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It is shown in this paper that the infimum of the Q-order of the convergence of
variable metric algorithms is only 1, even though the objective function is twice
continuously differentiable and uniformly convex. It is shown by example that the
Q-order can be 1+ 1/N for any large N, though the R-order is (1+ N)'/2,

1. Introduction

THE PROBLEM is about the Q-order of convergence of variable metric algorithms for
minimizing a differentiable function of several variables. Let F(x) from R" to R be
the objective function to be minimized. Assume F(x) is convex, twice continuously
differentiable, and attains its minimum value at a point where V2F is positive
definite. Variable metric algorithms are iterative. At the kth iteration an estimate of
the solution at which F(x) obtains its minimum, x, say, and a n x n positive definite
matrix B, are available. Since d; = — B, 'VF(x,) is the solution of the following
problem

min F(x,)+ V7 F(x,)d +4d"B,d, (1.1)
and to ensure a reduction in the objective function, we let
Xp41 = Xx+ody, (1.2)
where the step-length «, is such that
F(x,+a,dy) < F(x,). (1.3)

One special choice of «, is called the “perfect” (or “exact”) line search (Dixon, 1972),
that is, .

F(x, +o,d,) = min F(x, +ad,). (14)

Throughout this paper, the perfect line search is used at every iteration. B,,, is
updated by any formula in Broyden’s family (Broyden, 1970). Due to Dixon (1972), if
perfect line searches are used, then the sequence of points {x,} is independent of the
choice of formula in Broyden’s family, and we have

SiVF(x4,) =0 (1.5)
i+ 1[VF(xys ) —VF(x)] = 0,
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where
Op = Xp 4y — X = Gy dy, ) (1.6)

Superlinear convergence of the algorithm, that is,
lim |Ix, 4 ; — x*||/llx, —x*|| = 0, (1.7)
was first proved by Powell (1971, 1972) and Dixon (1972), where ||.|| is any vector

norm in R" and x* is the solution at which F(x) attains its minimum value.
Burmeister (1973) proved the n-step quadratic convergence condition

Xc+n—x*I = O(llxi — x*|?), (1.8)
and Ritter (1980) improved the result to
11, 4.5 = x*]| = ol —x*||%). (1.9)
Recently, Powell (1983) proved that
1%y +n=x*l = O(xx4 y = x*[| l1x, —x*{l), (1.10)

and when n = 2 his result is optimal. From (1.10), the R-order of convergence is at
least the root in (1, 2) of the polynomial equation

#—6—1=0, (1.11)

see Powell (1983). Powell (1983) also showed that the Q-order of convergence can be
less than the R-order, where R-order and Q-order are defined by Ortega &
Rheinboldt (1970). We establish that the infimum of the Q-order is only 1 for any
fixed n > 2 even if V2F(x*) is positive definite. However, if unit-steps (a, = 1) are
used instead of perfect line searches, the R-order of convergence of the BFGS
formula may also equal 1 (Powell, 1983).

2. The Result

Since the algorithm attains the solution after the first iteration when n =1, we
require n > 2. In this section, the result is stated and an outline of proof is given.

THEOREM 2.1. For any fixed n > 2, the infimum of the Q-order of convergence of the
variable metric algorithms with perfect line searches is only 1, if the class of objective
functions is all convex, twice continuously differentiable functions, and the Hessian
matrix at the minimum is positive definite.

Outline of Proof. Obviously it is sufficient to prove that for any fixed n > 2 and any
fixed ¢ > 1, there exists a F(x) from R"” to R, which satisfies all the conditions stated
in section 1, and there exist a x, € R" and a positive definite matrix B,, which
generate {x,}, such that the Q-order of convergence of {x,} is less than c. The proof
of the theorem is constructive, and the idea of the proof is due to Powell (1983).

It is sufficient to prove the theorem for n = 2. We construct a sequence {x,}
converging to x* = (0, 0)7, which has the Q-order of 1+ 1/N. It is proved that there
exist a twice continuously differentiable function F(.), a starting point x, and a
positive definite matrix B, such that the variable metric method generates the
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sequence {x,}. Since variable metric algorithms with exact line search are invariant
under nonsingular linear transformations’ (Powell, 1971), we assume that F(.)
satisfies V2F(x*) = 1. Thus the angle between VF(x, ., ,) and x, ., —x* tends to zero.
The angle between 6, and x,—x* also tends to zero because {x,} converges
superlinearly. Consequently from (1.5) it follows that the angle between x, —x* and
X+3—X* tends to a right angle. This guides us to define {x,} such that the iterates
lie on two smooth curves that intersect perpendicularly at x*:

Xapoy = (i, (T -V OTYT 2.1
Xgp = (tf(Ni-l)_tEN'Fz, tf‘l'l)'r
tk+1=tk~+l k=1,2,.--

and ¢, € (0, 1), N being a very large integer. Since the conditions (1.5) and (1.6) define
the sequence {x,} uniquely when n =2 and F(.) is convex, it is sufficient to prove
that there exists a twice continuously differentiable function F(.) satisfying (1.5}
(1.6) and (2.1). The Appendix shows the existence of F(.), and a choice of x, and B,
which make (1.5), (1.6) and (2.1) hold for all k.

