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Abstract. A well-known problem in protein modeling is the determination of the structure of 
a protein with a given set of inter-atomic or inter-residue distances obtained from either 
physical experiments or theoretical estimates. A general form of the problem is known as the 
distance geometry problem in mathematics, the graph embedding problem in computer 
science, and the multidimensional scaling problem in statistics. The problem has applications 
in many other scientific and engineering fields as well such as sensor network localization, 
image recognition, and protein classification. We describe the formulations and complexities 
of the problem in its various forms, and introduce a geometric buildup approach to the 
problem. Central to this approach is the idea that the coordinates of the atoms in a protein 
can be determined one atom at a time, with the distances from the determined atoms to the 
undetermined ones. It can determine a structure more efficiently than other conventional 
approaches, yet without requiring more distance constraints than necessary. We present the 
general algorithm and its theory and review the recent development of the algorithm for 
controlling the propagation of the numerical errors in the buildup process, for determining 
rigid vs. unique structures, and for handling problems with inexact distances (distances with 
errors). We show the results from applying the algorithm to some of the model problems and 
justify the potential use of the algorithm in protein modeling. 

Key words Biomolecular modeling, protein structure determination, distance geometry, 
graph embedding, linear and nonlinear systems of equations, linear and nonlinear 
optimization 
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1.  Distance Based Protein Modeling 

Proteins are an important class of biological molecules. They are encoded in 
genes and produced in cells through genetic translation. They are life supporting 
(or sometimes, destructing) ingredients and are indispensable for almost all 
biological processes. For example, humans have hundreds of thousands of 
different proteins and would not be able to maintain normal life even if short of a 
singe type of protein (Figure 1a). On the other hand, with the help of some 
proteins, viruses are able to grow, translate, integrate, and replicate, causing 
diseases (Figure 1b). Some proteins themselves are toxic and even infectious 
such as the proteins in poisonous plants and in beef causing the Mad Cow 
Disease (Figure 1c). [1]  

A protein consists of a linear chain of amino acids connected with strong 
chemical bonds. The amino acids and their order in the chain are fixed for each 
different protein, and they are specified by the gene (a sequence of DNA 
molecules) from which the protein is generated. Once the chain of amino acids 
for a protein is produced, it immediately folds into a unique and stable 3D 
structure, which is crucial for the protein to function. Since the function of the 
protein depends on its structure, the determination of the structure becomes a 
necessary step for the understanding of the biological properties of every protein. 
[1] 

Unfortunately, there is no direct physical means to observe a protein 
structure at an atomic level. There are only techniques that can be used to 
measure certain physical properties of the protein upon which the structure can 
be deduced. X-ray crystallography and nuclear magnetic resonance spectroscopy 
(NMR) are major experimental techniques of such in practice. They are 
responsible for the determination of 80% and 15% of the protein structures (total 

       
                   a                                              b                                              c 

Figure 1 Example proteins a. hemoglobin protein, 1BUW, in blood; b. protein 2PLV, supporting 
poliovirus; c. prion protein 1I4M-D, causing the Mad Cow Disease in human.   
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about 30,000) so far deposited in the Protein Data Bank (PDB), respectively [2]. 
The experimental techniques have many limitations, though. X-ray 
crystallography requires purifying and crystallizing proteins, which may take 
months or years to finish, if not failed. The results often vary with varying 
experiments for reasons not fully understood [3]. NMR can only be applied to 
small proteins for otherwise the spectral data would become too difficult to 
clarify [4]. The structures determined by NMR are not as accurate and detailed 
as well [1]. Theoretical or computational approaches such as homology 
modeling, structural alignment, threading, energy minimization, dynamic 
simulation, etc., have been developed [5][6], but they are more successful in 
building theoretical models or refining experimental structures than determining 
the structures completely independently, although recent progress as shown in 
the CASP competitions [7] and in utilizing more powerful computing resources 
is indeed exciting and encouraging [8]. 

In this paper, we discuss a well-known problem in protein modeling, for the 
determination of the structure of a protein with a given set of inter-atomic or 
inter-residue distances obtained from either physical experiments or theoretical 
estimates (Figure 2). A more general and abstract form of the problem is known 
as the distance geometry problem in mathematics [9], the graph embedding 
problem in computer science [10], and the multidimensional scaling problem in 
statistics [11]. In general, the problem can be stated as to find the coordinates for 
a set of points in some topological space given the distances for certain pairs of 
points. Therefore, in addition to protein modeling where everything is discussed 
only in three-dimensional Euclidean space, the problem has applications in many 
other scientific and engineering fields as well, such as sensor network 
localization [12], image recognition [13], and protein classification [14], to name 
a few. In any case, the problem may or may not have a solution in a given 
topological space, and even if it does have a solution, the solution may not be 
easy to find, depending on the given distances. For example, in any k-
dimensional Euclidean space, the problem is polynomial time solvable if the 
distances for all the pairs of points are provided, and is NP-complete otherwise 
in general [10]. 

In protein modeling, the distances or their ranges for certain pairs of atoms 
or residues in a given protein may be obtained from either physical experiments 
such as NOE (Nuclear Overhauser Effects), J-coupling, and dipolar coupling in 
NMR [4][15][16], or theoretical estimates such as the bond lengths and bond 
angles known from general organic chemistry [1], or statistical estimates on 
certain inter-atomic or inter-residue distances based on their distributions in 
databases of known protein structures [17][18][19]. Then, a structure may be 
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determined for the protein by using the available distances. However, the given 
distances may not necessarily be sufficient for determining the structure 
uniquely, or even just rigidly. Here, by uniquely we mean that the structure is 
unique under translation and rotation, and by rigidly we mean that any part of 
the structure cannot be changed continuously without violating the given 
distance restraints. Sometimes, the distances may contain errors and may be 
inconsistent in the sense that they may have violated some basic geometric 
conditions such as the triangle inequality for the distances among any three 
atoms. In that case, a structure that fits the given distances will not even exist. 
After all, even if a structure does exist, it is still not trivial to determine based on 
the given distances. A distance geometry problem needs to be solved, which is 
computationally intractable in general [10]. 

 

 

Crippen and Havel and several other research groups [20][21] pioneered the 
work on using the solution of a distance geometry problem for protein structure 
determination, especially for NMR structure modeling, where the distances for 
certain pairs of atoms and in particular, the pairs of hydrogen atoms that are 
within say, 5 Ǻ distance, can be estimated through J-couplings and NOE, with 
additional ones that can be derived from known bond lengths and bond angles. 
However, in NMR modeling, the distances obtained are restricted to a small 
subset of all pairs of atoms in the protein. Otherwise, if the distances for all pairs 
of atoms are available, a structure would be much easier to build upon. The 
NMR distances also contain experimental errors and are not necessarily always 
consistent. A structure that can fit the distances approximately rather than 
exactly may be the best we can hope for in practice. Moreover, in NMR, instead 
of exact distances, the ranges or lower and upper bounds of the distances are 
usually provided, due to the fact that the structures are flexible in solution and 
the distances are not fixed. An ensemble of structures rather than a single one 
that can fit in the distance ranges are therefore sought in real practice to show 

Figure 2 Distance based protein modeling Given a set of inter-atomic distances or their ranges, find 
the coordinates of the atoms in the protein. 
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the dynamic nature of the structure [22][23]. For these various reasons, the focus 
on NMR modeling has been more on developing methods for extracting the 
bounds on the missing distances (bound smoothing), removing the 
inconsistencies in the distances (distance metrication), and fitting the structures 
in the distance ranges (optimization), as described in the embed algorithm 
[20][21] and implemented in NMR modeling software such as the CNS 
[24][25]. Therefore, the solution of an exact distance geometry problem has not 
been improved much since the embed algorithm was first developed, and its 
impact in NMR modeling has been rather limited. On the other hand, important 
theoretical and algorithmic issues related to the solution of the problem still 
remain to be resolved, while its applications in more general areas of distance-
based protein modeling are expanding [26][27][28][29]. 

Existing approaches to the solution of the distance geometry problem 
include, for example, the embedding algorithm by Crippen and Havel [20][21], 
the alternating projection method by Glunt and Hayden [32][33], the graph 
reduction approach by Hendrickson [30][31], the global optimization method by 
Moré and Wu [34][35], the stochastic/perturbation method by Zou, Byrd, and 
Schnabel [36], the multidimensional scaling method by Kearsly, Tapia, and 
Trosset [37][38], the dc programming method by Le Thi Hoai and Pham Dinh 
[39], the semi-definite programming approach by Biswas, Liang, Toh, and Ye 
[40], and the stochastic search method by Grosso, Locatelli, and Schoen [41].  

