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Componentwise error bounds for linear complementarity problems are presented. For the problem with
an H-matrix the error bound can be computed by solving a system of linear equations. It is proved that
our error bound is more accurate than that obtained recentGheyn & Xiang(2006 Math. Prog., Ser.

A, 106 513-525). Numerical results show that the new bound is often much better than previous ones.
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1. Introduction

LetM e ®"*"andq e R" be given. The linear complementarity problem (LCP), denoted by LCP
(M, @), is to find a vectox* € R" such that

X*>0, Mx*4+q>0, x)'(Mx'+q)=0,

or to show that no suck* exists. Here the inequalities are meant componentwise. LCPs have many
important real-world applications, for example, $&&ttleet al. (1992 andFerris & Pang1997).

Let X € RI be an arbitrary but fixed vector. Estimation of the erfor x* plays an important
role in both the numerical solution and theoretical analysis. Norm error estimation for LCPs has been
extensively studied so far, for example, &een & Xiang(2006, Mangasarian & Re(i1994, Mathias
& Pang (1990 andPang(1997).

In this paper we present new componentwise error bounds, that is, we gi9%] such that

R —=x*| <,

where|y| means the vector whosth component igy; |. Such arr can be computed in general by find-
ing a feasible solution of a convex quadratic programming problem for which a very mild computational
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cost is expected. The solution of the convex quadratic programming problem delivers a tight error
bound.
For the case wher®! is an H-matrix, that is, the comparison matik = (Mj) € R"" has a
non-negative inverse, where
} [ Imii| if i =],
mijj =

—|mi| if i # j,

we present a tight error boung (X) that can be computed by solving a system of linear equations. For
an LCP with an H-matrix the error bound

1% =X |p < IM~Lmax(D, 1)]|pll min(%, M% + Q)| p =: ¢p(X) (1.1)

was given byChen & Xiang(2006, wherep € [1, +o¢], D is the diagonal part o, | is the identity
matrix, and ‘max’ and ‘min’ are taken componentwise. The error babyi) was proved to be more
accurate than the well-known bound given ldathias & Pang(1990. We will prove that our error
boundgn (X) is more accurate than the error boufilX) given in (1.1) in the sense that

lon ()llp < Ep(X).

The numerical results illustrate that this inequality holds strictly and for different orders of magnitude
for our model problem.
To conclude this section we give some notation. The set

FEAM, Q) :={x e R": x >0, Mx+q > 0} (1.2)

is called thdeasible sebf the problem LCIPM, q). An element of FEAM, q) is called d&easible vector
of the problem LCPM, q). This feasible vector is also known a$easible solution

Forx = (x) andy = (y;) € ®R" we have thak < y stands forx; < y;, wherei = 1,...,n.
We denote by max, y) and by mir{x, y) the componentwise maximum and minimum»ofindy,
respectively. Let = (g;) € ®" anda = (@) € R" be given witha < @. We define am-dimensional
interval vector as the set of vectors

[a] =[a,a] ;= {xe R a<x<a}.
For an interval vectord] = [a, a] we define the operation
max(0, [a]) := [max(0, &), max(©, @)].

For simplicity, we write f, a] = a for a € ®". The operations-, — and x can be defined for intervals.
We refer toNeumaier(1990 for details.

2. Error bound

We begin our study with an existence theorem. It gives a sufficient condition for guaranteeing that an
interval vector contains a solution of an LCP.

THEOREM 2.1 LetM e X" andq e R" be given. Let k] be ann-dimensional interval vector and
let X e [x] be an arbitrary but fixed vector. Let a diagonal mattix= diag(d;) € R"*" be given with
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6 >0,wherei =1,...,n.If
I'(%,[x], 4) :=max(0, % — A(MX+q) + (I — AM)([X] — R)) C [X] (2.1)
then LCRM, q) has a solutiox* € I'(X, [X], 4).

For the proof of Theorem 2.1 we refer Adefeld et al. (2004).

Now we find a vector € R} such that the conditior2(1) holds for the interval vecto®[—r, X +r].
Consequently, it follows from Theorethl1that LCRM, g) has a solutiorx* € [X —r, X 4 r], which
implies the componentwise error bound

[R — x*| <.
Given a vectok € R}, we define
ai={i: % < (MR+q)i, (2.2)
%= (%) with % = [)A(i fhea 2.3)
0 ifi¢a,
Ji= ) with = {(M“q)i fhea 2.4
—IMX+ )il ifi¢a,

M := D —|B], (2.5)
G:=MX+79, (2.6)

whereD and—B are the diagonal and the off-diagonal partdvbfrespectively.
Using these definitions, we can give our main error estimation result as follows.

