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Abstract. A well-known problem in protein modeling is the@tenination of the structure of
a protein with a given set of inter-atomic or intesidue distances obtained from either
physical experiments or theoretical estimates. ega form of the problem is known as the
distance geometry problem in mathematics, the gepbedding problem in computer
science, and the multidimensional scaling problestatistics. The problem has applications
in many other scientific and engineering fieldsagdl such as sensor network localization,
image recognition, and protein classification. Vésatlibe the formulations and complexities
of the problem in its various forms, and introdecegyeometric buildup approach to the
problem. Central to this approach is the idea thatcoordinates of the atoms in a protein
can be determined one atom at a time, with thanlists from the determined atoms to the
undetermined ones. It can determine a structuree rafficiently than other conventional
approaches, yet without requiring more distancestcaimts than necessary. We present the
general algorithm and its theory and review theemedevelopment of the algorithm for
controlling the propagation of the numerical erforshe buildup process, for determining
rigid vs. unique structures, and for handling peaf with inexact distances (distances with
errors). We show the results from applying the rlgm to some of the model problems and
justify the potential use of the algorithm in piatenodeling.
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1. Distance Based Pratein Modeling

Proteins are an important class of biological mdies They are encoded in
genes and produced in cells through genetic traoslarhey are life supporting
(or sometimes, destructing) ingredients and arésjpetsable for almost all
biological processes. For example, humans have radadof thousands of
different proteins and would not be able to mamtarmal life even if short of a
singe type of protein (Figure l1a). On the otherdhamith the help of some
proteins, viruses are able to grow, translate,giate, and replicate, causing
diseases (Figure 1b). Some proteins themselvesogi® and even infectious
such as the proteins in poisonous plants and ifi dmesing the Mad Cow
Disease (Figure 1c). [1]

A protein consists of a linear chain of amino aaidanected with strong
chemical bonds. The amino acids and their ordéhénchain are fixed for each
different protein, and they are specified by theegda sequence of DNA
molecules) from which the protein is generated. €@ chain of amino acids
for a protein is produced, it immediately foldsara unique and stable 3D
structure, which is crucial for the protein to ftion. Since the function of the
protein depends on its structure, the determinadfothe structure becomes a
necessary step for the understanding of the bicdbgiroperties of every protein.
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Figure 1Example proteins a. hemoglobin protein, 1BUW, in blood; b. prot&@RLV, supporting
poliovirus; c. prion protein 114M-D, causing the ¥@ow Disease in human.

Unfortunately, there is no direct physical meansotiserve a protein
structure at an atomic level. There are only teqpies that can be used to
measure certain physical properties of the pratgion which the structure can
be deduced. X-ray crystallography and nuclear ntagnesonance spectroscopy
(NMR) are major experimental techniques of such phactice. They are
responsible for the determination of 80% and 15%hefprotein structures (total



about 30,000) so far deposited in the Protein Batak (PDB), respectively [2].
The experimental techniques have many limitatiorthiough. X-ray
crystallography requires purifying and crystallgimproteins, which may take
months or years to finish, if not failed. The résubften vary with varying
experiments for reasons not fully understood [3J/Rcan only be applied to
small proteins for otherwise the spectral data wdmtcome too difficult to
clarify [4]. The structures determined by NMR ax Bs accurate and detailed
as well [1]. Theoretical or computational approach&ich as homology
modeling, structural alignment, threading, energynimization, dynamic
simulation, etc., have been developed [5][6], lheytare more successful in
building theoretical models or refining experimérguctures than determining
the structures completely independently, althouggemt progress as shown in
the CASP competitions [7] and in utilizing more mful computing resources
is indeed exciting and encouraging [8].

In this paper, we discuss a well-known problemriotgin modeling, for the
determination of the structure of a protein witlyigen set of inter-atomic or
inter-residue distances obtained from either plays&periments or theoretical
estimates (Figure 2). A more general and abstoaot 6f the problem is known
as the distance geometry problem in mathematics tf8] graph embedding
problem in computer science [10], and the multidisienal scaling problem in
statistics [11]. In general, the problem can beestas to find the coordinates for
a set of points in some topological space givendikances for certain pairs of
points. Therefore, in addition to protein modelimgere everything is discussed
only in three-dimensional Euclidean space, thelprothas applications in many
other scientific and engineering fields as well,ctsuas sensor network
localization [12], image recognition [13], and m@iot classification [14], to name
a few. In any case, the problem may or may not lmw®lution in a given
topological space, and even if it does have a isoluthe solution may not be
easy to find, depending on the given distances. &ample, in anyk-
dimensional Euclidean space, the problem is polyalotime solvable if the
distances for all the pairs of points are providaal is NP-complete otherwise
in general [10].

In protein modeling, the distances or their ranfgesertain pairs of atoms
or residues in a given protein may be obtained fedimer physical experiments
such as NOE (Nuclear Overhauser Effects), J-cogphnd dipolar coupling in
NMR [4][15][16], or theoretical estimates such &g tond lengths and bond
angles known from general organic chemistry [1],statistical estimates on
certain inter-atomic or inter-residue distancesetasn their distributions in
databases of known protein structures [17][18][I&jen, a structure may be



determined for the protein by using the availab#athces. However, the given
distances may not necessarily be sufficient foremheining the structure
uniquely, or even just rigidly. Here, by uniquelg wnean that the structure is
unique under translation and rotation, and by hgide mean that any part of
the structure cannot be changed continuously withgalating the given
distance restraints. Sometimes, the distances mataio errors and may be
inconsistent in the sense that they may have wedlaome basic geometric
conditions such as the triangle inequality for tlistances among any three
atoms. In that case, a structure that fits therglistances will not even exist.
After all, even if a structure does exist, it il stot trivial to determine based on
the given distances. A distance geometry probleedsi¢o be solved, which is
computationally intractable in general [10].

Figure 2Distance based protein modeling Given a set of inteatomic distances or their ranges,
the coordinates of the atoms in the protein.

Crippen and Havel and several other research gf@of21] pioneered the
work on using the solution of a distance geometoplem for protein structure
determination, especially for NMR structure modgliwhere the distances for
certain pairs of atoms and in particular, the pairdiydrogen atoms that are
within say, 5A distance, can be estimated through J-couplings\eDH, with
additional ones that can be derived from known bengths and bond angles.
However, in NMR modeling, the distances obtaineel mstricted to a small
subset of all pairs of atoms in the protein. Othsewif the distances for all pairs
of atoms are available, a structure would be mueiee to build upon. The
NMR distances also contain experimental errors amednot necessarily always
consistent. A structure that can fit the distanepproximately rather than
exactly may be the best we can hope for in prackit@eover, in NMR, instead
of exact distances, the ranges or lower and uppends of the distances are
usually provided, due to the fact that the struetuare flexible in solution and
the distances are not fixed. An ensemble of strastuather than a single one
that can fit in the distance ranges are therefouglst in real practice to show
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the dynamic nature of the structure [22][23]. Farse various reasons, the focus
on NMR modeling has been more on developing metodextracting the
bounds on the missing distances (bound smoothingnoving the
inconsistencies in the distances (distance meriggtand fitting the structures
in the distance ranges (optimization), as descrilmedhe embed algorithm
[20][21] and implemented in NMR modeling softwarecs as the CNS
[24][25]. Therefore, the solution of an exact digta geometry problem has not
been improved much since the embed algorithm was dieveloped, and its
impact in NMR modeling has been rather limited. tBa other hand, important
theoretical and algorithmic issues related to tblet®n of the problem still
remain to be resolved, while its applications inrengeneral areas of distance-
based protein modeling are expanding [26][27][28][2

Existing approaches to the solution of the distageemetry problem
include, for example, the embedding algorithm bip@n and Havel [20][21],
the alternating projection method by Glunt and Hmyd32][33], the graph
reduction approach by Hendrickson [30][31], thebglooptimization method by
Moré and Wu [34][35], the stochastic/perturbatioetimed by Zou, Byrd, and
Schnabel [36], the multidimensional scaling methnyd Kearsly, Tapia, and
Trosset [37][38], the dc programming method by lte Hoai and Pham Dinh
[39], the semi-definite programming approach bywis, Liang, Toh, and Ye
[40], and the stochastic search method by Grosszatklli, and Schoen [41].