We investigate the solution of the distance geometry problem within a so-
called geometric buildup framework. Dong and Wu [42][43] first implemented a 
geometric buildup algorithm for the solution of the distance geometry problem 
with exact distances and justified the linear computation time for the case when 
the distances required in every buildup step are always available. Central to the 
geometric buildup approach is the idea to determine only a small group of atoms 
at the beginning and then complete the whole molecule by repeatedly 
determining one or more atoms every time using the available distances between 
the determined and undetermined atoms. The advantage of using a geometric 
buildup approach is that it works directly on the given distances and exploits the 
special structure of a given problem, and hence may be able to solve the problem 
more efficiently than a general approach. We present the general algorithm of 
this approach, and discuss related computational issues including control of 
numerical errors, determination of rigid vs. unique structures, and tolerance of 
distance errors, based on the recent development of the algorithm [44][45][46]. 
The theoretical basis of the approach is established based on the theory of 
distance geometry. A group of necessary and sufficient conditions for the 
determination of a structure with a given set of distances using a geometric 
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buildup algorithm are justified. The applications of the algorithm to model 
protein problems are demonstrated. 

2.  The Distance Geometry Problem 

Let n be the number of atoms in a given protein and x1, …, xn be the coordinate 
vectors for the atoms, where xi = (xi ,1, xi ,2, xi ,3)

T and xi ,1, xi ,2, and xi ,3 are the first, 
second, and third coordinates of atom i. If the coordinates x1, …, xn are known, 
the distances di ,j between atoms i and j can be computed with di ,j = ||xi – xj||, 
where ||·|| is the Euclidean norm. Conversely, if the distances di ,j are given, the 
coordinates x1, …, xn for the atoms can also be obtained based on the distances 
di ,j, but the computation is not as straightforward. The solution of a system of 
equations as can be stated in the following for x1, …, xn is required. 

        Sjidxx jiji ∈=− ),(,|||| ,
,    (2.1) 

where S is a subset of all atom pairs. The latter problem is known as a distance 
geometry problem in mathematics [9], a graph embedding problem in computer 
science [10], and a multidimensional scaling problem in statistics [11]. In 
practice, the distances may have errors, and therefore, a more general yet 
practical form of the problem would be to find the coordinates of the atoms x1, 
…, xn, given only a set of lower and upper bounds, l i ,j and ui ,j, of the distances di ,j 
such that 

        Sjiuxxl jijiji ∈≤−≤ ),(,|||| ,,
.  (2.2) 

The distance geometry problem is polynomial time solvable if the distances for 
all pairs of atoms are available. However, it has been proved to be NP-hard in 
general. Even if errors are allowed for the distances, the problem is still hard, if 
only small errors are allowed.   

2.1 Problems with Exact Distances  

We first consider the simple case when a complete set of exact distances is 
given. By exact distances we mean the distances are given in exact values, not in 
ranges, and by a complete set of distances we mean the distances for all pairs of 
atoms are included. A solution to the distance geometry problem with such a set 
of distance data can be obtained efficiently by using for example an algorithm 
that requires the singular value decomposition (SVD) of an induced distance 
matrix. 
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 Assume that a set of coordinates x1, …, xn can be found for a given set of 
distances di ,j, where i, j = 1, …, n. Then, ||xi – xj|| = di ,j for all i, j = 1, …, n, and  

        .,,1,,||||2|||| 2
,

22 njidxxxx jijj
T
ii K==+−  (2.3) 

Since the molecular structure is invariant under any translation or rotation, we 
set a reference system so that the origin is located at the last atom or in other 
words, xn = (0, 0, 0)T. It follows that 

        .1,,1,,2 2
,

2
,

2
, −==+− njiddxxd jinjj

T
ini K  (2.4) 

Define a coordinate matrix X and an induced distance matrix D, 

        
}.1,,1,:2/){(

and}3,2,1,1,,1:{
2
,

2
,

2
,

,

−=+−=

=−==

njidddD

jnixX

njjini

ji

K

K  (2.5) 

Then, XXT = D and D must be of maximum rank 3.  
The distance geometry problem can be defined in a general space Rk with x1, 

…, xn in Rk and di ,j the Euclidean distances between atoms i and j. Then, the 
equation XXT = D still holds, and D must be of maximum rank k, where X = {xi ,j 
: i = 1, …, n, j = 1, …, k}. 

Theorem 2.1.1 [9] Let {di ,j : i, j = 1, …, n} be a set of distances in Rk, for 
some k ≤ n. Then, the induced matrix D as defined in (2.5) is of maximum rank 
k. 

Proof It follows from the fact that D = XXT for a coordinate matrix X in Rn-

1×Rk and X is of maximum rank k.  

The equation XXT = D can be solved using the singular value decomposition 
of D. Let D = UΣUT be the singular value decomposition of D, where U is an 
orthogonal matrix and Σ a diagonal matrix with the singular values of D along 
the diagonal. If D is a matrix of rank less than or equal to k, the decomposition 
can be obtained with U being (n-1)×k and Σ being k×k. Then, X = UΣ1/2 solves 
the equation XXT = D. Here the singular value decomposition of D requires O 

(kn2) floating-point operations [47], and therefore, the distance geometry problem 
with a complete set of exact distances can be solved in polynomial time. 

 Note that although in practice, the distances may not be available for all the 
pairs of atoms, the solution of the problem with all exact distances can still be 
important for the solution of the general problem with a sparse set of distances. 
For example, in the embed algorithm, a complete set of distances among all the 
atoms is generated after bound smoothing, and the solution of a distance 
geometry problem with all exact distances is always required afterwards 
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[20][21]. Also, if a subset of atoms has all the distances among the atoms, but 
the whole set of atoms does not, the coordinates of the subset of atoms can still 
be determined efficiently by solving a distance geometry problem with all exact 
distances for the subset of atoms. The procedure may also be applied repeatedly 
as some of the atoms are determined and the availability of the distances among 
them is changed, until no such subsets of atoms can be found [48][49].  

2.2 Problems with Sparse Distances  

We now consider the problem with an incomplete set of exact distances. Let S be 
a subset of all pairs of atoms such that (i,j) is in S if the distance di ,j between 
atoms i and j is given. Then, the problem is to find the coordinates x1, …, xn for 
the atoms so that 

        Sjidxx jiji ∈=− ),(,|||| ,
.   (2.6) 

Let G = (V, E, W) be a weighted graph, where V = {v1, …, vn} is the set of 
vertices, E = {ei ,j : (i,j) in S} the set of edges, and W = {wi ,j = di ,j : (i,j) in S} the 
weights on the edges. Then, the distance geometry problem for molecular 
structure determination can be considered as a graph embedding problem for G 
in R3, i.e., to find a mapping from the vertices v1, …, vn in V to a set of points x1, 
…, xn in R3 so that the distances between points i and j for all (i,j) in S are equal 
to the weights di ,j on the corresponding edges ei ,j.  

The graph embedding problem can be considered in a Euclidean space of 
any dimension. In any case, it has been proved that the graph embedding problem 
is an NP-hard problem even for the one-dimensional case [10]. The proof can be 
demonstrated via the solution of a special class of one-dimensional graph 
embedding problem, the problem of folding a closed chain in a line (in one-
dimensional space, Figure 3). Let G = (V, E, W), with V = {v1, …, vn+1}, E = 

     

     
    

Figure 3 Folding a closed chain The 
integer set partition problem can be 
reduced to the problem of folding a closed 
chain in a line, a one-dimensional graph 
embedding problem, thereby proving that 
the one-dimensional graph embedding 
problem must be NP-hard, for the integer 
set partition problem has proved to be.  
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{ ei ,i+1 : i = 1, …, n} U {e1,n+1}, and W = {wi ,i+1 = l i  : i = 1, …, n} U {w1,n+1 = 0}, 
where l i is the length of the link between node i and node i+1 in the chain. Then, 
the problem can be stated formally as to find a mapping from the nodes {v1, …, 
vn+1} of G to a set of points {x1, …, xn+1} in R so that 

        0||,,,1,|| 111 =−==− ++ xxnilxx niii K .  (2.7) 

Theorem 2.2.1 The integer set partition problem can be reduced to the 
problem of folding a closed chain in a line. 