THEOREM2.2 LetM € ®™", g € ®R" andk € R} be given. LetM € R"*" andq € ®" be defined by
(2.5) and @.6), respectively. It € FEA(M, §) then LCRM, q) has a solutiox* € [x] := [X—r, X+r],
wherer = X 4+ u andx € R" is defined by 2.3). As a direct consequence, we have the error bound

X =x*| <. (2.7)

Proof. It is sufficient to show that conditior2(2) holds forr = X + u. We define a positive-definite
diagonal matrix4 = diag(d;) € ®"*" by setting

5i=I 1 if mij <O,
1/m; if mi > 0.
It can be verified that (sddeumaier 1990
(1 — AM)([X] = %) = [—[l — AM]|r, || — AM]r].
By the definition of/"(X, [x], 4), we havel’ (%, [X], 4) = [I'(X, [X], 4), ['(%, [X], 4)], where
I'(X,[X], 4) =max0,X — A(MX+q) — || — AM|r),

(X, [X], ) =max0,X — A(MX+q) + || — AM|r).



4 0of 10 Z. WANG AND Y.-X. YUAN
First, we provethat I"(X, [X], 4) < X + r. Remembering thab and —B are the diagonal and
off-diagonal parts oM, respectively, we have
[l —AM|r =r — A(D — |B))f =1 — AMr.

The definition 2.4) yields MX + q > §. Note thatMX + §¥ = §,r = X+ uandMu + ¢ > 0. Thus it
follows that

K= AMK4+q)+ |l — AM|r <K — A +1 — AMr
K41 — A9 — AM(X + u)
=X +r1 — A(Mu+ MX + %)
=%4r — A(Mu+ )
<X+,

which, together witlR +r = X+ X+u > u > 0,yields ' (X, [X], 4) < X +T.
Now we prove that” (X, [x], 4) > X —r. For any index € o we have

[F()/Za [X]9 A)]I =02 —Uj =),Zi —TIj.

Forany index ¢ a we note from the definitiori4) that—(MX+q);i > Vi. Considering thaM X+ 9§ =
g andu € FEA(M, §) and that = X + u, we have

[ X, D]i Z[X = 4MX+q) = || = AM]r];

>[X+ 4Y —r1 + AMr];

Vv

>R —ri +[49+ AM(X + u)];

R — i +[4(Mu+ MX + 9)];

% — 1 4+ [4(Mu + )],
>R —Trj.

Hence it is shown that conditio2 (1) holds for [x] := [X —r, X+r] with r = X+ u. Therefore it follows
from Theoren®.1that LCRM, q) has a solutiorx* € [x] := [X —r, X +r], which in turns implies that
the error bound4.7) holds. This completes our proof. O
We note that the matriM, defined by R.5), is a Z-matrix. A Z-matrix is a matrix whose all off-
diagonal entries are nonpositive. So, if FE&A, §) # @, then there is a unique vectot € FEA(M, §)
that is a solution of LCBM, §) such that, for any € FEA(M, §), we haveu* < u (Cottleet al, 1992,
pp. 198-212). This vectar* is usually called théeast elemenof the feasible set FE@M, §). As u*
is also a feasible vector, we obtain the following error estimation result, which is a special case of
Theorem2.2.

COROLLARY 2.3 In the setting of Theorem 2we letu* be the least element of FEM, §), which is
unique. We define

p(X) ;=X +U". (2.8)
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Then LCRM, g) has a solutionx* € [X] := [X — ¢(X), X + ¢(X)]. As a direct consequence, we have
the error estimate

X = X*| < (X). (2.9)

Corollary 2.3 indicates that the error boung(X), defined by the least element, is the ‘sharpest’
compared with the one defined only by a certain feasible vector of MCH). To computep(R) we
need to find the least elemant of the feasible set FE@M, §). It can be cast into the following convex
guadratic programming problem:

minuTu,
such thatMu + ¢ > 0, (2.10)
u=o,

which can be solved efficiently using existing software, for example, using CV&raptet al. (2008.

Of course, we sometimes do not need to solve the prokieh)(exactly because any feasible solution

of (2.10 provides an error boun@(7). In this way, a much smaller computational cost can be expected.
Now we consider the special case thtis an H-matrix whose diagonal elements are all positive.

An H-matrix is a matrix whose comparison matrix is an M-matrix, while an M-matrix is a matrix whose

off-diagonal elements are all nonpositive and whose inverse has no negative elemeRtersaens

1977. In this case the problem LEM!, q) has a unique solution for amye }" (seeCottleet al,, 1992

pp. 148-152). An LCP with an H-matrix appears frequently in modelling real-world problems (see, e.g.,

Rodrigues1987andFerris & Pang1997). The following theorem shows that, for such an LCP, an error

bound given byZ2.7) can be obtained by solving a system of linear equations.