We investigate the solution of the distance gegmatoblem within a so-
called geometric buildup framework. Dong and Wu][[42] first implemented a
geometric buildup algorithm for the solution of tlistance geometry problem
with exact distances and justified the linear camapon time for the case when
the distances required in every buildup step amaya available. Central to the
geometric buildup approach is the idea to determimg a small group of atoms
at the beginning and then complete the whole midedwy repeatedly
determining one or more atoms every time usingatfaglable distances between
the determined and undetermined atoms. The adwamfagsing a geometric
buildup approach is that it works directly on thieeg distances and exploits the
special structure of a given problem, and hencelmagble to solve the problem
more efficiently than a general approach. We ptetie® general algorithm of
this approach, and discuss related computatiorsaless including control of
numerical errors, determination of rigid vs. unicgirictures, and tolerance of
distance errors, based on the recent developmehedailgorithm [44][45][46].
The theoretical basis of the approach is estallidbssed on the theory of
distance geometry. A group of necessary and seffficiconditions for the
determination of a structure with a given set dftatices using a geometric



buildup algorithm are justified. The application the algorithm to model
protein problems are demonstrated.

2. TheDistance Geometry Problem

Let n be the number of atoms in a given protein &nd.., X, be the coordinate
vectors for the atoms, whexre= (% 1, X 2, xi,g,)T andx; 1, X », andx 3 are the first,
second, and third coordinates of atonif the coordinates;, ..., X, are known,
the distancesl; between atoms andj can be computed with;; = [k — x|,
where ||-|| is the Euclidean norm. Converselyhafdistancesl;; are given, the
coordinates«, ..., X, for the atoms can also be obtained based on gtandes
di;, but the computation is not as straightforwarde Bolution of a system of
equations as can be stated in the followingdor.., X, is required.

% =x;lI=d;;, (,)0S: (2.1)

whereSis a subset of all atom pairs. The latter probieknown as a distance
geometry problem in mathematics [9], a graph emingddroblem in computer
science [10], and a multidimensional scaling problan statistics [11]. In
practice, the distances may have errors, and tireteh more general yet
practical form of the problem would be to find tb@ordinates of the atoms,
..., X, given only a set of lower and upper bourigsandu,;, of the distanced;;
such that

Ii,j S”Xi _Xj ”Sui,j’ (i,j)DS- (2'2)

The distance geometry problem is polynomial timwadie if the distances for
all pairs of atoms are available. However, it hasrbproved to be NP-hard in
general. Even if errors are allowed for the distanthe problem is still hard, if
only small errors are allowed.

2.1 Problems with Exact Distances

We first consider the simple case when a completeo§ exact distances is
given. By exact distances we mean the distancegiar in exact values, not in
ranges, and by a complete set of distances we theadlistances for all pairs of
atoms are included. A solution to the distance ggpnproblem with such a set
of distance data can be obtained efficiently byhgidor example an algorithm
that requires the singular value decomposition (B¥¥Dan induced distance
matrix.



Assume that a set of coordinatgs ..., X, can be found for a given set of
distanceslj, wherei, j = 1, ...,n. Then, ) —x|| =d;; for alli,j =1, ...,n, and

1% IF = 2x"x;+1x; [F=d?, i,j=1....n. (2.3)

Since the molecular structure is invariant under @anslation or rotation, we
set a reference system so that the origin is Idcatethe last atom or in other
words,x, = (0, 0, 0J. It follows that

d2 -2x"x;+d? =d?, i,j=1..,n-1 (2.4)
Define a coordinate matriX and an induced distance matix

X :{xLj 1i=1...,n-1 =123} and

D ={(d?, —dfj +dfn)/2: i,j=1...,n-1}.

(2.5)

Then,XX" = D andD must be of maximum rank 3.

The distance geometry problem can be defined ienergl spac& with x,
..., %, in R¢ and dij the Euclidean distances between atorasdj. Then, the
equationXXT = D still holds, andD must be of maximum rars whereX = {x;;
=1, ...n,)=1, ...,K.

Theorem 2.1.1 [9] Let {d;; i, j = 1, ...,n} be a set of distances R, for
somek < n. Then, the induced matrX as defined in (2.5) is of maximum rank
k.

Proof It follows from the fact thab = XX for a coordinate matriX in R
IxR* andX is of maximum rank. O

The equatiorXX" = D can be solved using the singular value decompasitio
of D. Let D = UZU" be the singular value decompositionmnf whereU is an
orthogonal matrix and’ a diagonal matrix with the singular valuesDpfalong
the diagonal. ID is a matrix of rank less than or equaktdhe decomposition
can be obtained with) being f-1)xk and.X beingkxk. Then,X = UXY2 solves
the equatiorXX" = D. Here the singular value decompositionDofequiresO
(kr?) floating-point operations [47], and thereforee tlistance geometry problem
with a complete set of exact distances can be datvpolynomial time.

Note that although in practice, the distances nmybe available for all the
pairs of atoms, the solution of the problem witheadact distances can still be
important for the solution of the general probleithva sparse set of distances.
For example, in the embed algorithm, a completeokdistances among all the
atoms is generated after bound smoothing, and th&tien of a distance
geometry problem with all exact distances is alwagguired afterwards



[20][21]. Also, if a subset of atoms has all thetdhces among the atoms, but
the whole set of atoms does not, the coordinatéseosubset of atoms can still
be determined efficiently by solving a distancergewy problem with all exact
distances for the subset of atoms. The proceduyeatsa be applied repeatedly
as some of the atoms are determined and the aliylalb the distances among
them is changed, until no such subsets of atombedound [48][49].

2.2 Problems with Sparse Distances

We now consider the problem with an incompleteo$eixact distances. L&be
a subset of all pairs of atoms such thig) (s in S if the distanced;; between
atomsi andj is given. Then, the problem is to find the cooatésx;, ..., X, for
the atoms so that

% =% lI=d,;, G)OS. (2.6)

Let G = (V, E, W) be a weighted graph, wheve= {vy, ..., v} is the set of
vertices,E = {g; : (i,j) in S} the set of edges, avil= {wi; =di; : (i,j) in S} the
weights on the edges. Then, the distance geomettyigmn for molecular
structure determination can be considered as & gragibedding problem fd®
inR i.e., tofind a mapping from the vertices ..., v, in V to a set of pointg,,
..., X, in R® so that the distances between poirdadj for all (,j) in Sare equal
to the weightsl;; on the corresponding edges

Figure 3 Folding a closed chain The

integer set partition problem can be
reduced to the problem of folding a closed
chain in a line, a one-dimensional graph
embedding problem, thereby proving that
the one-dimensional graph embedding
problem must be NP-hard, for the integer

E set partition problem has proved to be.

The graph embedding problem can be consideredBundiidean space of
any dimension. In any case, it has been provedtieagraph embedding problem
is an NP-hard problem even for the one-dimensioasé [10]. The proof can be
demonstrated via the solution of a special classor#-dimensional graph
embedding problem, the problem of folding a closkdin in a line (in one-
dimensional space, Figure 3). l&t= (V, E, W), with V = {v;, ..., Vhua}, E =
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{eixn:i=1,...,n} U{eps}, andW={wij.a=1l:i=1,..,n} U{wyp =0}
wherel; is the length of the link between nddand nodeé+1 in the chain. Then,
the problem can be stated formally as to find apimgpfrom the nodesy, ...,
Vn+1} Of G to a set of pointsy, ..., X1} in R so that

[X, =% =1, i=1..,n, |x.-%]|=0. (2.7)

i+l

Theorem 2.2.1 The integer set partition problem can be reducedhé
problem of folding a closed chain in a line.