Proof Let A = {a1, …, an} be a given set of positive integers. Define a graph 
G = (V, E, W), with V = {v1, …, vn+1}, E = {ei ,i+1 : i = 1, …, n} U {e1,n+1}, and W 
= {wi ,i+1 = ai  : i = 1, …, n} U {w1,n+1 = 0}. The graph defines a closed chain. 
Suppose that the chain can be folded in a line or in other words, the graph can be 
embedded in R. Then, vi  is placed at xi  in R for i = 1, …, n+1, and 

        0||,,,1,|| 111 =−==− ++ xxniaxx niii K . 

Let A1 = {ai = |xi+1 – xi| = xi+1 – xi} and A2 = {ai = |xi+1 – xi | = xi  – xi+1}. Then, 

        ∑∑∑
∈

+
∈

+
=

+ −−−=−
21

)()()( 11
1

1
Aa

ii
Aa

ii

n

i
ii

ii

xxxxxx . 

However, 

        0)( 11
1

1 =−=− +
=

+∑ xxxx n

n

i
ii

. 

It follows that 

        0)()(
2121

11 =−=−−− ∑∑∑∑
∈∈∈

+
∈

+
Aa

i
Aa

i
Aa

ii
Aa

ii

iiii

aaxxxx , 

and A1 and A2 solves the set partition problem for A.  

 It follows from the above theorem that the problem of folding a closed chain 
in a line cannot be in P, for otherwise, the set partition problem would be 
solvable in P via the solution of an equivalent chain folding problem, which is 
contradictory to the fact that the set partition problem is in NP [50].  

2.3 Problems with Inexact Distances  

In protein modeling practice, the distances are often provided with estimated 
ranges only. The related distance geometry problem then becomes to find the 
coordinates x1, …, xn of the atoms, so that the distances between atoms i and j, 
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for all (i,j) in a subset S of all pairs of atoms, are within their estimated ranges, 
i.e., 

        Sjiuxxl jijiji ∈≤−≤ ),(,|||| ,,
.  (2.8) 

where l i ,j and ui ,j are the lower and upper bounds of the distances between atoms i 
and j. Let di ,j = (l i ,j + ui ,j) / 2 and εi ,j = (ui ,j – l i ,j) / 2. The above problem can be 
written as  

        Sjidxx jijiji ∈≤−− ),(,|||||| ,, ε ,  (2.9) 

and be viewed as to find an approximate solution to the distance geometry 
problem for a set of exact distances di ,j with each distance ||xi – xj|| allowed to 
have an error εi ,j from di ,j. We call such a solution an ε-approximate solution. 

If large errors are allowed, an approximate solution is certainly easier to 
obtain than an exact solution. However, if only small errors are allowed, the 
problem for finding an approximate solution can be as hard as for finding an 
exact solution. To see this, again, we can consider the simple case of folding a 
closed chain in a line, but this time, we allow the links to be connected loosely. 
Let G = (V, E, W), with V = {v1, …, vn+1}, E = {ei ,i+1 : i = 1, …, n} U {e1,n+1}, 
and W = {wi ,i+1 = l i : i = 1, …, n} U {w1,n+1 = 0}, where l i is the length of the 
link between node i and node i+1 in the chain. Then, the problem can be stated 
formally as to find a mapping from the nodes {v1, …, vn+1} of G to a set of points 
{ x1, …, xn+1} in R so that 

        
1111 ||,,,1,|||| +++ ≤−=≤−− nniiii xxnilxx εε K , (2.10) 

for a set of errors {ε1, …, εn+1}. 
Moré and Wu [51] showed that the above problem is also NP-hard when the 

allowed errors are small. In fact, the set partition problem can again be reduced 
to this problem with εi < 1/(2n) for i = 1, …, n+1. Here, we give another proof 
that requires only Σi εi  < 1, removing the dependence of the required bound of 
the errors on the problem size n explicitly. 

Theorem 2.3.1 The integer set partition problem can be reduced to the 
problem of folding a closed chain with total allowed error Σi  εi  < 1. 

Proof Let A = {a1, …, an} be a given set of positive integers. Define a graph 
G = (V, E, W), with V = {v1, …, vn+1}, E = {ei ,i+1 : i = 1, …, n} U {e1,n+1}, and W 
= {wi ,i+1 = ai  : i = 1, …, n} U {w1,n+1 = 0}. The graph defines a closed chain. 
Suppose that the chain can be folded in a line with an error εi allowed on each 
length ai and Σi εi < 1. Then, vi is placed at xi  in R for i = 1, …, n+1, and 
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1111 ||,,,1,|||| +++ ≤−=≤−− nniiii xxniaxx εε K . 

Let A1 = {ai = |xi+1 – xi| = xi+1 – xi} and A2 = {ai = |xi+1 – xi | = xi  – xi+1}. Then, 
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and 
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Therefore,   

        .)()(
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1
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1
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=
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+ +−≤−≤−− n
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However, 

        
111

1
11 )( ++

=
++ ≤−=−≤− ∑ nn

n

i
iin xxxx εε . 

It follows that 

        11
1

1

1

1
21

<≤−≤−<− ∑∑∑∑
+

=
∈∈

+

=

n

i i
Aa

i
Aa

i

n

i i

ii

aa εε . 

Note that the two sums in the middle are over the integers and their difference 
cannot be a fraction. Therefore, 

        0
21

=− ∑∑
∈∈ Aa

i
Aa

i

ii

aa , 

and A1 and A2 solves the set partition problem for A.  

3.  The Geometric Buildup Approach 

Central to the geometric buildup approach to the distance geometry problem is 
the idea to determine only a small group of atoms at the beginning and then 
complete the whole molecule by repeatedly determining one or more atoms every 
time using the available distances between the determined and undetermined 
atoms. The advantage of using a geometric buildup approach is that it works 
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directly on the given distances and exploits the special structure of a given 
problem, and hence may be able to solve the problem more efficiently than a 
general approach. Dong and Wu [42] first applied a geometric buildup algorithm 
to the solution of the distance geometry problem, and showed that the algorithm 
can find a solution to the problem in O(n) floating-point operations if the 
distances for all the pairs of atoms are available. The work was later extended to 
sparse distances [43] with an updating scheme to control the propagation of 
numerical errors in the buildup process [44]. The recent development on the 
algorithm includes the enhancement of the algorithm on rigid vs. unique 
structure determination [45] and the extension of the algorithm to handling 
inexact or inconsistent distance data [46]. 

3.1 The General Algorithm  

Given an arbitrary set of distances, the algorithm first finds four atoms that are 
not in the same plane and determines the coordinates for the four atoms, using 
for example the singular value decomposition algorithm as described in Section 
2.1, with all the distances among them (assuming available). Then, for any 
undetermined atom j, the algorithm repeatedly performs a procedure as follows: 
Find four determined atoms that are not in the same plane and have distances 
available to atom j, and determine the coordinates for atom j. Let xi  = (xi ,1, xi ,2, 
xi ,3)

T, i = 1, 2, 3, 4, be the coordinate vectors of the four atoms. Then, the 
coordinates xj = (xj,1, xj,2, xj,3)

T for atom j can be determined by using the 
distances di ,j from atoms i = 1, 2, 3, 4 to atom j (Figure 4). Indeed, xj can be 
obtained from the solution of the following system of equations, 

        4,3,2,1,||||2|||| 2
,

22 ==+− idxxxx jijj
T
ii

. (3.1) 

By subtracting equation i from equation i+1 for i = 1, 2, 3, we can eliminate the 
quadratic terms for xj to obtain  

        
.3,2,1),||||||(||)(

)(2
22

1
2
,

2
,1

1

=−−−=

−−
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+

ixxdd

xxx

iijiji

j
T

ii  (3.2) 

Let A be a matrix and b a vector, and 
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We then have Axj = b. Since x1, x2, x3, x4 are not in the same plane, A must be 
nonsingular, and we can therefore solve the linear system to obtain a unique 
solution for xj. Here, solving the linear system requires only constant time. Since 
we only need to solve n–4 such systems for n–4 coordinate vectors xj, the total 
computation time is proportional to n, if in every step, the required coordinates xi 
and distances di ,j, i = 1, 2, 3, 4 are always available. 
 
