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Componentwiserror bounds for linear complementarity problems are presented. For the problem with
an H-matrix the error bound can be computed by solving a system of linear equations. It is proved that
our error bound is more accurate than that obtained recentGhiey & Xiang(2006,Math. Prog., Ser.

A, 106, 513-525). Numerical results show that the new bound is often much better than previous ones.
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1. Introduction

LetM e ®R"™"andq e R" begiven. The linear complementarity problem (LCP), denoted by LCP
(M, q), is to find a vectox* € R" suchthat

X*>0, Mx*+9=0, (X)T(MX'+q)=0,

or to show that no sucl* exists. Here the inequalities are meant componentwise. LCPs have many
important real-world applications, for example, $&gttleet al. (1992) and~erris & Pang1997).

Let X € RY bean arbitrary but fixed vector. Estimation of the ersor- x* playsan important
role in both the numerical solution and theoretical analysis. Norm error estimation for LCPs has been
extensively studied so far, for example, &feen & Xiang(2006),Mangasarian & Re(i1994),Mathias
& Pang(1990) andPang(1997).

In this paper we present new componentwise error bounds, that is, we gi®¥, suchthat

X —x*| <,

where|y| meanghe vector whoséth component igy; |. Such ar can be computed in general by find-
ing a feasible solution of a convex quadratic programming problem for which a very mild computational
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costis expected. The solution of the convex quadratic programming problem delivers a tight error
bound.
For the case wher# is an H-matrix, that is, the comparison mathk = (Mj) € ™" hasa
non-negative inverse, where
} I [mii | if i =],
mij =

—lmy| if i # ],
we present a tight error boungl (X) thatcan be computed by solving a system of linear equations. For
an LCP with an H-matrix the error bound

1% = x*1p < IM~Lmax®, 1)[[pl min(&, M% + Q)| p =: ¢p(X) (1.1)

was given byChen & Xiang(2006), wherep € [1, +o¢], D is the diagonal part o1, | is the identity
matrix, and ‘max’ and ‘min’ are taken componentwise. The error babyi) was proved to be more
accurate than the well-known bound given #athias & Pang(1990). We will prove that our error
boundgpn (X) is more accurate than the error boupglX) given in (1.1) in the sense that

o ()llp < Ep(X).

The numerical results illustrate that this inequality holds strictly and for different orders of magnitude
for our model problem.
To conclude this section we give some notation. The set

FEAMM, Q) :={x € R": x>0, Mx+q > 0} (1.2)

is called thefeasible sebf the problem LCPM, q). An element of FEAM, q) is called &easible vector
of the problem LCIPM, q). This feasible vector is also known ageasible solution.

Forx = (x)) andy = (y;) € ®R" we have thatx < y stands forx; < y;, wherei = 1,...,n.
We denote by mak, y) and by ming, y) the componentwise maximum and minimumogandy,
respectively. Le = (g;) € ®" anda = (@) € R" begiven witha < a. We define am-dimensional
interval vector as the set of vectors

[a] =[a,a] ;== {x e Ra<x<a}.
For an interval vectord] = [a, a] we define the operation
max(@, [a]) := [max(0,a), max(Q, @)].

For simplicity, we write B, a] = a for a € ®". The operations-, — and x can be defined for intervals.
We refer toNeumaier(1990) for details.
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2. Error bound

We begin our study with an existence theorem. It gives a sufficient condition for guaranteeing that an
interval vector contains a solution of an LCP.

THEOREM 2.1 Let M € R™" andq e R" begiven. Let k] be ann-dimensional interval vector and
let X € [x] be an arbitrary but fixed vector. Let a diagonal mattdx= diag(d) € R"*" be given with
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o > 0,wherei =1,...,n.If
I'(%,[x], 4) :=max(0,%x — 4(MX+ q) + (I — AM)([X] — X)) C [X] (2.2)
then LCPM, q) has a solutiorx* € I'(X, [X], 4).

For the proof of Theorem 2.1 we refer Adefeld et al. (2004).

Now we find a vector € R} suchthat the conditionZ.1) holds for the interval vectoR[-r, X +r].
Consequently, it follows from Theorethl1that LCPM, q) has a solutiorx* € [X —r, X 4 r], which
implies the componentwise error bound

[R — x*| <r.
Given a vectok € R}, we define
ai=1{i: % <(MR+Q)}, (2.2)
%= (%) with % = {Xi fhea 2.3)
0 ifié¢a,
yi= @) with g = H(W ran e (2.4)
MR+ q)i| ifiéa,

M := D —|B], (2.5)
4:=MX+79, (2.6)

whereD and—B are the diagonal and the off-diagonal partdvbfrespectively.
Using these definitions, we can give our main error estimation result as follows.