Proof LetA ={ay, ..., an} be a given set of positive integers. Define gpbra
G=MEW,withV={vy, ....Vha}, E={€41:1 =1, ...,n} U {ep+1}, andW
={ws =& :i =1, ..,n U{wy. = 0}. The graph defines a closed chain.
Suppose that the chain can be folded in a lina othier words, the graph can be
embedded ifR. Then,v; is placed ak in Rfori =1, ...,n+1, and
X=X =8, i=1...n [X, —%][=0.

Let A; = {a; = Xs1 —X| =Xr1—X} and Az = {a = 1 —X| =X —Xa}. Then,
Z(Xi-ﬂ - XI) = Z(Xi-ﬂ - Xi)_ Z(Xi - Xi+1) '
i=1 a0A a0A

However,
Z(Xiﬂ =X) =Xy —% =0-
i=1

It follows that

DXy =X) = 2% X)) = Da - > a =0

atA amA, alA  a0A
andA; andA; solves the set partition problem far(]

It follows from the above theorem that the probleinfolding a closed chain
in a line cannot be in P, for otherwise, the setitpan problem would be
solvable in P via the solution of an equivalenticHalding problem, which is
contradictory to the fact that the set partitionlgpem is in NP [50].

2.3 Problems with I nexact Distances

In protein modeling practice, the distances arernofprovided with estimated
ranges only. The related distance geometry prolilean becomes to find the
coordinatesx, ..., X, of the atoms, so that the distances between atamdj,
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for all (i,j) in a subses of all pairs of atoms, are within their estimatadges,
i.e.,

L <l -x lI<u;, G j)0S- (2.8)

wherel;jandu;; are the lower and upper bounds of the distandeseba atoms
andj. Letd; = (li;+ uj) / 2 andeg; = (Uij— ;) / 2. The above problem can be
written as

X =x 1I-d,, <&, G)OS (2.9)

ij?

and be viewed as to find an approximate solutiorth® distance geometry
problem for a set of exact distanag with each distancex||— x|| allowed to
have an errog;j fromd;;. We call such a solution arapproximate solution.

If large errors are allowed, an approximate sotuti® certainly easier to
obtain than an exact solution. However, if only Brnearors are allowed, the
problem for finding an approximate solution candsehard as for finding an
exact solution. To see this, again, we can conghieisimple case of folding a
closed chain in a line, but this time, we allow timks to be connected loosely.
LetG=(V, E,W), withV ={vy, ..., Viu}, E={gs1:1 =1, ...,n} U {e1ns1},
andW={w.; =1l : i =1, ...,n} U{wy, =0}, wherel; is the length of the
link between nodé and node+1 in the chain. Then, the problem can be stated
formally as to find a mapping from the nodes {.., w1} of G to a set of points
{X1, ..., Xn+1} In R so that

1% =% 1=l 18, T=1,0, [ X =X S & (2.10)

for a set of errorsd, ..., &ns1}-

Moré and Wu [51] showed that the above problentsis MP-hard when the
allowed errors are small. In fact, the set paritwoblem can again be reduced
to this problem withy; < 1/(20) fori = 1, ...,n+1. Here, we give another proof
that requires only; ¢ < 1, removing the dependence of the required batfind
the errors on the problem sigexplicitly.

Theorem 2.3.1 The integer set partition problem can be reducedhé
problem of folding a closed chain with total allawverror; ¢ < 1.

Proof Let A ={ay, ..., a,} be a given set of positive integers. Define gpbra
G=M,EW,withV={vy, ....Vha}, E={€41:1 =1, ...,n} U {ep+1}, andW
={ws =& :i =1, ..,n U{w. = 0}. The graph defines a closed chain.
Suppose that the chain can be folded in a line waitlerrors; allowed on each
lengtha; andZ; ¢ < 1. Theny; is placed ak in Rfori =1, ...,n+1, and
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(X=X 1-a <&, 1=L...n [Xu =X [SEL,-
LetA; = {& = X1 —X| =X+1—x} and Az = {& = K+1 —X| =X —X+1}. Then,

n

Z(Xiﬂ -%)= Z(Xiﬂ -%)- Z(Xi = Xiu1)

i=1 alA alA,
2 Z(al —&)- Z(al +&)= Zal B Zal _Zinzlgi’
alA alA a0A allA
and
Z(Xiﬂ -%)= Z(Xiﬂ -%)- Z(Xi = Xiu1)
i=1 alA alA,
= Z(al tE)- Z(al —&)= Zal B Zal +Zin:1£i'
alA a A, a0A allA
Therefore,
PACTERIES D ILED LD YCFETITD IS
i=1 a0A a0A, i=1
However,

n
_£n+1 SZ(XH-l _Xi) = Xn+1 - Xl = £n+1'
i=1

It follows that

D HCEDILEDILEDWCE S
alA  alA
Note that the two sums in the middle are over thegers and their difference
cannot be a fraction. Therefore,

28 23=0

alA alA

andA; andA; solves the set partition problem fr(]

3. The Geometric Buildup Appraoach

Central to the geometric buildup approach to tletadice geometry problem is
the idea to determine only a small group of atomshea beginning and then
complete the whole molecule by repeatedly determgioine or more atoms every
time using the available distances between thermdated and undetermined
atoms. The advantage of using a geometric builgygoach is that it works
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directly on the given distances and exploits thecip structure of a given
problem, and hence may be able to solve the probhene efficiently than a

general approach. Dong and Wu [42] first appligge@ametric buildup algorithm
to the solution of the distance geometry problend, showed that the algorithm
can find a solution to the problem i@(n) floating-point operations if the
distances for all the pairs of atoms are availaffe work was later extended to
sparse distances [43] with an updating scheme mératothe propagation of
numerical errors in the buildup process [44]. Teeent development on the
algorithm includes the enhancement of the algorithm rigid vs. unique

structure determination [45] and the extensiontaf &lgorithm to handling

inexact or inconsistent distance data [46].

3.1 The General Algorithm

Given an arbitrary set of distances, the algoriftist finds four atoms that are
not in the same plane and determines the coordirfatethe four atoms, using
for example the singular value decomposition atbarias described in Section
2.1, with all the distances among them (assumirgjlable). Then, for any
undetermined atorj) the algorithm repeatedly performs a procedurflésns:
Find four determined atoms that are not in the splaee and have distances
available to atonj, and determine the coordinates for aforhet X, = (% 1, X 2,
xi,g)T, i =1, 2, 3, 4, be the coordinate vectors of the faiams. Then, the
coordinatesx, = (X1, %2 X' for atomj can be determined by using the
distancesd;; from atomsi = 1, 2, 3, 4 to atorp (Figure 4). Indeedy can be
obtained from the solution of the following systefrequations,

l1% 1F = 2x" %+ Ix |F=d?, =123 4. (3-1)
By subtracting equationfrom equatiori+1 fori = 1, 2, 3, we can eliminate the
quadratic terms fax; to obtain

= 20X,y = %)X, (3.2)

= (di2+1,j - diz,j) (1% IF = 1KIE), =223

Let A be a matrix anth a vector, and

(% =x)" (dz; =d) = (1% IF =1, F)
A=-2 (% =%)" |, b=|(d3; —d;) = (1% IF = lIx.IP) |
(% =%,)" (dZ; =d3) =A%, IF = 1x,1P)

(3.3)
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We then havedx = b. Sincex;, X, X3, X4 are not in the same plang,must be
nonsingular, and we can therefore solve the lirsgatem to obtain a unique
solution forx. Here, solving the linear system requires onlystamt time. Since
we only need to solve-4 such systems far-4 coordinate vectors, the total
computation time is proportional i if in every step, the required coordinates
and distanced;j, i = 1, 2, 3, 4 are always available.