 

 

Figure 5 shows an example protein structure determined by using the 
general geometric buildup algorithm, with the distances for all the pairs of atoms 
in the protein, as demonstrated in Dong and Wu [42]. The structure is 
determined accurately and uniquely. The RMSD value of the structure compared 
with its X-ray reference structure is 1.0e-04 Å. The computation time is much 
more efficient than the conventional singular value decomposition algorithm as 
described in Section 2.1. 

The theoretical basis of the general geometric buildup algorithm can be 
traced back in the theory of distance geometry [9]. Several authors had 
discussions on the theoretical issues related to such an approach as well, 
including Saxe [10], Sippl and Scheraga [48][49], and Huang, Liang, and 
Pardalos [52]. Based on the distance geometry theory, any point in a Euclidean 
space can be determined in terms of the distances from this point to a special set 
of points.   
 

1

2 4

3

k

j

? xk = (xk1, xk2, xk2)

? xj = (xj1, xj2, xj2)

||xk - x1|| = dk,1
||xk - x2|| = dk,2
||xk - x3|| = dk,3
||xk - x4|| = dk,4

||xj - x1|| = dj,1
||xj - x2|| = dj,2
||xj - x3|| = dj,3
||xj - x4|| = dj,4

Three dimensional case: 
Four distances suffice to determine an atom.

Two dimensional case: 
Three distances suffice to determine an atom.

1

2 4

3

k

j

? xk = (xk1, xk2, xk2)

? xj = (xj1, xj2, xj2)

||xk - x1|| = dk,1
||xk - x2|| = dk,2
||xk - x3|| = dk,3
||xk - x4|| = dk,4

||xj - x1|| = dj,1
||xj - x2|| = dj,2
||xj - x3|| = dj,3
||xj - x4|| = dj,4

Three dimensional case: 
Four distances suffice to determine an atom.

Two dimensional case: 
Three distances suffice to determine an atom. 

Figure 4 Geometric buildup In two-dimensional space, if there are three determined atoms that are not 
in the same line and there are distances from these atoms to an undetermined atom, the undetermined 
atom can be determined uniquely using the three distances. In three-dimensional space, if there are four 
determined atoms that are not in the same plane and there are distances from these atoms to an 
undetermined atom, the undetermined atom can be determined uniquely using the four distances. 
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The General Geometric Buildup Algorithm 
 
1. Determine an initial set of atoms. 
2. Repeat: 

For each undetermined atom j, 
  If atom j has distances to four independent and determined atoms, 

      Determine atom j with these distances. 
End 

End 
If no atoms are determined in the loop, unsuccessfully stop. 

3. All atoms are successfully determined. 
 

 

 

Definition 3.1.1 A set of points B in a space S is a metric basis of S 
provided any point in S can be uniquely determined by its distances to the points 
in B. 

Definition 3.1.2 A set of k+1 points in Rk is called an independent set of 
points if it is not a set of points in Rk-1. 

Theorem 3.1.1 A set of k+1 independent points in Rk form a metric basis 
for Rk. 

Proof It follows directly by generalizing the basic geometric buildup step to 
the k-dimensional Euclidean space. Let xi = (xi ,1, …, xi ,k)

T be the coordinate 
vectors of an independent set of points i = 1, …, k+1 in Rk. Let xj = (xj,1, …, xj,k)

T 
be the coordinate vector for any point j in Rk with distances di ,j from points i = 1, 
…, k+1 to point j. Then,  

        1,,1,||||2|||| 2
,

22 +==+− kidxxxx jijj
T
ii K , (3.4) 

and Axj = b, where 

   

 

             
                 RMSD = 1.0e-04 Ǻ 

Figure 5 Geometric buildup The X-ray crystal 
structure (left) of the HIV-1 RT p66 protein 
(4200 atoms) and the structure (right) 
determined by the geometric buildup algorithm 
using the distances for all pairs of atoms in the 
protein. The algorithm took only 188,859 
floating-point operations, while a conventional 
singular-value decomposition algorithm 
required 1,268,200,000 floating-point 
operations. 



 15 

        
.

)||||||(||)(

)||||||(||)(

)||||||(||)(

,

)(

)(

)(

2

22
1

2
,

2
,1

2
2

2
3

2
,2

2
,3

2
1

2
2

2
,1

2
,2

1

23

12





















−−−

−−−
−−−

=





















−

−
−

−=

+++ kkjkjk

jj

jj

T
kk

T

T

xxdd

xxdd

xxdd

b

xx

xx

xx

A
LL

 (3.5) 

Since the points i = 1, …, k+1 are not in Rk-1, the matrix A must be nonsingular 
and xj is determined uniquely.  

 Given the above properties, we can easily see that a necessary condition for 
uniquely determining the coordinates of the atoms with a given set of distances 
is that each atom must have at least four distances to other atoms, and a 
sufficient condition is that in every step of the geometric buildup algorithm, 
there is an undetermined atom and the atom has four distances from four 
determined atoms who are not in the same plane. In general, we have 

Theorem 3.1.2 A necessary condition for the unique determination of the 
coordinates of a group of points x1, …, xn in Rk with a given set of distances 
among the points is that each point must have at least k+1 distances from other 
k+1 points, assuming that this point is not in Rk-1 with any k of the k+1 points.  

Proof It follows immediately from the fact that in Rk, a point can be defined 
uniquely only if it has k+1 distances from k+1 independent points, assuming it is 
not in Rk-1 with any k of the k+1 points. If it has only k distances from k points, 
the point will have at least two reflective positions.  

Theorem 3.1.3 A sufficient condition for the unique determination of the 
coordinates of a group of points x1, …, xn in Rk with a given set of distances 
among the points is that in every step of the geometric buildup algorithm, there is 
an undetermined point with k+1 distances from k+1 independent and determined 
points. 

Proof The geometric buildup algorithm gives a constructive proof for the 
theorem, because if the condition holds in every step of the algorithm, the 
algorithm will be able to determine the coordinates of all the points uniquely.  

3.2 Control of Numerical Errors  

The general geometric buildup algorithm can be sensitive to the numerical errors 
generated during the calculation of the coordinates of the atoms. With this 
algorithm, the coordinates of many atoms are determined by using the 
coordinates of previously determined atoms, and therefore, the errors in the 
previously determined atoms are passed to and accumulated in later determined 
atoms. As a result, the coordinates for later determined atoms may become 
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completely incorrect, especially if there is a long sequence of atoms to be 
determined. 

Wu and Wu [44] proposed an updating scheme to prevent the accumulation 
of the numerical errors. The idea of the scheme is based on the fact that the 
coordinates of any four atoms can be determined without any other information if 
all the distances among them are given. Therefore, the coordinates of any four 
determined atoms should be recalculated whenever possible using the distances 
among them, before they are used as a basis set of atoms for the determination of 
other atoms. The recalculated coordinates do not depend on the coordinates of 
previously determined atoms and therefore do not inherit any errors from them. 
They are determined from “scratch” and will not pass previous errors to later 
atoms as well. In this way, the coordinates of many atoms can be “corrected”, 
and the errors in the calculated coordinates can be prevented from growing into 
incorrect structural results.  

The recalculation of the coordinates of the four atoms in the above algorithm 
usually is done in an independent coordinate system, which is not related to the 
overall structure already constructed by the algorithm. However, they can be 
moved back to the original structure by aligning them to their original locations 
with an appropriate translation and rotation (Figure 6). In other words, the new 
coordinates of the four atoms can be translated and rotated so that the root-mean-
square-deviation (RMSD) between the new coordinates and the old ones is 
minimized. 
 

 

Let y1, …, y4 be the coordinate vectors of the four atoms calculated in the 
regular geometric buildup process, and x1, …, x4 the recalculated coordinate 

Figure 6 Re-determination of base atoms The four base atoms are re-determined if the distances 
among them are given. The atoms are then moved to and aligned with their original positions, and 
used to determine other atoms.  

