

Mk−i ≥ 1
3

(
c12k−2 + c2

)
,

then it is obvious that (41) holds. Otherwise, we must have that

Mk−i ≤−1
3

(
c12k−2 + c2

)

holds for some i = 0 or 1. In this case, noticing Lemma 1.2.1, we can see from (21)
and (43) (with k−1 replaced with k− i) that the following relation

Mk−i+j ≥ 2
3

(
c12k−2 + c2

)−4log
λ +1

2

holds for j = 2 or 3. As a matter of fact, we can use the relation (21) if Mk−i+1 ≥ 0
or the relation (43) otherwise. Therefore (41) must be true. The proof of (42) is
similar. 
�

The above lemma indicates that there must exist two subsequences of {Mk}
which tend to +∞ and −∞, respectively, at a geometrical rate. Then we are able
to show that both the components of the gradient tend to zero R-superlinearly and
hence the whole gradient norm is R-superlinearly convergent.

Theorem 1.2.6 Consider method (9). Assume that (14) and (36) hold. Then the
sequence of the gradient norm {‖gk‖} converges to zero and the convergence is
R-superlinear.

Proof. First, noticing that αk ∈ (λ−1,1) for any k, we know from (16) that

|g(i)k+1| ≤ (λ −1)|g(i)k | (44)
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holds for i = 1 and 2 and all k ≥ 1. Let us focus on the second component of gk. By
the second relation in (17), it is not difficult to prove that

|g(2)k+1| ≤
(λ 2 −1)qk−1√

λ 2 +qk−1(
√

λ 2 +qk−1 +λ
√

1+qk−1)
|g(2)k |

≤ (λ 2 −1)qk−1

2λ 2 |g(2)k |

< (λ −1)qk−1|g(2)k |. (45)

Combining (44) and (45), we can get that

|g(2)k+5| ≤ (λ −1)5
(

min
−1≤i≤3

qk−1

)
|g(2)k |,

which, with Mk = logqk and the relation (42), yields

|g(2)k+5| ≤ (λ −1)5 exp

(
−1

3
c12k−2 +4log

λ +1
2

)
|g(2)k |.

Similarly, we can build

|g(1)k+5| ≤
1
2
(λ +1)(λ −1)5 exp

(
−1

3
c12k−2 +4log

λ +1
2

)
|g(1)k |.

Thus we can obtain for all k,

||gk+5|| ≤ 1
2
(λ +1)(λ −1)5 exp

(
−1

3
c12k−2 +4log

λ +1
2

)
||gk||. (46)

Therefore we can see that ‖gk‖ converges to zero and the convergence is
R-superlinear. 
�

2.3 Some Discussions

Comparing the above two-dimensional analysis for method (9) with those for the
BB method, we can see that the analysis in this paper is more difficult. The current
analysis requires an assumption on the initial points, that is (36), so that we can
prove the divergence of a subsequence of {Mk} (see Lemma 1.2.4). Then we are
able to show that there are two subsequences of {Mk} which tend to +∞ and
−∞, respectively (see Lemma 1.2.5). A direct implication of this result is that
there are two subsequences of {αk} which converges to the two eigenvalues of the
matrix A. Finally, we can establish the R-superlinear convergence for method (9)
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in the two-dimensional case. Although our numerical observations show that the
assumption (36) is not necessary, we do not know yet whether this assumption can
be removed or not.

Since by Lemma 1.2.1, the last term in the recursive relation (21) is bounded
above and below, we may think that the properties of the sequence {Mk} are similar
to the one satisfying the linear recursion relation Mk+1 = Mk − 2Mk−1. The latter
is exactly what Barzilai and Borwein [2] obtained for the BB method. Therefore,
we might feel that method (9) itself performs not better than the BB method. An
illustrative example is as following. Consider the 1000-dimensional example

A = diag(1 : 1000), b = zeros(1000,1). (47)

Here and below diag and zeros are standard matlab languages. The starting point
and the stopping criterion are

x1 = ones(1000), ‖gk‖ ≤ 10−12, (48)

respectively. It was found that, to reach the stopping criterion, the BB1 method, the
BB2 method, and method (9) require 590, 697, and 1,139, iterations, respectively.

Nevertheless, when applied the BB method for general nonconvex optimization,
it is possible that sT

k−1yk−1 < 0, in which case some truncations are often done.
For example, by projecting the BB stepsizes onto the interval like [10−30,1030].
With the help of the stepsize (9), we may now consider, for example, the following
possibilities

ᾱBB1
k = max

{
sT

k−1sk−1

sT
k−1yk−1

,
‖sk−1‖
‖yk−1‖

}
(49)

and

ᾱBB2
k = max

{
sT

k−1yk−1

yT
k−1yk−1

,
‖sk−1‖
‖yk−1‖

}
. (50)

It is easy to see that if sT
k−1yk−1 > 0, ᾱBB1

k = αBB1
k and ᾱBB2

k reduces to the
stepsize (9). However, if sT

k−1yk−1 ≤ 0, the stepsize (9) will be used instead. Theo-
retically, by the analysis in [7], it is not difficult to see that all the stepsizes (9), (49),
and (50) possess the so-called Property (A) and hence the corresponding gradient
methods are R-linearly convergent for any-dimensional strictly convex quadratic
functions. More numerical experiments are still required to test the efficiency of the
proposed variants.
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3 Solving Symmetric Linear Systems

This section aims to expose another good property of the stepsize (9). More exactly,
if the Hessian matrix A is only symmetric, but not necessarily positive definite, we
will find that formula (9) has stronger ability to approximate the eigenvalues (except
the signs) of A than the formulae (4) and (6).