THEOREM 2.4 Suppose thal is an H-matrix whose diagonal elements are all positive 4,& and
g be defined by4.3), (2.5 and @.6), respectively. Then we have the estimate

% = X*| < pH (%) = X+ M~ max©, —4), (2.11)
wherex* is the unique solution of LCfM, q).
REMARK 2.5 The estimateX(11) can be computed by solving a system of linear equations.

Proof of Theoren2.4. SinceM is assumed to be an H-matrix whose all diagonal elements are positive,
we haveM~1 > 0, that is, each element &~ is non-negative. So

u=M~tmax0, —g) >0,
Mu + §=MM~Imax0, —§) + § = max0, —§) + G > 0.

This means thatt = M~1max©0, —G) € FEA(G, M). Therefore 2.11) follows from (2.7) in Theo-
rem2.2 O

We mentioned in Sectioh that the error boundl(1) was given byChen & Xiang(2006 for the
LCP with an H-matrix. This bound was proved to be more accurate than the well-known error bound
given byMathias & Pang1990. We now show that our error boun®.{1) is more accurate thad (1).

THEOREM2.6 LetM e ®"*" be an H-matrix with positive diagonal pdbt, and letg € ®" andX € R7.

be given. Letk, M and{ be defined byZ.3), (2.5 and @.6), respectively. LeM be the comparison
matrix of M. (Note that we hav®l = M sinceM has the positive diagonal part.) Then we have

IX + M~tmax0, —=G)llp < IM~tmax(D, 1| pll min(k, MX + Q) p. (2.12)
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Proof. Let § be defined byZ.4). We first prove that
max(Mx, —¥) < max(D, 1)| min(%, MX + q)|.

Consider any indek € « for which we havet; < (MX + q);. From @.3) and @.4), the definitions ok
andy, it follows that

(MR)i = mi% — > [mj|%; < mi %] < max(mi, 1)K
j#
and
=% = —=(MX+q)i < =% < max(mi, 1)|%].
So we have for € o that
max(M);, —%) < max(mii, 1)|%| = max(mi;, Dl min(%i, (MX + q)i)].

Consider any indek ¢ « for which we havet; > (MX + q);. From @.3), the definition ofX, it follows
thatX = 0, and so

(MR)i = m;i% — > [mj|%j = — > Im;j|Xj < max(mi, DI(MR + q)i.
j# j#
From @.4), the definition ofy, it follows that
=% = [(MX + @)i| < max(mii, D|(MX + q)il.
So we have for ¢ «a that
max((MX)i, — %) < max(mi, 1)[% | = max(mj, 1)| min(%;, (MR + q);)|.
To summarize, we have that
max(M%, —§) < max(D, 1) min(&, MX + q)|.

SinceM is an H-matrix whose diagonal elements are all positive, the mitrbas a non-negative
inverse. Thus it follows that

M~ tmaxM%, —§) < M~tmax(D, )| min(X, MX + q)].

This, together with the relation

M~ ImaxMX, —§) = M~1(MX + max0, —MX — ¥)) = X + M~ max(0, —4),
yields
%+ M~tmax0, —§) < M~tmax(D, 1) min(%, MX + q)|.
Because the normi || , is monotone, inequality?(12) follows from the above inequality. This completes
the proof. d

Finally, we show thap (X) = ¢ (X) = 0 if X is a solution of LCRM, q). This means that the two
error boundsZ.9) and @.11) are tight for all points in the solution set.
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THEOREM2.7 If X is a solution of LCRM, ) then we have (X) = g1 (X) = 0.

Proof. Let X andq be defined fok = x* by (2.3) and @.6), respectively. It is easy to show that= 0
andg > 0. So we havery (X) = X + M~ max0, —§) = 0.

It is clear thatu* = 0O is the least element of FEM, §), whereM is defined by 2.5). Therefore,
by the definition 2.8), we havep(X) = X + u* = 0. This shows that the theorem holds. O

3. Numerical experiment

In this section we perform numerical experiments to illustrate the error bdugjdand to show that the
error bound 2.11) is more accurate thari (1).