Improved position

Aligned base atoms

Incorrect position

True positionTranslation

Rotation

Rebuilt base atoms

Improved position

Aligned base atoms

Incorrect position

True positionTranslation

Rotation

Rebuilt base atoms
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vectors. Let Y and X be the corresponding coordinate matrices. If the distances 
among all the four atoms are available, X can be obtained for example using the 
singular value decomposition algorithm described in Section 2.1. In order to 
move X to the position where Y is located in the molecule, the geometric centers 
of X and Y are calculated first: 

        4/:),(,4/:),(
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Then, X is translated so that the geometric centers of X and Y are at the same 
location,  

        T
cc xyeXX )( −+<= ,  (3.7) 

where e = (1, 1, 1, 1)T. After the translation, a rotation for X is selected so that 
the root-mean-square-deviation of X and Y is minimized. In fact, the calculation 
of such a deviation can be done by solving an optimization problem, 

        IQQXQY T
FQ

=− ,||||min ,  (3.8) 

where || ||F is the matrix Frobenius norm and Q the rotation matrix. Let C = XTY, 
and let C = UΣVT be the singular-value decomposition of C. Then, it is not 
difficult to verify that Q = UVT solves the above optimization problem [47]. 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
The Updated Geometric Buildup Algorithm 

 
1. Determine an initial set of atoms. 
2. Repeat: 
    For each undetermined atom j, 
          If atom j has distances to four independent and determined atoms,  
              If the distances among the determined atoms are given in the original data, 
              Recalculate their coordinates with these distances. 
              End 
              Determine atom j with these distances. 
          End 
    End 
    If no atoms are determined in the loop, unsuccessfully stop. 
3. All atoms are successfully determined. 
 
-------------------------------------------------------------------------------------------------------------------------- 

 
Figure 7 demonstrates in some scenarios for how the structure determined 

by a geometric buildup algorithm can be affected by the accumulated numerical 
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errors and how they can be corrected by using the updating scheme, as given in 
Wu and Wu [44]. The figure shows the structures (red lines) of protein 4MBA 
(1086 atoms) determined using ≤ 5 Å distances, first by the general geometric 
buildup algorithm (Figure 7a) and then by the updating algorithm (Figure 7b). 
The graphs show that the general algorithm results in a structure that disagrees 
with the X-ray reference structure (blue lines) in many regions, while the 
updating algorithm generates a structure that agrees with the X-ray reference 
structure (blue lines) almost completely.  

3.3 Rigid vs. Unique Buildup  

For the unique determination of a structure, it is necessary that every atom has at 
least four distances from other atoms. Further, the general geometric buildup 
algorithm requires four distances from four determined atoms to the atom to be 
determined in every buildup step. These conditions may not be satisfied by a 
given set of distances in practice. If the first condition is not satisfied, the 
structure will not be guaranteed unique. If the second condition is not satisfied, 
the general geometric buildup algorithm will not be able to determine the 
structure, even if the first condition is satisfied and the structure is unique.  

In order to handle more sparse distance data, we can consider determining 
the structures only rigidly instead of uniquely. The necessary condition to have a 
rigid structure requires only three distances for each atom. Therefore, in every 
buildup step, the geometric buildup algorithm can be modified to require only 
three distances from three determined atoms to the atom to be determined. The 
atom can then be determined rigidly, although with two possible positions. In the 

Figure 7 Control of rounding errors a. The structure (red lines) of 4MBA determined by using a 
general geometric buildup algorithm and compared with the original structure of 4MBA (blue lines). 
b. The structure (red lines) of 4MBA determined by using an updating geometric buildup algorithm 
and compared with the original structure of 4MBA (blue lines). 

 

         
                              a                                                             b 
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end, the algorithm may produce multiple structures, due to the multiple choices 
of the positions of the atoms, but the structures are rigid and in finite number.  

 More formally, in any buildup step, let xi = (xi ,1, xi ,2, xi ,3)
T, i = 1, 2, 3, be the 

coordinate vectors of three determined atoms that are not in a line. Let xj = (xj,1, 
xj,2, xj,3)

T be the coordinate vector for an undetermined atom j and di ,j the 
distances from atoms i = 1, 2, 3 to atom j. Then, xj can be obtained from the 
solution of the following system of equations, 

        3,2,1,||||2|||| 2
,

22 ==+− idxxxx jijj
T
ii

. (3.9) 

By subtracting equation i from equation i+1 for i = 1, 2, we can eliminate the 
quadratic terms for xj to obtain  
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Let A be a matrix and b a vector, and 
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We then have Axj = b. Let xj = ATyj, where yj = (yj,1,yj,2)
T. Then, AATyj = b. Since 

x1, x2, x3 are not in the same line, A must be full rank and AAT be nonsingular. 
We can therefore solve the linear system AATyj = b to obtain a unique solution 
for yj. Let xj' = (xj,1, xj,2)

T and A' = A(1:2,1:2). Then, xj' = [A']T yj. By using one of 
the equations in (3.9), we can obtain two possible values for xj,3, assuming that 
the equation has real solutions. In the end, we obtain two solutions for (3.9). 

 The advantage of using the modified buildup algorithm is that the algorithm 
requires fewer distance constraints than the general buildup algorithm. It can 
handle even more sparse distance data, yet determine meaningful structures. The 
modified algorithm may find multiple structures, but they all are rigid, and in 
some cases, it can find a unique structure as well, because the requirement by the 
general buildup algorithm on the availability of the special four distances in 
every buildup step is sufficient for the determination of a unique structure, but 
not necessary.  

However, a problem with the modified buildup algorithm is that it may 
produce too many possible structures: Since in every step, an atom is only 
determined rigidly, there may be at least two possible positions for it. We have to 
keep both positions unless later on we find that one of them can be excluded 
with other distance constraints. Moreover, the three determined atoms may also 
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have multiple positions. Let the ith determined atom have l i  possible positions, i 
= 1, 2, 3. Then, in the worst case, there can be 2 × l1 × l2 × l3 possible positions 
for the atom to be determined. Therefore, as the algorithm proceeds, the total 
number of possible positions for an atom to be determined may grow into 
exponentially many.  

To reduce the number of possible positions for an atom, we can allow the 
algorithm to determine the atom uniquely first if there are more than three 
required distances available, and determine it rigidly otherwise. Also, in every 
buildup step, after the atom is determined, either rigidly or uniquely, we can 
examine all given distances from this atom to other determined atoms for their 
possible positions. If some positions have violated their distance constraints, they 
can be removed for further consideration. In this way, the structures generated in 
the end are guaranteed to satisfy all available distance constraints among the 
atoms, and they may be reduced to a unique structure after all infeasible 
structures are identified and removed.  
  

 
The Rigid Geometric Buildup Algorithm 
 
1. Determine an initial set of atoms.  
2. Repeat: 
    For each undetermined atom j, 
          If atom j has distances to four independent and determined atoms, 
             Determine atom j with these distances. 
             Check multiple structures with additional available distances. 
          End 
          If atom j has distances to three independent and determined atoms,  
             Determine atom j with these distances. 
             Record multiple structures generated from reflections. 
          End  
    End 
    If no atoms are determined in the loop, unsuccessfully stop. 
3. All atoms are successfully determined. 
 

 

Figure 8 shows how a structure can be determined rigidly and how multiple 
structures can be generated and also reduced. Figure 8a shows that atom i is first 
determined with three available distances. There are two positions for atom i due 
to reflection, which makes two possible structures. Figure 8b shows that atom j 
again is determined with three available distances, with two positions for each of 
the possible structures. Total four possible structures are made. In Figure 8c, 
atom k is determined uniquely with four distances, and therefore, the number of 
possible structures is not increased. However, there is an additional distance 
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between atoms i and k. By examining all the structures, we find that two of them 
do not satisfy this distance constraint, and they can be removed from the 
structure pool, as shown in Figure 8d. 
 