1% - Xall = s
1% - Xall = e
1% Xall = A3
11%= Xall = da

Il - x4l = ¢
11 - Xl = d,
11 - x4ll = Js
Il - xd1 =

Three dimensional case: Two dimensional case:
Four distances suffice to determine an atom. Three distances suffice to determine an atom.

Figure 4Geometric buildup In two-dimensional space, if treeare three determined atoms that ar
in the same line and there are distances from thesas to an undetermined atom, the undeterr
atom can be determined uniquely using the threardiss. In thredimensional space, if there are f
determine atoms that are not in the same plane and theraliatances from these atoms tc
undetermined atom, the undetermined atom can kewleed uniquely using the four distances.

Figure 5 shows an example protein structure detemniby using the
general geometric buildup algorithm, with the distes for all the pairs of atoms
in the protein, as demonstrated in Dong and Wu .[42]e structure is
determined accurately and uniquely. The RMSD value structure compared
with its X-ray reference structure is 1.0e-04 AeTdomputation time is much
more efficient than the conventional singular vatieeomposition algorithm as
described in Section 2.1.

The theoretical basis of the general geometricdbpil algorithm can be
traced back in the theory of distance geometry [Bgveral authors had
discussions on the theoretical issues related th f@an approach as well,
including Saxe [10], Sippl and Scheraga [48][49hd aHuang, Liang, and
Pardalos [52]. Based on the distance geometrythaay point in a Euclidean
space can be determined in terms of the distanoesthis point to a special set
of points.
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The General Geometric Buildup Algorithm

1. Determine an initial set of atoms.
2. Repeat:
For each undetermined atgm
If atomj has distances to four independent and determioeaasa
Determine atorpwith these distances.
End
End
If no atoms are determined in the loop, unsucckgsiop.
3. All atoms are successfully determined.

Figure 5Geometric buildup The X+ay crysta
structure (left) of the HIV-1IRT p66 proteil
(4200 atoms) and the structure (i
determined by the geometric build algorithrr
using the distances for all pairs of atoms in
protein. The algorithm took only 188,8
floating-point operationswhile a conventioni
singular-value deomposition algorithr
required 1,268,200,000 floatinmpint
operations.

RMSD = 1.0e-04

Definition 3.1.1 A set of pointsB in a spaceS is a metric basis o6
provided any point it can be uniquely determined by its distances tq@dtiats
in B.

Definition 3.1.2 A set ofk+1 points inR is called an independent set of
points if it is not a set of points R

Theorem 3.1.1 A set ofk+1 independent points iR* form a metric basis

for R

Proof It follows directly by generalizing the basic gesinc buildup step to
the k-dimensional Euclidean space. Let= (%, ..., xi,k)T be the coordinate
vectors of an independent set of points1, ..., k+1 in R LetX = (X1, ... x,-,k)T
be the coordinate vector for any pojrih R¢ with distances); from pointsi = 1,
..., k+1 to pointj. Then,

1% P =2x %, +IIx;IF=d?, i=1..k+1, (3.4)

andAx = b, where
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(6 =%)" (@, =)= (Ipe IF ~Ihslf)
pmp| 0o || (@5 =2 (I ~elf) | (3.5)
=) L@, =02 = IF =1 P)

Since the points = 1, ..., k+1 are not irR%, the matrixA must be nonsingular
andy; is determined uniquelyl

Given the above properties, we can easily seeatina@cessary condition for
uniquely determining the coordinates of the atorth & given set of distances
is that each atom must have at least four distat@esther atoms, and a
sufficient condition is that in every step of theogetric buildup algorithm,
there is an undetermined atom and the atom has dmtances from four
determined atoms who are not in the same plargereral, we have

Theorem 3.1.2 A necessary condition for the unique determinatbthe
coordinates of a group of points, ..., X, in R* with a given set of distances
among the points is that each point must haveast ke 1 distances from other
k+1 points, assuming that this point is noRift with anyk of thek+1 points.

Proof It follows immediately from the fact that IR, a point can be defined
uniquely only if it hask+1 distances frork+1 independent points, assuming it is
not in R¥* with anyk of thek+1 points. If it has onlkdistances fronk points,
the point will have at least two reflective posiisol |

Theorem 3.1.3 A sufficient condition for the unique determinatiof the
coordinates of a group of points, ..., X, in R* with a given set of distances
among the points is that in every step of the géaerisuildup algorithm, there is
an undetermined point witkt1 distances frork+1 independent and determined
points.

Proof The geometric buildup algorithm gives a constrectproof for the
theorem, because if the condition holds in evepp stf the algorithm, the
algorithm will be able to determine the coordinatall the points uniquely.]

3.2 Control of Numerical Errors

The general geometric buildup algorithm can beigado the numerical errors
generated during the calculation of the coordinateshe atoms. With this
algorithm, the coordinates of many atoms are deteun by using the
coordinates of previously determined atoms, andetbee, the errors in the
previously determined atoms are passed to and atated in later determined
atoms. As a result, the coordinates for later deteed atoms may become
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completely incorrect, especially if there is a losgquence of atoms to be
determined.

Wu and Wu [44] proposed an updating scheme to ptete accumulation
of the numerical errors. The idea of the schembased on the fact that the
coordinates of any four atoms can be determineldowttany other information if
all the distances among them are given. Theretbeecoordinates of any four
determined atoms should be recalculated whenessilppe using the distances
among them, before they are used as a basis atmn$ for the determination of
other atoms. The recalculated coordinates do ng¢rdkon the coordinates of
previously determined atoms and therefore do rnwtrih any errors from them.
They are determined from “scratch” and will not pgsevious errors to later
atoms as well. In this way, the coordinates of margyns can be “corrected”,
and the errors in the calculated coordinates capréaeented from growing into
incorrect structural results.

The recalculation of the coordinates of the foonat in the above algorithm
usually is done in an independent coordinate systérch is not related to the
overall structure already constructed by the algori However, they can be
moved back to the original structure by aligningrthto their original locations
with an appropriate translation and rotation (Fég@}. In other words, the new
coordinates of the four atoms can be translated@tated so that the root-mean-
square-deviation (RMSD) between the new coordinaied the old ones is
minimized.

Rebuilt base atoms i Aligned base atoms

@
BN

FoR i

Translation

e

Rotation

Figure 6Re-determination of base atoms The four base atoms are determined if the distanc
among them are given. The atoms are then moveddabyned with their original positions, a
used to determine other atoms.

Let yi, ..., Y4 be the coordinate vectors of the four atoms catedl in the
regular geometric buildup process, axd ..., X4 the recalculated coordinate
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vectors. LetY andX be the corresponding coordinate matrices. If tistadces
among all the four atoms are availabtecan be obtained for example using the
singular value decomposition algorithm describedSection 2.1. In order to
move X to the position wher¥ is located in the molecule, the geometric centers
of X andY are calculated first:

4 4
X =Y X094 vl =>YG,) /4 (3.6)
i= i=1
Then, X is translated so that the geometric centerX ahdY are at the same
location,
X<=X+e(y. =x)" (37)

wheree = (1, 1, 1, 15. After the translation, a rotation f&tis selected so that
the root-mean-square-deviationXfandY is minimized. In fact, the calculation
of such a deviation can be done by solving an aptition problem,

min |IY - XQl. QQ' =1, (3.8)
where || His the matrix Frobenius norm afthe rotation matrix. Le€ = XY,

and letC = U2V' be the singular-value decomposition @f Then, it is not
difficult to verify thatQ = UV' solves the above optimization problem [47].

The Updated Geometric Buildup Algorithm

1. Determine an initial set of atoms.
2. Repeat:
For each undetermined atpm
If atonj has distances to four independent and determioatsa
If the distances among the determatechs are given in the original data,
Recalculate their coordinates witksthdistances.
End
Determine atojwith these distances.
End
End
If no atoms are determined in the loop, unsesfodly stop.
3. All atoms are successfully determined.