3.1 A Typical Numerical Example

In this section, we shall consider the symmetric linear system

Ax = b, (51)

where A ∈ Rn×n is assumed to be symmetric and invertible and b ∈ Rn. It is obvious
that if A is symmetric positive definite, the unconstrained quadratic optimization
problem (1) is equivalent to the linear system (51). In this subsection, however, we
only assume A to be symmetric, but not necessarily positive definite. As BB-like
gradient methods have achieved great success in various aspects, there seem not
many studies on the methods for solving symmetric linear systems.

For easy illustration, for any dimension n, we define the n-dimensional vector v
with v(i) = (−1)ii and consider the following example

A = diag(v), b = zeros(n,1).

Here again, diag and zeros are standard matlab languages. In the context of linear
systems, we define gk = Axk − b, which is exactly the derivative of the quadratic
function in (1). The starting point and the stopping criterion are

x1 = ones(n) and ‖gk‖ ≤ 10−6, (52)

respectively. In practical computations, we consider the following five values of n:
n = 10,20,30,40,50.

Firstly, we tried the naive use of the classical steepest descent method, that is, the
method (2) with the stepsize

αSD
k =

gT
k gk

gT
k Agk

,

and found that the norm ‖gk‖ goes to infinity at a fast rate and cannot converge at all.
Secondly, we tested the two choices, (4) and (6), of the Barzilai–Borwein

methods. They are denoted by BB1 and BB2, respectively. In this case, the steepest
descent stepsize is used for the first iteration. In Table 1, we listed the number of
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Table 1 Comparing different methods for symmetric linear systems

n

Method 10 20 30 40 50

BB1 1,117 2,806 2,568 2,948 4,685

BB2 238 499 1,138 2,104 2,345

(53) 147 426 607 687 847

iterations required by each method for each problem. It is remarkable to see that
both BB1 and BB2 can provide a solution satisfying the stopping criterion in (52).
Further, unlike the unconstrained optimization, where it is believed that BB1 is
preferable to BB2, the BB2 method requires significantly fewer iterations than the
BB1 method does.

Now, we think of how to make use of the stepsize (9) for solving the symmetric
linear system (51). Due to its equivalent definition (10) of the stepsize, it is easy
to see that α2

k is an approximation to some inverse eigenvalue of the matrix A2.
To decrease the components of the residual vector gk corresponding to the negative
eigenvalues of A, we need to design a mechanism how to choose the sign of the
stepsize αk. An easy way is to consider the function

sign(a) =

{
1, if a ≥ 0;

−1, otherwise.

Then we calculate the stepsize in the following way

αk = sign(sT
k−1yk−1)

‖sk−1‖
‖yk−1‖ . (53)

In other words, the stepsize (53) aims to approximate the inverse eigenvalue of the
matrix A based on the sign of the inner product sT

k−1yk−1. If sT
k−1yk−1 is greater

than or equal to zero, it tends to estimate the inverse of the positive eigenvalues;
otherwise, if sT

k−1yk−1 is less than zero, it goes to approximate the inverse of the
negative eigenvalues. The iterations required by the method (53) are denoted in
Table 1 in the row “(53)”. Again, the steepest descent stepsize is used for the first
iteration. From the table, we can see that the new method performs much efficient
than the BB1 and BB2 methods.

3.2 Some Discussions

It is obvious that more numerical experiments with symmetric linear systems are
needed to check the efficiency of the new method. Nevertheless, the above example
is typical, which explains that the new method performs much better than the BB1
and BB2 methods. The example also provides some reason of directly using the BB1
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and BB2 stepsizes in the context of optimization, instead of truncating them to be
some tiny positive numbers like αmin = 10−30 as mentioned in the introduction. The
first author once found that the direct use of the negative BB stepsizes can reduce
the number of iterations.

As there have been a lot of Barzilai–Borwein-like gradient methods in the context
of optimization, we do not know yet whether there exists more efficient stepsizes
in the gradient method for solving symmetric linear systems. Another issue is the
application of the new stepsize in nonlinear systems. Cruz et al. [6] built an efficient
gradient algorithm for nonlinear systems based on the BB stepsizes. Can we improve
their gradient algorithms by using our new stepsize?

Finally, an important theoretical question related to the new method (or the BB1
and BB2 methods) is, does the new method converge for general symmetric linear
systems? Although our numerical experiments show that the answer might be yes,
it seems very difficult for us to provide a proof.

4 Concluding Remarks

In this paper, we have analyzed a positive BB-like gradient stepsize and discussed its
possible uses. We provide an analysis of the positive stepsize for two-dimensional
strictly convex quadratic functions and prove the R-superlinear convergence under
the assumption (36). It is not known yet whether the assumption (36) can be
removed or not. At the same time, we have extended BB-like methods for solving
symmetric linear systems and found that a variant of the positive stepsize, that
is (53), is very useful in the context. More numerical experiments are required
to examine the efficiency of the stepsize (53) for symmetric linear systems. The
convergence of BB-like methods in this context is also not known to us in theory.

From the discussions in Sections 2.3 and 3.2, we have seen two possibilities to
deal with the case where the BB stepsizes are negative. The first is by truncation
[for example, see (49) and (50)]. The second is still to use the BB stepsize even
when negative values of the BB stepsize have been detected due to the successful
numerical example in Section 3.1. On the whole, the proposition of the positive
stepsize (9) might provide much room in finding more efficient and reasonable BB-
like gradient methods.
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