 

Figure 9 further demonstrates the application of the rigid geometric buildup 
algorithm to a small protein, 1AKG, and the nature of the multiple structures it 
can generate, as given along with other examples in [45]. The protein 1AKG is a 
small polypeptide with 16 amino acids and 110 atoms. The general geometric 
buildup algorithm is able to determine to the structure for this protein 
completely, with distances ≤ 4.5 Å, and the RMSD value of the structure is 8.3e-
07 Å against the original structure. Here, the number of distances used is 1638, 
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Figure 8 Multiple rigid structures a. Atom i is determined. The number of structures is two. b. Atom 
j is determined. The number of structures is increased to four. c. Atom k is determined. d. Two 
structures are removed because they do not satisfy the distance constraint for atom i and k. 
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which is about 14% of all the distances. However, with distances ≤ 3.5 Å, the 
general geometric buildup algorithm fails, but the rigid algorithm is still able to 
find a reasonable number of rigid structures. Here, the number of distances used 
is 898, which is only 7.5% of all the distances. There are total 8192 multiple 
conformations found by the rigid algorithm. The one closest to the original 
structure has the RMSD value equal to 4.3e-07 Å. Note that 8192 = 213, and 
therefore, the multiple structures are perhaps generated just from a sequence of 
13 reflections of the atomic positions. In fact, as can be observed in the figure, 
most of the reflections happen for the side-chain atoms when they are in the 
surface of the protein, and they only affect the determination of a small part of 
the structure. On the other hand, the major parts of the protein with the backbone 
atoms and the atoms in the interior of the protein are all uniquely determined. 
  

 
 
Similar to the general geometric buildup algorithm, the theoretical basis for 

the rigid geometric buildup algorithm can be established and generalized to any 
k-dimensional Euclidean space. For this purpose, we define a reduced metric 
basis for a space and k independent points in Rk. 

Definition 3.3.1 A set of points B in a space S is a reduced metric basis of S 
provided any point in S can be determined rigidly by its distances to the points in 
B. 

Definition 3.3.2 A set of k points in Rk is said to be an independent set of 
points if it is not a set of points in Rk-2. 

Theorem 3.3.1 A set of k independent points in Rk form a reduced metric 
basis for Rk. 

                

Figure 9 Rigid structure determination Shown is the structure of protein 1AKG, with 16 residues, 
110 atoms. The distances < 3.5 Ǻ were used. Total 8192 rigid structures were determined. They all 
were almost identical except for the circled small regions. 
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Proof It follows directly by generalizing the modified geometric buildup 
step to the k-dimensional Euclidean space. Let xi = (xi ,1, …, xi ,k)

T be the 
coordinate vectors of an independent set of points i = 1, …, k in Rk. Let xj = (xj,1, 
…, xj,k)

T be the coordinate vector for any point j in Rk with distances di ,j from 
points i = 1, …, k to point j. Then  

        ,,,1,||||2|||| 2
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22 kidxxxx jijj
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and Axj = b, where 
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Let xj = ATyj, where yj = (yj,1,…,yj,k-1)
T. Then, AATyj = b. Since x1, …, xk are not in 

Rk-2, A must be full rank and AAT be nonsingular. We can therefore solve the 
linear system AATyj = b to obtain a unique solution for yj. Let xj' = (xj,1,…,xj,k-1)

T 
and A' = A(1:k-1,1:k-1). Then, xj' = [A']T yj. By using one of the equations in 
(3.12), we can obtain two possible values for xj,k, assuming that the equation has 
real solutions. In the end, we obtain two solutions for (3.12), and the positions 
for point j are determined rigidly.  

Given the above properties, we can easily see that a necessary condition for 
rigidly determining the coordinates of the atoms with a given set of distances is 
that each atom must have at least three distances to other atoms, and a sufficient 
condition is that in every step of the geometric buildup algorithm, there is an 
undetermined atom and the atom has three distances from three determined 
atoms who are not in the same line. In general, we have 

Theorem 3.3.2 A necessary condition for the rigid determination of the 
coordinates of a group of points x1, …, xn in Rk with a given set of distances 
among the points is that each point must have at least k distances from other k 
points, assuming that this point is not in Rk-2 with any k-1 of the k points.  

Proof It follows immediately from the fact that in Rk, a point can be defined 
rigidly only if it has k distances to k independent points, assuming it is not in Rk-2 
with any k-1 of the k points. If it has only k-1 distances from k-1 points, the 
position of the point will be flexible.  

Theorem 3.3.3 A sufficient condition for the rigid determination of the 
coordinates of a group of points x1, …, xn in Rk with a given set of distances 
among the points is that in every step of the geometric buildup algorithm, there is 
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an undetermined point with k distances from k independent and determined 
points. 

Proof The modified geometric buildup algorithm gives a constructive proof 
for the theorem, because if the condition holds in every step of the algorithm, the 
algorithm will be able to determine the coordinates of all the points rigidly.  

3.4 Tolerance of Inexact Distances  

In practice, the distance data often contains errors. As a result, the distances may 
become inconsistent or in other words, may have violated some basic geometric 
rules such as the triangle inequality for the distances among any three atoms. The 
general geometric buildup algorithm usually assumes that the distances are 
consistent and therefore, in every step, only four (or three) distances are required 
for the determination of the coordinates of an atom uniquely (or rigidly), 
although there may be more available. However, this will not be the case if the 
distances are not consistent. In order for the algorithm to handle inexact 
distances (distances with errors), the general buildup procedure has to be 
modified. First, in every buildup step, if l distances are found from an 
undetermined atom to l determined atoms, l ≥ 4, all l distances should be used 
for the determination of the unknown atom. Second, if l ≥ 4, an over-determined 
system of equations is obtained for the determination of the position of the 
unknown atom. If the distances have errors, the system may not be consistent. 
Therefore, we can only solve the system approximately by using for example a 
least-squares method. Third, a new updating scheme may be necessary to prevent 
the accumulation of the rounding errors. The updating scheme described in 
Section 3.2 may not be practical any more for l >> 4 because it requires all the 
distances available among l determined atoms.  

  A simple way to extend the geometric buildup algorithm to handle the 
possible errors from the distance data is as follows. In every buildup step, in 
addition to the four required distances, we can include all the available 
distances, say l distances, from the determined atoms to the one to be determined 
(see Figure 10). Let xi = (xi ,1, xi ,2, xi ,3)

T, i = 1, …, l, be the coordinate vectors of 
the l determined atoms and di ,j the distances from atoms i = 1, …, l to the 
undetermined atom j. Then, the coordinates xj = (xj,1, xj,2, xj,3)

T for atom j can be 
obtained from the solution of the following system of equations, 

        lidxxxx jijj
T
ii ,,1,||||2|||| 2

,
22

K==+− . (3.14) 

By subtracting equation i from equation i+1 for i = 1, …, l-1, we can 
eliminate the quadratic terms for xj to obtain  
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Let A be a matrix and b a vector, and 
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We then have Axj = b. This system is certainly over-determined if l > k+1. 
However, it can be solved by using a standard linear least-squares method. For 
example, we can compute the QR factorization of A to obtain an equation QRxj = 
b, where Q is (l-1)×3 and R is 3×3. If at least four of the l determined atoms are 
not in the same plane, A must be full rank and R be nonsingular. We can then 
solve the linear system QRxj = b to obtain a unique solution xj = R-1QTb, which 
minimizes ||b – Axj||. Here, solving the linear system QRxj = b requires O(l) 
computing time, but QR factorization may take O(l2) time. Since we only need to 
solve ~n such linear least-squares problems for ~n coordinate vectors xj, the total 
computation time must be in order of lm

2 n, if in every step, the required 
coordinates xi and distances di ,j are always available, where lm = maxj {|Sj|}, 
Sj = { i : (i,j) in S}. 
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xj is to be determined.

xi are determined.
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xi are determined.

 

Figure 10 Tolerance of distance errors The extended algorithm tries to determine the coordinates of 
each atom by taking all available distance constraints into account and by minimizing the errors for all 
the constraints. In this way, all the constraints are intended to be satisfied, and the algorithm is also more 
stable with possible errors in the distance data. 
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Again, the theory for the extended geometric buildup algorithm can be 
established and generalized to any k-dimensional Euclidean space in a similar 
fashion as that for the general geometric buildup algorithm. For this purpose, we 
define an extended metric basis for a space and an extended set of independent 
points in Rk. 

Definition 3.4.1 A set of points B in a space S is an extended metric basis of 
S provided any point in S can be determined uniquely by its distances from the 
points in B. 

Definition 3.4.2 A set of l points is said to be an extended set of 
independent points in Rk if it contains k+1 independent points. 

Theorem 3.4.1 An extended set of l independent points in Rk form an 
extended metric basis for Rk. 