Figure 7 demonstrates in some scenarios for hovstifueture determined
by a geometric buildup algorithm can be affectedHsyaccumulated numerical
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errors and how they can be corrected by using pidating scheme, as given in
Wu and Wu [44]. The figure shows the structured (nees) of protein 4AMBA
(1086 atoms) determined usirg5 A distances, first by the general geometric
buildup algorithm (Figure 7a) and then by the updgatlgorithm (Figure 7b).
The graphs show that the general algorithm results structure that disagrees
with the X-ray reference structure (blue lines) mmany regions, while the
updating algorithm generates a structure that agvath the X-ray reference
structure (blue lines) almost completely.

Figure 7Control of rounding errors a. The structure (red lines) of 4AMBA determined byngsa
general geometric buildup algorithm and compareth wie original structure of 4MBA (blue line
b. The structure (red lines) of 4MBA determinedusingan updating geometric buildup algorit
and compared with the original structure of 4MBARufblines).

3.3 Rigid vs. Unique Buildup

For the unique determination of a structure, iiésessary that every atom has at
least four distances from other atoms. Further, gieeral geometric buildup
algorithm requires four distances from four detewdi atoms to the atom to be
determined in every buildup step. These conditioay not be satisfied by a
given set of distances in practice. If the firshdition is not satisfied, the
structure will not be guaranteed unique. If theoseccondition is not satisfied,
the general geometric buildup algorithm will not bble to determine the
structure, even if the first condition is satisfemtl the structure is unique.

In order to handle more sparse distance data, weaasider determining
the structures only rigidly instead of uniquely.eTiecessary condition to have a
rigid structure requires only three distances facheatom. Therefore, in every
buildup step, the geometric buildup algorithm canntodified to require only
three distances from three determined atoms t@thm@ to be determined. The
atom can then be determined rigidly, although with possible positions. In the
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end, the algorithm may produce multiple structutese to the multiple choices
of the positions of the atoms, but the structuregigid and in finite number.

More formally, in any buildup step, I&t= (X 1, X 2, ><i,3)T, i=1, 2, 3, bethe
coordinate vectors of three determined atoms tieahat in a line. Lek = (X1,
X2 Xa2)' be the coordinate vector for an undetermined afoamd d;; the
distances from atoms= 1, 2, 3 to atonj. Then,X can be obtained from the
solution of the following system of equations,

1% IF = 2% +Ix;F=d?, i=123. (3.9)

By subtracting equation from equationi+1 fori = 1, 2, we can eliminate the
quadratic terms fax to obtain

=2(%q = %) X; (3.10)
=(d3; —dZ) = (% IF — 1K IF), i=12

Let A be a matrix anth a vector, and

Ae (xz—xl)T} bz[(déj—dfj)—<||x2||2—nx1|F)_ (3.11)
(% =)' (d3; =03) = (1% IF ~Ib.IF)

We then have\x = b. Letx = A'y;, wherey; = (i1,Yi2)'. Then,AA'y, = b. Since
X1, X, X3 are not in the same lind must be full rank andA" be nonsingular.
We can therefore solve the linear sysrAA:Tyj = b to obtain a unique solution
fory;. Letx' = (51, %2)' andA' = A(1:2,1:2). Thenx' = [A]"y;. By using one of
the equations in (3.9), we can obtain two possiblaes forx s, assuming that
the equation has real solutions. In the end, waioltvo solutions for (3.9).

The advantage of using the modified buildup algoniis that the algorithm
requires fewer distance constraints than the gemheitdup algorithm. It can
handle even more sparse distance data, yet detem@aningful structures. The
modified algorithm may find multiple structures,tlihey all are rigid, and in
some cases, it can find a unique structure as bedhuse the requirement by the
general buildup algorithm on the availability ofetlspecial four distances in
every buildup step is sufficient for the determio@tof a unique structure, but
not necessary.

However, a problem with the modified buildup algom is that it may
produce too many possible structures: Since inyesep, an atom is only
determined rigidly, there may be at least two pmegpositions for it. We have to
keep both positions unless later on we find tha ohthem can be excluded
with other distance constraints. Moreover, thedldetermined atoms may also
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have multiple positions. Let théh determined atom havepossible positions,
=1, 2, 3. Then, in the worst case, there can kd X |, x |3 possible positions
for the atom to be determined. Therefore, as therishm proceeds, the total
number of possible positions for an atom to be rdeéteed may grow into
exponentially many.

To reduce the number of possible positions for tamawe can allow the
algorithm to determine the atom uniquely first lifete are more than three
required distances available, and determine itliygotherwise. Also, in every
buildup step, after the atom is determined, eitfigidly or uniquely, we can
examine all given distances from this atom to othetermined atoms for their
possible positions. If some positions have violdtedr distance constraints, they
can be removed for further consideration. In thayvthe structures generated in
the end are guaranteed to satisfy all availableanig constraints among the
atoms, and they may be reduced to a unique stmudtter all infeasible
structures are identified and removed.

TheRigid Geometric Buildup Algorithm

1. Determine an initial set of atoms.
2. Repeat:
For each undetermined atpm
If atonj has distances to four independent and determioatsa
Determine atopwith these distances.
Check multiple structures with addiibavailable distances.
End
If atonj has distances to three independent and deterraingats,
Determine atofnwith these distances.
Record multiple structures generatethfreflections.
End
End
If no atoms are determined in the loop, unsesfodly stop.
3. All atoms are successfully determined.

Figure 8 shows how a structure can be determiggdlyiand how multiple
structures can be generated and also reducedeRgushows that atonis first
determined with three available distances. Thezdwmo positions for atorndue
to reflection, which makes two possible structufégure 8b shows that atom
again is determined with three available distanat$, two positions for each of
the possible structures. Total four possible stmest are made. In Figure 8c,
atomk is determined uniquely with four distances, aretefore, the number of
possible structures is not increased. However etlieran additional distance



21

between atomsandk. By examining all the structures, we find that twidhem
do not satisfy this distance constraint, and thag be removed from the
structure pool, as shown in Figure 8d.

I -l =d;
[ -l = di
I1%- x|l = di

Figure 8M ultiple rigid structures a. Atomi is determined. The number stfuctures is two. b. Ato
j is determined. The number of structures is in@éa® four. c. Atork is determined. d. Tw
structures are removed because they do not s#hisfgtistance constraint for atorandk.

Figure 9 further demonstrates the application efrthid geometric buildup
algorithm to a small protein, 1AKG, and the nataféhe multiple structures it
can generate, as given along with other examplg45h The protein 1AKG is a
small polypeptide with 16 amino acids and 110 atohfee general geometric
buildup algorithm is able to determine to the g for this protein
completely, with distances 4.5 A, and the RMSD value of the structure is 8.3e
07 A against the original structure. Here, the neindd distances used is 1638,
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which is about 14% of all the distances. Howevethwlistances< 3.5 A, the
general geometric buildup algorithm fails, but thggd algorithm is still able to
find a reasonable number of rigid structures. Here,number of distances used
is 898, which is only 7.5% of all the distanceseihare total 8192 multiple
conformations found by the rigid algorithm. The otlesest to the original
structure has the RMSD value equal to 4.3e-07 AteNbat 8192 = 5 and
therefore, the multiple structures are perhaps rgéed just from a sequence of
13 reflections of the atomic positions. In fact,cas be observed in the figure,
most of the reflections happen for the side-chaoma when they are in the
surface of the protein, and they only affect theedeination of a small part of
the structure. On the other hand, the major partsegprotein with the backbone
atoms and the atoms in the interior of the protemall uniquely determined.

Figure 9Rigid structure determination Shown is the structure of protein 1AKG, with 18ideies
110 atoms. The distances < 3i5were used. Total 8192 rigid structures were detexdh They al
were almost identical except for the circled smedjions.

Similar to the general geometric buildup algorittthe theoretical basis for
the rigid geometric buildup algorithm can be esthield and generalized to any
k-dimensional Euclidean space. For this purposedeftne a reduced metric
basis for a space afdndependent points iR".