From (2.1), we have that [[x,,|| & ||x4-lI* **/¥. So for any ¢ > 1, we can choose N
such that 1+ 1/N < c. Hence the Q-order is less than c. Therefore the theorem is
true.

3. Discussion

Though we only prove our result when n = 2, for any n > 2 we can let F,(.) be
Fn(x) = F(zh t2)+i Z tiz’ X = (th L) tn)T € Rn'
i=3

Further, we choose the initial point so that its first two components are those of x,
defined in (2.1), and its other components are zero, and we let the initial matrix be

B, 07"
o In-z'

Then the sequence generated by the variable metric algorithm is the same as x,
defined by (2.1), if we ignore the zero components of the points. Thus the Q-order is
the same as that when n = 2, which shows our theorem holds for n > 2.

It is noted that in our example [|x,;4,l = lix2-,lI¥*?:, so the R-order of
convergence is (N + 1)¥. Therefore the R-order can be arbitrarily large, though the
Q-order is arbitrarily close to 1. ' :

Let T be the set of all twice continuously differentiable functions which solve
(1.511.6), where {x,} is defined by (2.1). It is not known to the author whether T’
contains any many times differentiable functions. If there exists a many times
differentiable function F(.) which satisfies (1.5), (1.6) and (2.1), the given theorem is
not analogous to the result, pointed out by the referee, that Newton’s method
without line search has the Q-order of 1+ 1/N if the Hessian is Holder continuous
with exponent 1/N (Ortega & Rheinboldt, 1970). Otherwise for variable metric
methods there might be some relations between the Q-order and the continuity
properties of the Hessian.
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Appendix

LEMMA A.1 For seR and t e R, let x(s), g(s), ¥(t), h(t) be once differentiable paths in
R" such thatatt =0=s )

x(0)= 0,  g(0) =0 = h(0), (A1)
x'(0), ¥(0) are linearly independent, g'(0), k'(0) are linear independent and
g7(0)y'(0) = KT(0)x'(0). (A2)

Then there exists a differentiable function F(.) defined in a small neighbourhood of x(0)
such that

VE(x(s)) = gls), ~ VF(yA1) = h(t) (A3)

holds for all small s 20,1t = 0.

Proof. Since x'(0) and y'(0) are linear independent, we can make a differentiable and
invertible transformation in a small neighbourhood of x(0) if necessary, in order to
assume  without loss of genmerality that x(s)=(s,0,0,..)" = se,
W) =(0,t0,..)" =te,, The transformation makes an adjustment to
g(s) = (g,(s), ga(s) . . )T and h(t) = (hy(2), ha(2), .. )T, but it is easy to show that (A.2)
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remains valid, which ensures that g5(0) = h'(0). Let
F(z) =J. gx(S)dS+,Z:2 z,gdz,) + j ha(t)dt + ;Zih;(Zz)—y'z(O)zx z (A4)
i= 0 i

o

z2=(2,23.-+2)7 € R

It is straightforward to show that F(.) is continuously differentiable and satisfies
(A.3). The lemma is proved.

Our theorem is true if there exists a twice continuously differentiable function
F(.), which satisfies (1.5}H1.6), where {x,} is defined by (2.1). Direct calculations
show that ’

Bapmy = (—tf 45D gIN+2, O 0oyyT (A5)
52,, = (tgm-z’ —tf+l+tf,~+ l)z_t(kN+l)(N1+N-l))T
forall k=1, 2,.... Hence if we let
VF(x3,- 1) = (a(ty), altdt/(L — e + 6"+~ )T (A-6)
VF(x3) = (bt /(1 +2) "2~ 57), be))”

then the first equation of (1.5) is satisfied. To ensure that the second equation of (1.5)
is satisfied, we require that

e A+ 2 =) — a(e )]+

(= 1+ O+ DN+ DN =20 ) —alt)e /(1 — 1+ V3] =0 (AT)
and
(= 1=V DD N DV ) = b~ (L + 2 — o )] +
l—t(k~+ 1)(N2-1)[t¥+la(tf+‘)/(l —t(kN+ ”N+t‘k~+ l)(N3+N—2))_b(tk)] = 0, (A‘8)
for all k. Hence if a(t) and b(t) satisfy
b(t) = ta(t)[(l_t(N+l)N+t(N+1)(N1+N—2))/(1_tN+tN1+N-2)_tN]/
[1_t(N+1)N+t(N+x)(N3+N-2)_t(N+1)N/(1+tN+2_tN2)] (A.9)
and .
a(t¥*) = tNI-lb(t)[(l+t(N+ 1)(N+2)_tN1(N+1))/(1+tN+2_tN2)_t(N3-1)N]/
[1+t(N+1)(N+2)_t(N+1)N3__t(N+1)N2/(l__tN(N+1)+t(N+l)(N2+N—2))]’ (A.10)

then (A.7) and (A.8) hold. Eliminating b(t) from (A.9) and (A.10) we have the
following form of function equation