Proof It follows directly by generalizing the extended geometric buildup 
step to the k-dimensional Euclidean space. Let xi = (xi ,1, …, xi ,k)

T be the 
coordinate vectors for an extended set of independent points i = 1, …, l in Rk. 
Let xj = (xj,1, …, xj,k)

T be the coordinate vector for any point j in Rk with distances 
di ,j from points i = 1, …, l to point j. Then  
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and Axj = b, where 
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Multiply the equation by AT to obtain ATAxj = ATb. Since k+1 of the l determined 
points are independent, A must be full rank and ATA be nonsingular. We can 
then solve the linear system ATAxj = ATb to obtain a unique solution xj = [ATA] -

1ATb.      

The above algorithm may not necessarily be stable for preventing rounding 
errors from growing, because in every step, the coordinates of the unknown atom 
must have rounding errors, which can still be propagated and accumulated into 
later calculations. On the other hand, different from the general geometric 
buildup algorithm, it is difficult to employ an updating scheme as described in 
Section 3.2 for the extended algorithm, because the scheme requires the 
availability of the distances among all l determined atoms, which is not so 
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realistic when l is large. In order to control the rounding errors as well as tolerate 
the distance errors, a nonlinear instead of linear least-squares approximation can 
in fact be used in the buildup procedure instead. The idea is to determine the 
unknown atom in each buildup step by using not only the l distances from l 
determined atoms to the unknown atom, but also the distances among all the l 
determined atoms. The l distances from l determined atoms to the unknown atom 
must be given. The distances among the l determined atoms may not necessarily 
be provided, but they can be calculated. In any case, once all these distances 
become available, the coordinates for the unknown atom and the l known atoms 
can all be calculated (or recalculated) using these distances. 

Let x1, …, xl and xl+1 be the coordinate vectors of atoms 1, …, l+1. If the 
distances among all these atoms, di ,j, i, j = 1, …, l+1, are available, then, ||xi – xj|| 
= di ,j for all i, j = 1, …, l+1, and  

         .1,...,1,,||||2|||| 2
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T
ii
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Since the structure formed by these atoms is invariant under any translation or 
rotation, we can set a reference system so that the origin is located at the last 
atom or in other words, xl+1 = (0, 0, 0)T. It follows that ||xi || = di,l+1, ||xj|| = dj,l+1, 
and 
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We now have a system of equations similar to the one discussed in Section 2.1. 
Define a coordinate matrix X and an induced distance matrix D, 
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Then, XXT = D. Let D = UΣUT be the singular value decomposition of D, where 
U is an orthogonal matrix and Σ a diagonal matrix with the singular values of D 
along the diagonal. If D is a matrix of rank less than or equal to 3, X = VΛ1/2 
solves the equation XXT = D, where V = U(:,l:3) and Λ = Σ(1:3,1:3). In other 
words, if the distances di ,j are available for all i, j = 1, …, l+1, we can always 
construct an induced matrix D for the distances and then, based on the singular 
value decomposition of D, obtain the coordinates for all the atoms 1, …, l as 
given in X with atom l+1 fixed at (0,0,0)T.  

Note that the distances may have errors. Then, the matrix D may in fact have 
a higher rank than k or in other words, the equation XXT = D may not have an 
exact solution. However, X = VΛ1/2 as defined above is still a good 
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approximation to the solution of the equation (3.20) in the following least-
squares sense. 

Theorem 3.4.2 Let D = UΣUT be the singular value decomposition of D. Let 
V = U(:,1:3) and Λ = Σ(1:3,1:3). Then, X = VΛ1/2 minimizes ||D-XXT||F, where || 
||F is the matrix Frobenius norm. 

Proof [[21] Let f(X) = ||D-XXT||2. Then (D - XXT)X = 0 for any stationary 
point X of f. It follows that (D -XXT)X = (D -XXT)XXT = 0 and 

        ).(trace)(trace)2(trace)(trace)( 22 TTTTT XXXXDXXXXDXXDXf −=−−=  

Let σ1 ≥ … ≥ σl ≥ 0 be the singular values of D and λ1 ≥ λ 2 ≥ λ3 > 0 be the 
singular values of XXT. Then,  
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Let XXT = VΛVT be the singular value decomposition of XXT, where V is an l×3 
orthogonal matrix and Λ = diag {λ1, λ2, λ3.}. Since DXXT = XXTXXT, VTDV = Λ 
and therefore, {λj : j = 1, 2, 3}⊂ {σj : j = 1, …, n}. It follows that f(X) is 
minimized when λj = σj for j = 1, 2, 3.  

  
 
Geometric Buildup with Linear Least-Squares 
 
1. Find four atoms that are not in the same plane. 
2. Determine the coordinates of the atoms with the distances among them. 
3. Repeat: 
    For each of the undetermined atoms,  
          If the atom has l  distances to l determined atoms that are not in the same plane, 
             Determine the atom with the least-squares fit to the distances. 
          End 
    End 
4. If no atom can be determined in the loop, stop. 
5. All atoms are determined. 

 
 

 The extended buildup procedure has the following properties. First, the 
coordinates of the unknown atom are determined by using l previously 
determined atoms, to which the unknown atom has distances given. Second, the 
coordinates are determined by solving a system of distance equations 
approximately. They are the best possible estimations in a nonlinear least-squares 
sense as stated in Theorem 3.4.2, and can therefore be evaluated even if the 
distances have errors. Third, the calculations not only determine the coordinates 
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of the unknown atom, but also recalculate the coordinates of all the involved 
atoms including the determined ones. Most importantly, these coordinates do not 
depend completely on the results from previous calculations. Rather, they are 
determined by using the provided distances among the atoms (determined and 
undetermined) as much as possible, thereby reducing the risk of large error 
propagation and accumulation. In this sense, the method should be more stable 
numerically than the one using linear linear-squares approximation [46]. 
 
 
Geometric Buildup with Nonlinear Least-Squares 
 
1. Find four atoms that are not in the same plane. 
2. Determine the coordinates of the atoms with the distances among them. 
3. Repeat: 
    For each of the undetermined atoms,  
          If the atom has l  distances to l determined atoms that are not in the same plane, 
             Determine the l+1 atoms with the distances among them. 
             Put the atoms back to their original positions by proper translation and rotation 
         End 
    End 
4. If no atom can be determined in the loop, stop. 
5. All atoms are determined. 

 

 
 Of course, the calculations of the coordinates are conducted in an 

independent reference system with its origin at the position of the atom to be 
determined. In order to recover the coordinates of the atoms in their original 
structure, we need to make a proper translation and rotation for the coordinates 
just like we need to do in the updating scheme for the general geometric buildup 
algorithm. More specifically, let Y be an l×3 matrix having the original 
coordinates of the l determined atoms. Let X be an l×3 matrix with the 
recalculated coordinates of the determined atoms. First, we translate X to Y with 
a translation vector yc – xc, where yc and xc are the geometric centers of X and Y, 
respectively. Then, we can rotate the coordinates of all the atoms by using a 
rotation matrix Q = UVT, where U and V are obtained from the singular value 
decomposition, XTY = UΣVT. That is, if xi  is the coordinate vector of atom i, i = 
1, …, l+1, then, we set xi  to Qxi. 

 Table 1 and 2 show some results from applying the extended geometric 
buildup algorithm with either linear or nonlinear least-squares approximation to 
the determination of the structures of a set of proteins using the distance data 
generated from the experimental structures of the proteins with 5 Å and 6 Å 
cutoff values. Table 1 contains the RMSD (root-mean-square deviation) values of 

 



 30 

the structures (compared with their original structures) obtained by using the 
extended buildup algorithm with linear least-squares on the generated data sets. 
The RMSD values show that the algorithm solved almost all the problems with 
cutoff distances equal to 6 Å, but failed for those with cutoff distance equal to 5 
Å. The last cutoff value is critical because in NMR modeling, usually only less 
than or equal 5 Å distances can be estimated. In any case, the results show that 
with linear least-squares, the new buildup algorithm performed well in general if 
the distance data was not too sparse. The reason that it did not work well for 
very sparse data was that a long sequence of buildup steps had to be carried out 
and a large amount of rounding errors was accumulated.   
 