EXAMPLE 3.1 We consider the problem LCH, q) with the followingM = (mjj) € %2*2 andq € %2

R

We choose& = |3, 2]T. By the definitions2.3), (2.5 and @.6), we have

S H R s RS A

By a simple computation, we obtain the least element |0, %]T of the feasible set FEAM, §) and
conclude from Corollar.3that LCRM, g) has a solutionx* with

} |

Actually, LCR(M, q) has two solutions [01]" and[%, %]T The former one satisfies our componentwise
error estimation with equality.

|>?—X*I<¢(>?)=>?+u*:[

Blw D=

ExAMPLE 3.2 We consider the problem LCH, q) with M = (m;;) € ®"*" and

H -l
~1 H
M = :
—1
~I H
whereH € %%k k = ./nand
4 -1
1 4
H=
-1
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TABLE 1 Values ofc for Example3.2

€ n =100 n = 400 n =900 n = 1600 n = 2500 n = 3600

10t 1.3463x 1073 1.3063x 1072  7.7890x 1073  4.6964x 1073 2.3229x 103  2.1577x 1073
10° 1.0740x 1072 3.2756x 103  4.7064x 103 56017x 1073  3.2634x 103  3.6529x 103
1001 1.7994x 1073 8.8600x 103 6.6397x 1073  6.8918x 1073  4.6962x 103  4.7909x 103
102 56892x 1073 82067x 1073  4.2431x 103 3.2666x 103 3.3089x 103  4.2454x 1073
103 52584x 103 27136x 1073  7.3654x 103  2.3826x 103 57360x 1073 3.1293x 103
1074 2.0426x 1072 59763x 103 3.7591x 1073 3.7955x 1073  4.7315x 103  4.3478x 1073

It can be verified thaM is an H-matrix. We letx* = (x*) € R" with x* = max0, vj — 0.5) x
1010wi =05 q = (g;) € R" with

—(Mx*); x>0,
T —vx); + max©, 5 — 0.5) x 101005 X' =0,

andX = (%) € R} with & = x* +ew;, wherew;, vj, ¥;, 5; andw; are random numbers in [@]. Such
an LCP appears frequently in modelling obstacle problemsReekigues1987). It is easy to see that
x* is the solution of LCPM, q). For different choices of the dimensiorand ofe we report in Tablel
the values of

o IX + M~ max(0, =)l
IM=2max(D, 1)]loo | MIn(%, M% + ) oo

The numerical results illustrate that the error boud {) is much smaller than the error bourid ).

4. Final remarks

In this article we have presented an approach for computing the bound of thekerrgt |, wherex* is
a solution of LCRM, q) andX is a given vector. The following are some remarks on the accuracy and
the computational cost of our error bounds.

e For the case thatl is an H-matrix our error bound®(11) was proved to be more accurate than the
bound (.1) given by Chen and Xiang. Numerical tests indicated that the new bound is much sharper.

e Forthe case oM being a P-matrix, that is, a matrix whose principal minors are all positive, the error
bound

IR = x*lp < max [I(I =D+ DM)~ Yl mink, MR + @)l p (4.1)
def0,1]"

was given inChen & Xiang (2006, whered = (di) € ®", d € [0,1] fori = 1,...,n and

D = diag(d). So far, no theoretical results have been obtained that compare the accuracy of the
error boundsZ.9) and 4.1).

Some numerical examples indicated tHa®) could be more accurate tha#.{). For an illustration

we consider the problem LGM, q) with

) [
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It is easy to see thaMl is a P-matrix and LCRM, q) has a unique solutior* = [3,0]". This
problem was studied iBhen & Xiang(2006. We choos& = [4, 1]T and compute

=[] (2] o[

Itis easy to verify that* = [7, 0] is the least element of the feasible set KEA §). So from @.9)
we obtain the error bound

Obviously, we havelX — x*|l1 < le(X)|l1 = 8 and||X — X*|loo < [l9(KX)|lcc = 7. While the error
bound @.1) yields

IR =x*l1 <20 and [X — X[l < 15

(seeChen & Xiang 2006. This indicates that, for this special example, the bouh§) (is more
accurate thar4(1).

e Our error bounds can be computed if an element of the feasible setNEER is available, and
such an element can be obtained by solving a convex quadratic programming praldlénm(the
general case, and by solving a linear system in the case of an H-matrix. The exact solution of the
convex programming problen2. (10 gives a ‘sharpest’ error boun#.g), while any feasible solution
of (2.10 delivers an error bound(7). For the latter case one can expect a smaller computational
cost.

e The problem remains open when the feasible set (EA)) is empty. Otherwise, our algorithm
works efficiently, due to the convex programming formulatiari.().

e Finally, we mention that our error estimation may work in a loose setting, say for the problem
LCP(M, q) studied in Example 1, whefd is not a P-matrix. ActuallyM is not even an Rmatrix.
M is called an B-matrix if LCP(M, 0) has a unique solution. It is well known that a P-matrix is an
Ro-matrix. The error bound for LG, q), whereM is not an R-matrix, has not yet been studied.
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