Definition 3.3.1 A set of pointdB in a spac&is a reduced metric basis $f
provided any point ir8 can be determined rigidly by its distances togbiaits in
B.

Definition 3.3.2 A set ofk points inR is said to be an independent set of
points if it is not a set of points R

Theorem 3.3.1 A set ofk independent points iR form a reduced metric
basis forR".
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Proof It follows directly by generalizing the modifiecegmetric buildup
step to thek-dimensional Euclidean space. Let = (X1, ..., %) be the
coordinate vectors of an independent set of paintg, ...,k in R, Letx = (.1,
xj,k)T be the coordinate vector for any pojnin R with distancesd;; from
pointsi = 1, ...,k to pointj. Then

% IF =23 %, + I, IP=d?, i=1... K (3.12)

andAx = b, where

06 %) (@, =)~ IF = IIF)
pzmg| 0o | | (@ —a)=(bs I -Ihalf) | (3.13)
(%)) L =)= I ~Ihal)

Let x = Aly;, wherey, = (i 1,---Yix1)'- Then,AATy, = b. Sincex,, ..., % are not in
R<2, A must be full rank andA' be nonsingular. We can therefore solve the
linear systemAA'y, = b to obtain a unique solution fof. Let X' = (X1,..- k1)
and A' = A(L:k-1,1k-1). Then,x' = [A]" y.. By using one of the equations in
(3.12), we can obtain two possible valuesxer assuming that the equation has
real solutions. In the end, we obtain two solutifars(3.12), and the positions
for pointj are determined rigidly.]

Given the above properties, we can easily seeatingicessary condition for
rigidly determining the coordinates of the atomshva given set of distances is
that each atom must have at least three distaoaaber atoms, and a sufficient
condition is that in every step of the geometriddup algorithm, there is an
undetermined atom and the atom has three distdnoesthree determined
atoms who are not in the same line. In generahave

Theorem 3.3.2 A necessary condition for the rigid determinatimithe
coordinates of a group of points, ..., X, in R* with a given set of distances
among the points is that each point must haveaat kedistances from othe¢
points, assuming that this point is noRf with anyk-1 of thek points.

Proof It follows immediately from the fact that IR, a point can be defined
rigidly only if it hask distances t& independent points, assuming it is noRIff
with any k-1 of thek points. If it has onlyk-1 distances fronk-1 points, the
position of the point will be flexible.

Theorem 3.3.3 A sufficient condition for the rigid determinatioof the
coordinates of a group of points, ..., X, in R* with a given set of distances
among the points is that in every step of the gégerisuildup algorithm, there is
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an undetermined point witk distances fronk independent and determined
points.

Proof The modified geometric buildup algorithm gives astouctive proof
for the theorem, because if the condition holdeviery step of the algorithm, the
algorithm will be able to determine the coordinaiall the points rigidly[]

3.4 Tolerance of I nexact Distances

In practice, the distance data often contains &riss a result, the distances may
become inconsistent or in other words, may haviatéd some basic geometric
rules such as the triangle inequality for the disés among any three atoms. The
general geometric buildup algorithm usually assuiieg the distances are
consistent and therefore, in every step, only fouthree) distances are required
for the determination of the coordinates of an atoniquely (or rigidly),
although there may be more available. However, whlisnot be the case if the
distances are not consistent. In order for the rilgn to handle inexact
distances (distances with errors), the generaldbpilprocedure has to be
modified. First, in every buildup step, if distances are found from an
undetermined atom tbdetermined atoms,> 4, all| distances should be used
for the determination of the unknown atom. Sec@ind: 4, an over-determined
system of equations is obtained for the determonabf the position of the
unknown atom. If the distances have errors, théesysnay not be consistent.
Therefore, we can only solve the system approximddg using for example a
least-squares method. Third, a new updating scimeaiyebe necessary to prevent
the accumulation of the rounding errors. The updascheme described in
Section 3.2 may not be practical any morel for 4 because it requires all the
distances available amohgdetermined atoms.

A simple way to extend the geometric buildup et to handle the
possible errors from the distance data is as fallow every buildup step, in
addition to the four required distances, we canlube all the available
distances, saydistances, from the determined atoms to the obe thetermined
(see Figure 10). Let = (X1, X 2, ><i,3)T, i =1, ....1, be the coordinate vectors of
the | determined atoms and; the distances from atonis= 1, ...,| to the
undetermined atorjy Then, the coordinates = (X.1, X2, %3)' for atomj can be
obtained from the solution of the following systefrequations,

% IF = 2¢ % + I IP=d?, i=1..,1. (3.14)

By subtracting equatiom from equationi+1 fori = 1, ..., -1, we can
eliminate the quadratic terms fgrto obtain
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=2(X, _Xi)T X; (3.15)
= (2, = 02) = (1% IF =& IF), 1= ..., 1 -1

Let A be a matrix anth a vector, and

(=)’ (d; =d5) =l IF =1KkIF)
A= TR (d3; =d3,) = (1% IF ~1K.IF) _ (3.16)

()ﬁ _&—1)1- (dlz,j ‘dlélj)‘(||>ﬁ ”2 _”X1—1”2)

We then haveAx = b. This system is certainly over-determined i k+1.
However, it can be solved by using a standard fitesst-squares method. For
example, we can compute tldR factorization ofA to obtain an equatioQRx=

b, whereQ is (-1)x3 andR is 3x3. If at least four of thedetermined atoms are
not in the same plané, must be full rank and be nonsingular. We can then
solve the linear syste@Rx = b to obtain a unique solutiog = R'Q'b, which
minimizes p — Ax||. Here, solving the linear syste@Rx = b requiresO(l)
computing time, bu@R factorization may tak€(l%) time. Since we only need to
solve + such linear least-squares problems foiceordinate vectors, the total
computation time must be in order bf n, if in every step, the required
coordinates; anddistancesl;; are always available, whelrg= max {|S|},

§={i:@j)inS.

x; are determined.

1% =X ”2:di2,j! (,))os0Os

X; is to be determined.

Figure 10Tolerance of distance errors The extended algorithm tries to determine thedioates o
each atom by takg all available distance constraints into accaumt by minimizing the errors for .
the constraints. In this way, all the constraimésiatended to be satisfied, and the algorithnisis more
stable with possible errors in the distance data.
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Again, the theory for the extended geometric buildugorithm can be
established and generalized to &gimensional Euclidean space in a similar
fashion as that for the general geometric buildgprathm. For this purpose, we
define an extended metric basis for a space arekt@mded set of independent
points inR".

Definition 3.4.1 A set of pointB in a spac&is an extended metric basis of
S provided any point ir§ can be determined uniquely by its distances fioen t
points inB.

Definition 3.4.2 A set of | points is said to be an extended set of
independent points iR if it containsk+1 independent points.

Theorem 3.4.1 An extended set of independent points iR form an
extended metric basis f&¥.

Proof It follows directly by generalizing the extendedometric buildup
step to thek-dimensional Euclidean space. Let = (%1, ..., >q,k)T be the
coordinate vectors for an extended set of indepgngaintsi = 1, ...,1 in R,
Letx = (X1 ..., %x) ' be the coordinate vector for any pdji R with distances
d;; from pointsi = 1, ..., to pointj. Then

[1% | —Zxij+||xj||2=dfj, i=1..1, (3.17)
andAx = b, where

0 =)' (e, =d2) (s IF ~IiIP)
pmog| 05707 || (@ =)=k Ikl | (3.18)

(% =%)" (@ =d% ) =X IF =1klF)

Multiply the equation byA" to obtainA'Ax = A'h. Sincek+1 of thel determined
points are independenf, must be full rank and\'A be nonsingular. We can
then solve the linear systeddAx = A'b to obtain a unique solutiog = [ATA]"
"ATb. [

The above algorithm may not necessarily be staisl@reventing rounding
errors from growing, because in every step, thedinates of the unknown atom
must have rounding errors, which can still be pgaped and accumulated into
later calculations. On the other hand, differerinfrthe general geometric
buildup algorithm, it is difficult to employ an ugting scheme as described in
Section 3.2 for the extended algorithm, because dtieeme requires the
availability of the distances among alldetermined atoms, which is not so
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realistic wherl is large. In order to control the rounding errasswell as tolerate
the distance errors, a nonlinear instead of litesst-squares approximation can
in fact be used in the buildup procedure instedw iflea is to determine the
unknown atom in each buildup step by using not dhlyl distances froni
determined atoms to the unknown atom, but alsaisiances among all tHe
determined atoms. THedistances fronh determined atoms to the unknown atom
must be given. The distances amongltbetermined atoms may not necessarily
be provided, but they can be calculated. In ang,caace all these distances
become available, the coordinates for the unknavwmand thd known atoms
can all be calculated (or recalculated) using thiéstances.