Table 1 RMSD Values of Structures Computed with Linear Least-Squares 

 
≤5 Å ≤6 Å 

ID TA 
DA RMSD DA RMSD 

1PTQ 402 402 1.4e-00 402 2.6e-09 
1HOE 558 558 5.8e-02 558 3.1e-09 
1LFB 641 641 2.0e-02 641 2.1e-10 
1PHT 814 809 1.2e+01 814 8.2e-09 
1POA 914 914 6.6e-00 914 1.9e-09 
1AX8 1003 1003 5.2e-00 1003 1.8e-05 
4MBA 1086 1083 4.9e-00 1086 3.8e-06 
1F39 1534 1534 1.4e+01 1534 6.3e-08 
1RGS 2015 2010 2.0e+01 2015 1.1e-01 
1BPM 3672 3669 6.4e+04 3672 3.6e-02 
1HMV 7398 7389 1.2e+03 7398 3.5e+01 

 

*ID – Protein ID, TA – Total number of atoms, DA – Total number of determined atoms, RMSD – 
RMSD values of the computed structure against the original structures.   

 
Table 2 RMSD Values of Structures Computed with Nonlinear Least-Squares 

 
≤5 Å ≤6 Å 

ID TA 
DA RMSD DA RMSD 

1PTQ 402 402 5.5e-14 402 5.0e-14 
1HOE 558 558 1.6e-13 558 2.7e-13 
1LFB 641 641 9.5e-14 641 5.5e-14 
1PHT 814 809 1.1e-13 814 1.8e-13 
1POA 914 914 3.2e-13 914 1.5e-13 
1AX8 1003 976 4.0e-13 1003 4.6e-12 
4MBA 1086 1083 1.8e-13 1086 2.6e-13 
1F39 1534 1534 7.9e-13 1534 1.9e-13 
1RGS 2015 2010 8.3e-12 2015 2.4e-12 
1BPM 3672 3669 8.1e-11 3672 1.0e-11 
1HMV 7398 7389 1.1e-08 7398 5.5e-07 
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*ID – Protein ID, TA – Total number of atoms, DA – Total number of determined atoms, RMSD – 
RMSD values of the computed structure against the original structures.   

 
Table 2 contains the RMSD (root-mean-square deviation) values of the 

structures (compared with their original structures) obtained by using the new 
buildup algorithm with nonlinear least-squares on the data sets. The RMSD 
values show that the algorithm solved almost all the problems with cutoff 
distances equal to 5 Å and 6 Å. Therefore, the results indicated that with 
nonlinear least-squares, the new buildup algorithm performed well in general. 
The reason it worked well for very sparse data was that it calculated the 
coordinates of the undetermined as well as determined atoms in every buildup 
step using the distances among them (most presumably given in the original 
distance data) and therefore, stopped the propagation of the rounding errors. 

4.  Concluding Remarks 

In this paper, we have discussed a well-known problem in protein modeling, for 
the determination of the structure of a protein with a given set of inter-atomic or 
inter-residue distances obtained from either physical experiments or theoretical 
estimates. A more general and abstract form of the problem is known as the 
distance geometry problem in mathematics, the graph embedding problem in 
computer science, and the multidimensional scaling problem in statistics. In 
general, the problem can be stated as to find the coordinates for a set of points in 
some topological space given the distances for certain pairs of points. Therefore, 
in addition to protein modeling where everything is discussed only in three-
dimensional Euclidean space, the problem has applications in many other 
scientific and engineering fields as well, such as sensor network localization, 
image recognition, and protein classification, to name a few. In any case, the 
problem may or may not have a solution in a given topological space, and even if 
it does have a solution, the solution may not be easy to find, depending on the 
given distances. For example, in any k-dimensional Euclidean space, the problem 
is polynomial time solvable if the distances for all the pairs of points are 
provided, and is NP-complete otherwise in general. 

We have investigated the solution of the distance geometry problem within a 
so-called geometric buildup framework. Central to the geometric buildup 
approach is the idea to determine only a small group of atoms at the beginning 
and then complete the whole molecule by repeatedly determining one or more 
atoms every time using the available distances between the determined and 
undetermined atoms. The advantage of using a geometric buildup approach is 
that it works directly on the given distances and exploits the special structure of 
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a given problem, and hence may be able to solve the problem more efficiently 
than a general approach. We have discussed the formulations and complexities of 
the distance geometry problem in its various forms, and described the general 
geometric buildup algorithm and its theoretical basis. We have also discussed the 
issues of the general algorithm for controlling rounding errors, determining rigid 
vs. unique structures, and handing inexact distances, and reviewed various 
versions of the algorithm that can address these issues and showed their test 
results. 

 A basic principle for the general geometric buildup algorithm is that 
whenever there are four determined atoms that are not in the same plane and 
there are distances from these atoms to an undetermined atom, the undetermined 
atom can immediately be determined uniquely by solving a system of four 
distance equations using the available distances. If for every atom, the required 
atoms and the distances can be found, the whole structure can be determined 
uniquely. The distance equations can in fact be reduced to a set of linear 
equations and hence solved in constant time. Therefore, as we have detailed in 
the paper, in ideal cases, a geometric buildup algorithm can solve a distance 
geometry problem with only 4n distances in O(n) computing time, while the 
conventional singular value decomposition algorithm requires all n(n-1)/2 
distances and O(n2) computing time, where n is the number of atoms to be 
determined. 

 However, the requirement for four determined atoms and hence four 
corresponding distances in every step of the buildup procedure is sufficient but 
not necessary for the unique determination of a structure. Therefore, the general 
geometric buildup algorithm can in fact be modified so that in every buildup 
step, only three determined atoms and hence three corresponding distances are 
required. There may be multiple structures that can be determined in this way, 
but they are still rigid and can possibly end up unique as well. Indeed, as we 
have reviewed in the paper, a modified geometric buildup algorithm has been 
developed and tested successfully on a set of proteins. The results showed that 
the modified algorithm was able to produce meaningful structures rigidly with 
very sparse distance data, although they may be multiple in many cases. 

The geometric buildup algorithm, either rigid or unique, can be sensitive to 
the numerical errors though, for the coordinates of the atoms are determined 
using the coordinates of previously determined atoms and the rounding errors in 
the previously determined atoms can be passed to and accumulated in later 
determined atoms, resulting in incorrect structural results. An updating scheme 
has been developed to prevent the accumulation of the numerical errors, as we 
have described in the paper. The idea of the scheme is based on the fact that the 
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coordinates of any four atoms can be determined without any other information if 
all the distances among them are given. Therefore, the coordinates of any four 
determined atoms can be recalculated whenever possible using the distances 
among them, before they are used as a basis set of atoms for the determination of 
other atoms. The recalculated coordinates do not depend on the coordinates of 
previously determined atoms and therefore do not inherit any errors from them. 

The general geometric buildup algorithm cannot tolerate errors in given 
distances either, for the distances then may not be consistent and the systems of 
distance equations may not be solvable. However, in practice, the distances must 
have errors because they come from either experimental measures or theoretical 
estimates. We have demonstrated how an extended geometric buildup algorithm 
can be developed to prevent the accumulation of the rounding errors in the 
buildup calculations successfully and also tolerate the errors in the given 
distances. In this algorithm, in every buildup step, all (instead of a subset of) the 
distances available for each unknown atom are taken into account for the 
determination of the position of the atom by using a least-squares approximation 
(instead of solving a system of equations exactly). We have shown that the least-
squares approximation could actually be obtained by using a special singular 
value decomposition method, which could not only provide an approximate 
solution to the original system of distance equations, but also prevent the 
accumulation of the rounding errors in the buildup procedure effectively. 

 As we have discussed in the introduction section of the paper, a further 
complicated yet practical case of the distance geometry problem is when the 
distances are given with only their lower and upper bounds. The problem then 
becomes to find the coordinates x1, …, xn for the atoms for a given set of lower 
and upper bounds, l i ,j and ui ,j, of the distances di ,j such that 

        Sjiuxxl jijiji ∈≤−≤ ),(,|||| ,,
. 

The general geometric buildup algorithm and its modifications or extensions 
presented in this paper have not been developed to deal with distance bounds yet. 
However, the general buildup procedure should be extendable for the solution of 
such a problem as well. Here, different from other implementations, in every 
buildup step, an atom should be determined by satisfying a set of distance 
bounds instead of exact distances. The computation will certainly be more 
involved and subject to even more arbitrary errors. The solution to such a 
problem will not be unique, either. In fact, there can be an ensemble of solutions 
all satisfying the given distance inequalities. On the other hand, in practice, it is 
actually preferred to obtain the entire ensemble of solutions instead of a few 
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samples. How to implement a buildup algorithm to achieve that can be 
challenging and will be the topic of our future investigation.   
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