THEOREM2.2 LetM e R™", q € R" andX € R’} begiven. LetM € R™" andg € R" bedefined by
(2.5) and 2.6), respectively. Il € FEA(M, §) then LCPM, q) has a solutiox* € [x] := [X—r, X+r],
wherer = X + u andx € R" is defined by 2.3). As a direct consequence, we have the error bound

X —x*| <. (2.7)

Proof. It is sufficient to show that conditior2(1) holds for = X 4+ u. We define a positive-definite
diagonal matrix4 = diag(d) € R"*" by setting

5i:[ 1 if mj <0,
1/m; if mj > 0.
It can be verified that (sédeumaier,1990)
(I = AMY([X] = %) = [=[1 = AM]r, |l — AM]r].
By the definition of/"(X, [x], 4), we havel" (%, [X], 4) = [["(X,[x], 4), I'(%, [X], 4)], where
'R, [x], 4) =max@Q,X — A(MX+q) — || — AM]r),

', [X], 4) =max0,X — A(MX+q) + || — AM]r).
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First, we provethat I'(X, [X], 4) < X + r. Remembering thaD and —B are the diagonal and
off-diagonal parts oM, respectively, we have

[l —AM|r =r — A(D — |B|)r =r — AMr.

The definition (2.4) yield$X 4+ q > §. Note thatMX + §¥ = §,r = X+ uandMu + ¢ > 0. Thus it
follows that

K — AMKX+q)+ |l — AM|r <K — AY+r1 — AMr
<SR4T — A — AM(X + u)
=% 4r1 — A(Mu+ MX + %)
=R%4r1 — A(Mu+ )
<X+,

which, together withlR +r = X+ X +u > u > 0,yields I'(X, [X], 4) < X +T.
Now we prove that" (X, [x], 4) > X —r. For any index € a we have

[F(),Za [X]’ A)]I =02 U = )/Zi —TIj.

Forany index ¢ a we note from the definitior4) that—(MX+q)i > ¥i. Considering thal A%+
g andu € FEA(M, §) and that = X + u, we have

[L (X, [X], D]i Z[X = 4(MX+q) = | = AM]r];

>[X+ 49 —r1 + AMr]

> —ri +[47 4+ AM X + u)];
=R — I +[4(Mu+ MX + 9]
=% —ri +[4(Mu + §)];

=% —Trj.

Henceit is shown that conditiond.1) holds for k] := [X —r, X +r] with r = X+ u. Therefore it follows
from TheorenR.1that LCPM, q) has a solutiox* € [X] := [X —r, X +r], which in turns implies that
the error boundZ.7) holds. This completes our proof. O
We note that the matri, defined by 2.5), is a Z-matrix. A Z-matrix is a matrix whose all off-
diagonal entries are nonpositive. So, if FBA(() # @, then there is a unique vectot € FEA(M, §)
thatis a solution of LCPM, §) such that, for any € FEA(M, §), we haveu* < u (Cottleetal., 1992,
pp. 198-212). This vectar* is usually called thdeast elemenof the feasible set FE@M, §). As u*
is also a feasible vector, we obtain the following error estimation result, which is a special case of
Theorem2.2.

TTOZ ‘T YoJey Uo Sy ‘S90UaIds WaISAS pue salfewayle|y Jo Awapeay Je 610°sieuinolplojxoeufewl wolj papeojumod

COROLLARY 2.3 In the setting of Theorer.2we letu* bethe least element of FEM, §), which is
unique. We define

p(X) =X+ U". (2.8)
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ThenLCP(M, q) has a solutionx* € [X] := [X — ¢(X), X + ¢(X)]. As a direct consequence, we have
the error estimate

X = X*| < 9(X). (2.9)

Corollary 2.3 indicates that the error boung(X), defined by the least element, is the ‘sharpest’
compared with the one defined only by a certain feasible vector off MCE). To computep (%) we
need to find the least elemant of the feasible set FE@M, §). It can be cast into the following convex
guadratic programming problem:

minuTu,
suchthatMu + G > 0, (2.10)
u=o,

which can be solved efficiently using existing software, for example, using CV&rhantet al. (2008).

Of course, we sometimes do not need to solve the prok?eb®) exactly because any feasible solution

of (2.10) provides an error bound.). In this way, a much smaller computational cost can be expected.
Now we consider the special case thétis an H-matrix whose diagonal elements are all positive.

An H-matrix is a matrix whose comparison matrix is an M-matrix, while an M-matrix is a matrix whose

off-diagonal elements are all nonpositive and whose inverse has no negative elemeRtsr{seens,

1977). In this case the problem LOR, q) has a unique solution for amye R" (seeCottleetal., 1992,

pp. 148-152). An LCP with an H-matrix appears frequently in modelling real-world problems (see, e.g.,

Rodrigues]1987andFerris & Pang1997). The following theorem shows that, for such an LCP, an error

bound given byZ2.7) can be obtained by solving a system of linear equations.