Let X3, ..., X and x4, be the coordinate vectors of atoms 1, [+]. If the
distances among all these atomhs, i, j = 1, ...,I+1, are available, thenx|}- x|
=dforalli,j=1, ...,I+1, and

1 P =2x" %+ 11 IP=d?, i,j=1..1+1 (3.19)

Since the structure formed by these atoms is iamaninder any translation or
rotation, we can set a reference system so thabrigen is located at the last
atom or in other wordsg,; = (0, 0, 0J. It follows that J||= di.1, (K= 1,
and

di, —2x'x;+df, =d%, =1L (3.20)

ihj?

We now have a system of equations similar to treediscussed in Section 2.1.
Define a coordinate matriX and an induced distance matix

X={x,i=1...,1, k=123} and
D:{(diz,|+1_di2,j +dj2,|+1)/2: j=1..1}.

(3.21)

Then,XX" = D. LetD = U3U" be the singular value decompositiorDgfwhere
U is an orthogonal matrix ant a diagonal matrix with the singular valuedof
along the diagonal. ID is a matrix of rank less than or equal taX3z V42
solves the equatioKX” = D, whereV = U(;,I:3) and4 = 3(1:3,1:3). In other
words, if the distanced ; are available for all, j = 1, ..., 1+1, we can always
construct an induced matrix for the distances and then, based on the singular
value decomposition dD, obtain the coordinates for all the atoms 1, |.as
given inX with atoml+1 fixed at (0,0,0)

Note that the distances may have errors. Themmgtex D may in fact have
a higher rank thak or in other words, the equatiotX" = D may not have an
exact solution. HoweverX = V4AY as defined above is still a good
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approximation to the solution of the equation (3.20 the following least-
squares sense.

Theorem 3.4.2 Let D = UZU" be the singular value decompositiorDofLet
V = U(;,1:3) anda = 3(1:3,1:3). ThenX = V.4“’minimizes [P- XX"||r, where ||
|| is the matrix Frobenius norm.

Proof [[21] Let f(X) = |D- XX|F. Then D - XX")X = 0 for any stationary
point X of f. It follows that D - XXX = (D - XX")XX" = 0 and

f(X) = tracéD?) — tracg2DXX" — XX XX") = tracéD?) — tracé XX XX").

Let o> ... > g, > 0 be the singular values bfand/i;> 1,> 13 > 0 be the
singular values okX". Then,

f(X) = tracdD?) ~tracd XX'XX") =Y o7 =" K.

Let XX" = VAV' be the singular value decompositionXf’, whereV is anlx3
orthogonal matrix and = diag {1, 42, 43.}. SinceDXX" = XX'XX', VDV = 4
and therefore,  : j = 1, 2, 3}l{q; : j = 1, ...,n}. It follows that f(X) is
minimized wheny; = ¢g; for j = 1, 2, 3.0

Geometric Buildup with Linear L east-Squares

1. Find four atoms that are not in the same plane.
2. Determine the coordinates of the atoms withdis&ances among them.
3. Repeat:
For each of the undetermined atoms,
If the atom hdsdistances tb determined atoms that are not in the same plane,
Determine the atom with the least-sgsiéit to the distances.
End
End
4. If no atom can be determined in the loop, stop.
5. All atoms are determined.

The extended buildup procedure has the followingpgrties. First, the
coordinates of the unknown atom are determined biygul previously
determined atoms, to which the unknown atom hasmtiss given. Second, the
coordinates are determined by solving a system istamte equations
approximately. They are the best possible estimsgtio a nonlinear least-squares
sense as stated in Theorem 3.4.2, and can theredoevaluated even if the
distances have errors. Third, the calculationsontyt determine the coordinates
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of the unknown atom, but also recalculate the doatds of all the involved

atoms including the determined ones. Most impoifatitese coordinates do not
depend completely on the results from previousutalions. Rather, they are
determined by using the provided distances amoagatbms (determined and
undetermined) as much as possible, thereby redutiegrisk of large error

propagation and accumulation. In this sense, thtaadeshould be more stable
numerically than the one using linear linear-sgsiagproximation [46].

Geometric Buildup with Nonlinear L east-Squar es

1. Find four atoms that are not in the same plane.
2. Determine the coordinates of the atoms withdisances among them.
3. Repeat:
For each of the undetermined atoms,
If the atom hdsdistances tb determined atoms that are not in the same plane,
Determine tHe-1 atoms with the distances among them.
Put the atoms back to their originadifions by proper translation and rotation
End
End
4. If no atom can be determined in the loop, stop.
5. All atoms are determined.

Of course, the calculations of the coordinates emeducted in an
independent reference system with its origin atgbsition of the atom to be
determined. In order to recover the coordinateshefatoms in their original
structure, we need to make a proper translationratadion for the coordinates
just like we need to do in the updating schematfergeneral geometric buildup
algorithm. More specifically, lety be anIx3 matrix having the original
coordinates of thd determined atoms. LeX be anlIx3 matrix with the
recalculated coordinates of the determined atoinst, Fve translat& to Y with
a translation vectoy, — x., wherey. andx, are the geometric centersXfndy,
respectively. Then, we can rotate the coordinafesllahe atoms by using a
rotation matrixQ = UV', whereU andV are obtained from the singular value
decompositionxTY = U2V". That is, ifx is the coordinate vector of atdmi =
1, ...,1+1, then, we set to QXx.

Table 1 and 2 show some results from applying ektended geometric
buildup algorithm with either linear or nonlineaakt-squares approximation to
the determination of the structures of a set ofgins using the distance data
generated from the experimental structures of tloeeims with 5 A and 6 A
cutoff values. Table 1 contains the RMSD (root-rsgumare deviation) values of
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the structures (compared with their original stuoes) obtained by using the
extended buildup algorithm with linear least-sqaase the generated data sets.
The RMSD values show that the algorithm solved atnadi the problems with
cutoff distances equal to 6 A, but failed for thesth cutoff distance equal to 5
A. The last cutoff value is critical because in NM®deling, usually only less
than or equal 5 A distances can be estimated. Jrcase, the results show that
with linear least-squares, the new buildup algamifrerformed well in general if
the distance data was not too sparse. The reasbrit tiid not work well for
very sparse data was that a long sequence of lpuditdyps had to be carried out
and a large amount of rounding errors was accugtllat

Table 1RM SD Values of Structures Computed with Linear L east-Squares

<5A <6 A

DA RMSD DA RMSD

1PTQ | 402 402 | 1.4e-00 402 2.6e-09
1HOE | 558 558 | 5.8e-02 558 3.1e-09
1LFB | 641 641 | 2.0e-02 641 2.1e-10
1PHT | 814 809 | 1.2e+01 814 8.2e-09
1POA | 914 914 | 6.6e-00 914 1.9e-09
1AX8 | 1003 | 1003 | 5.2e-00 | 1003 [ 1.8e-05
4MBA | 1086 | 1083 | 4.9e-00 | 1086 | 3.8e-06
1F39 | 1534 | 1534 [ 1.4e+01 | 1534 [ 6.3e-08
1RGS | 2015 | 2010 | 2.0e+01 | 2015 [ 1.1e-01
1BPM | 3672 | 3669 | 6.4e+04 | 3672 [ 3.6e-02
1HMV | 7398 | 7389 | 1.2e+03 [ 7398 | 3.5e+01

1D TA

“ID — Protein ID, TA — Total number of atoms, DA -et&l number of determined atoms, RMSD —
RMSD values of the computed structure against tiginal structures.