1 (1
™) = tNL/lJ’l< +1

}1(”:

™M=

ayth ') :
- a(t) (A.11)
o)

M

1
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where ay, by and Iy, J; are constants and positive integers, respectively. A special

solution of this equation is as follows:

e

(g

bﬂ PN+ l)“)
1

a(t) =t [] Eo—— (A.12)
=1 =
for all sufficiently small t. Therefore we define a(t) by the equation
o0
a(t) =" (1 =" + ¥V x T (A.13)
. j=0

[(1 + t(N+sz+l)‘" - tN‘(N+l)‘“)(l _ tN(N+1)/’l + th’+N-2)(N+ 1)‘“) — tN‘(N+l)’"]
1+ ANFN+TT tN"(N-»xy" N 1x~+1)l(1 VAN tN‘(N+l)‘)]

[(1_tN(N+l)‘”+t(N’+N-2)(N+l)’")(I+t(N+2)(N+l)‘_tN’(N+I)')_tN(N-H)J“]
[1_tN(N+1)7"+t(N"+N~2)(N+l)‘“__tN(N+l)‘(1_tN(N+l)»’+t(N’+N-2)(N+l}‘]

for small ¢ and then we let b(t) have the value (A.9), in order that (A.9) and (A.10) arc
satisfied. Thus if F(x) satisfies (A.6), then (1.5) holds for all k.
From (A.13) and (A.9), we have that a(t) and b(t) are analytic functions and that

a(t) = (L —t¥ + Ot + 67+ 2 + OV ))/(1 =¥ + 62V + O(1¥))
= N1+ 82 =M + O(e*M)),
b(e) = ta®)[1+" + 127 + 0PNy — e¥/(1 + O(lt™)

= N1+ N2+ 0(jePY) It < 1. (A.14)
For sufficiently small non-negative t, we define
#(t) = a(s'™), (A.15)

Y(t) = (/N ).
From (A.14), we have

o) = t+ %) (A.16)
Y(t) = t+y*(0),
where ¢*, y* are defined for small non-negative ¢, and
¢*(t) = 2+ 2N+ 0(t), (A.17)
l/,t(t) = t2+1/(N+ 1)+0(|t,3).

Further, ¢* and y* are twice continuously differentiable for small non-negative ¢,
and

dz * 2/N
7 #%(0) = O™,
, (A.18)

d2
V0 = ().
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Hence if we define
P*(0) = ¢*(—1) (A.19)
Y0 =y*(-9)
for sufficiently small negative ¢, then ¢* and y* are well defined and twice
continuously differentiable in a small neighbourhood of zero. Thus, by (A.16), ¢ and
Y can be well defined and twice continuously differentiable in a small

neighbourhood of zero. Further, for positive ¢, (A.15) holds.
‘What we need to show is the existence of F(t, u) such that

VF(I, tl + ”N—tN+ 1- 1/N) = [¢(t), t”N¢(t)/(l —t+ tN+ 1 —ZIN)]T, (AZO)
VF(u"—uz, u) = [uN— 1',(/(“)/(1 + ul. +1/(1 +N)_uN1/(N+ 1))’ w(u)]T

From Lemma A.l, given at the beginning of the Appendix, there exists a
continuously differentiable function F(.) such that (A.20) holds. In our special case,
F(.) can be made twice continuously differentiable. For more details see Yuan
(1983).

From (2.1), (A.6) and (A.14), it follows that V2F(x*) = I, where x* = (0,0)".
Therefore F(.) is not only twice continuously differentiable but also uniformly
convex in a neighbourhood of x*. We may modify F if necessary away from the
origin, and then choose t; > 0 small so that the modification is irrelevant to the
above analysis. Therefore the condition 6] VF(x,.,) = 0 is sufficient for x, ., to be
the point that would be calculated by a perfect line search. Because 67 VF(x,) < 0 for
sruall t, > 0, there exists a positive definite matrix B, such that §, = — B; 'VF(x,).
Thus the variable metric algorithm generates exactly the sequence {x,} as defined in
(2.1), whose @-order of convergence is 1+ 1/N.