Table 2RM SD Values of Structures Computed with Nonlinear L east-Squares

<5 A <6 A

D TA DA RMSD DA RMSD
1PTQ | 402 402 | 5.5e-14 402 5.0e-14
1HOE | 558 558 1.6e-13 558 2.7e-13
1LFB | 641 641 | 9.5e-14 641 5.5e-14
1PHT | 814 809 1.1e-13 814 1.8e-13
1POA | 914 914 | 3.2e-13 914 1.5e-13
1AX8 | 1003 | 976 | 4.0e-13 1003 4.6e-12
4MBA | 1086 | 1083 | 1.8e-13 1086 2.6e-13
1F39 | 1534 | 1534 | 7.9e-13 1534 1.9e-13
1RGS | 2015 | 2010 | 8.3e-12 2015 2.4e-12
1BPM | 3672 | 3669 | 8.1e-11 | 3672 1.0e-11
1HMV | 7398 | 7389 | 1.1e-08 7398 5.5e-07
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“ID — Protein ID, TA — Total number of atoms, DA -et&l number of determined atoms, RMSD —
RMSD values of the computed structure against tiginal structures.

Table 2 contains the RMSD (root-mean-square dewiptvalues of the
structures (compared with their original structyiretained by using the new
buildup algorithm with nonlinear least-squares be tlata sets. The RMSD
values show that the algorithm solved almost a#l groblems with cutoff
distances equal to 5 A and 6 A. Therefore, theltesndicated that with
nonlinear least-squares, the new buildup algorigerformed well in general.
The reason it worked well for very sparse data Wext it calculated the
coordinates of the undetermined as well as detednatoms in every buildup
step using the distances among them (most presyrgaldn in the original
distance data) and therefore, stopped the propagatithe rounding errors.

4. Conduding Remarks

In this paper, we have discussed a well-known praokih protein modeling, for
the determination of the structure of a proteirhvatgiven set of inter-atomic or
inter-residue distances obtained from either plays&periments or theoretical
estimates. A more general and abstract form ofptioblem is known as the
distance geometry problem in mathematics, the gexphedding problem in
computer science, and the multidimensional scapirmplem in statistics. In
general, the problem can be stated as to finddbedmates for a set of points in
some topological space given the distances foaicepairs of points. Therefore,
in addition to protein modeling where everythingdiscussed only in three-
dimensional Euclidean space, the problem has apigics in many other
scientific and engineering fields as well, suchsaasor network localization,
image recognition, and protein classification, tome a few. In any case, the
problem may or may not have a solution in a giwpological space, and even if
it does have a solution, the solution may not ks ¢a find, depending on the
given distances. For example, in &gimensional Euclidean space, the problem
is polynomial time solvable if the distances fot #ie pairs of points are
provided, and is NP-complete otherwise in general.

We have investigated the solution of the distaremgetry problem within a
so-called geometric buildup framework. Central tee tgeometric buildup
approach is the idea to determine only a small g@fuatoms at the beginning
and then complete the whole molecule by repeatgelgrmining one or more
atoms every time using the available distances dmriwthe determined and
undetermined atoms. The advantage of using a gdontetildup approach is
that it works directly on the given distances arplats the special structure of
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a given problem, and hence may be able to solvepithidem more efficiently
than a general approach. We have discussed thal&drams and complexities of
the distance geometry problem in its various forams] described the general
geometric buildup algorithm and its theoreticaliba#/e have also discussed the
issues of the general algorithm for controllingrdiing errors, determining rigid
vs. unigue structures, and handing inexact disgnaed reviewed various
versions of the algorithm that can address thesgessand showed their test
results.

A basic principle for the general geometric buildajgorithm is that
whenever there are four determined atoms that arénnthe same plane and
there are distances from these atoms to an undatstratom, the undetermined
atom can immediately be determined uniquely byisgha system of four
distance equations using the available distantder every atom, the required
atoms and the distances can be found, the whaletste can be determined
uniquely. The distance equations can in fact bauged to a set of linear
equations and hence solved in constant time. Torerehs we have detailed in
the paper, in ideal cases, a geometric buildupritigo can solve a distance
geometry problem with onlyrddistances inO(n) computing time, while the
conventional singular value decomposition algoriteguires all n(n-1)/2
distances and @f) computing time, where is the number of atoms to be
determined

However, the requirement for four determined atommsl hence four
corresponding distances in every step of the bpilpwcedure is sufficient but
not necessary for the unique determination of @cstre. Therefore, the general
geometric buildup algorithm can in fact be modifigal that in every buildup
step, only three determined atoms and hence tlmeesponding distances are
required. There may be multiple structures that lmametermined in this way,
but they are still rigid and can possibly end ujgua as well. Indeed, as we
have reviewed in the paper, a modified geometritdbp algorithm has been
developed and tested successfully on a set ofipsot€he results showed that
the modified algorithm was able to produce meaningfructures rigidly with
very sparse distance data, although they may bipheuiin many cases.

The geometric buildup algorithm, either rigid orgure, can be sensitive to
the numerical errors though, for the coordinateshef atoms are determined
using the coordinates of previously determined atard the rounding errors in
the previously determined atoms can be passed doaaoumulated in later
determined atoms, resulting in incorrect structueslts. An updating scheme
has been developed to prevent the accumulatioheohtimerical errors, as we
have described in the paper. The idea of the sclielsed on the fact that the
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coordinates of any four atoms can be determineldowttany other information if

all the distances among them are given. Theretbeecoordinates of any four
determined atoms can be recalculated wheneverbb@sssing the distances
among them, before they are used as a basis atmm$ for the determination of
other atoms. The recalculated coordinates do ng¢érdkon the coordinates of
previously determined atoms and therefore do ratribany errors from them.

The general geometric buildup algorithm cannot redke errors in given
distances either, for the distances then may nabhsistent and the systems of
distance equations may not be solvable. Howevegrantice, the distances must
have errors because they come from either expetainereasures or theoretical
estimates. We have demonstrated how an extendedegéo buildup algorithm
can be developed to prevent the accumulation ofrt@ding errors in the
buildup calculations successfully and also tolerdte errors in the given
distances. In this algorithm, in every buildup stap (instead of a subset of) the
distances available for each unknown atom are takém account for the
determination of the position of the atom by usinigast-squares approximation
(instead of solving a system of equations exacthg. have shown that the least-
squares approximation could actually be obtainedusing a special singular
value decomposition method, which could not onlgvigte an approximate
solution to the original system of distance equejobut also prevent the
accumulation of the rounding errors in the builgupcedure effectively.

As we have discussed in the introduction sectibthe paper, a further
complicated yet practical case of the distance gégnproblem is when the
distances are given with only their lower and ugpaunds. The problem then
becomes to find the coordinates ..., x, for the atoms for a given set of lower
and upper bound$,; andu;, of the distanced;; such that

<% =x llsu;, @(,))0S:

The general geometric buildup algorithm and its ifica&tions or extensions
presented in this paper have not been developeealovith distance bounds yet.
However, the general buildup procedure should benebable for the solution of
such a problem as well. Here, different from othmplementations, in every
buildup step, an atom should be determined by fgais a set of distance
bounds instead of exact distances. The computatidincertainly be more
involved and subject to even more arbitrary errdise solution to such a
problem will not be unique, either. In fact, thesn be an ensemble of solutions
all satisfying the given distance inequalities. fBa other hand, in practice, it is
actually preferred to obtain the entire ensembleabiitions instead of a few
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samples. How to implement a buildup algorithm tcieee that can be
challenging and will be the topic of our future éstigation.
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