THEOREM 2.4 Suppose thaM is an H-matrix whose diagonal elements are all positive 4,& and
G be defined by (2.3)2.5) and 2.6), respectively. Then we have the estimate

X = X*| < pH(R) := X + M~  max0, —4), (2.11)
wherex* is the unique solution of LC@M, q).
REMARK 2.5 The estimate (2.11) can be computed by solving a system of linear equations.

Proof of Theoren2.4. SinceM is assumed to be an H-matrix whose all diagonal elements are positive,
we haveM~1 > 0, that is, each element & ~1 is non-negative. So

u=M~tmax0,-q) >0,
Mu + § = MM~ maxQ, —§) + § = maxQ, —§) + G > 0.

This means that = M~1max@, —§) € FEA(G, M). Therefore 2.11) follows from .7) in Theo-
rem2.2. g

We mentioned in Sectiof that the error boundl(1) was given byChen & Xiang(2006) for the
LCP with an H-matrix. This bound was proved to be more accurate than the well-known error bound
given byMathias & Pang1990). We now show that our error bourii{1) is more accurate than (1.1).

THEOREM2.6 Let M e ®™*" bean H-matrix with positive diagonal pait, and lefg € ®" andX € R7.

be given. LetX, M and{ be defined byZ.3), (2.5) andZ.6), respectively. LeM be the comparison
matrix of M. (Note that we hav® = M sinceM has the positive diagonal part.) Then we have

IX +M~tmax0, —d)llp < IM~tmax®, 1)l pll min(k, MX + )llp. (2.12)
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Proof. Let ¥ be defined byZ.4). We first prove that
maxM %, —y) < max(D, |)| min(k, MX + q)|.

Consider any indek € a for which we havet; < (MX + q);. From @.3) and 2.4), the definitions ok
andy, it follows that

(MR)i = mi% — > [mj|%; < m; %] < max@, DIKi|
j#
and
=% = —(MR+q)i < —% < maxmi, 1IX|.
Sowe have for € a that
max((M)i, —%) < max@i, [%i| = max@i, DI min(%, (ML + q)i).

Considerany indexi ¢ a for which we havet; > (MX + q);. From 2.3), the definition o, it follows
thatX; = 0,and so

(M)i = m;i% — > [mj|%j = — > [mjj|%j < maxi, DI(MR + q)il.
j# j#
From(2.4), the definition ofy, it follows that
=% = [(MX + @)i| < maxii, LI(MX + q)il.
Sowe have fori ¢ «a that
max(MX)i, —%) < maxmi, 1% | = maxmi, 1)l min(;, (MK + q);)].
To summarize, we have that
max(MX, —¥) < max®, )| min(X, MX + q)|.

SinceM is an H-matrix whose diagonal elements are all positive, the mitrhas a non-negative
inverse. Thus it follows that

M~ ImaxM%, —§) < M~tmax®, )| min&, M + q)|.
This, together with the relation
M~ maxMx, —y) = M~Y(MX + maxQ, —MX — ¥)) = X + M~ maxQ, —4),
yields
% + M~tmax0, —§) < M~tmax®, I)| min(k, MX + q)|.

Becausehe norm| - || p is monotone, inequality (2.12) follows from the above inequality. This completes

the proof. d
Finally, we show thab (X) = ¢y (X) = 0if X is a solution of LCPM, q). This means that the two
error boundsZ.9) and 2.11) are tight for all points in the solution set.
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THEOREM2.7 If X is a solution of LCRM, ) then we have (X) = ¢ (X) = 0.

Proof. Let X andq be defined fok = x* by (2.3) and R.6), respectively. It is easy to show that 0
andg > 0. So we havery (X) = X + M~ maxQ, —d) = 0.

It is clear thatu* = O is the least element of FEM, §), whereM is defined by 2.5). Therefore,
by the definition (2.8), we hawe(X) = X + u* = 0. This shows that the theorem holds. O

3. Numerical experiment

In this section we perform numerical experiments to illustrate the error bdi8pgnd to show that the
error bound (2.11) is more accurate thar].

EXAMPLE 3.1 We consider the problem LGRI, g) with the followingM = (mjj) € %?*2 andq € R2:

=) -[5)

We choose& = [ 3, 2]T. By the definitions 2.3), ¢.5) and 2.6), we have

S H R s RS A

By a simple computation, we obtain the least element= [0, %]T of the feasible set FEAM, §) and
conclude from Corollar.3that LCPM, g) has a solutionx* with

} |

A

|x—x*|<(p(>2):>~(+u*:|:

Blw bl

Actually, LCP(M, q) has two solutions [01]" and[%, %]T The former one satisfies our componentwise

error estimation with equality.

ExAMPLE 3.2 We consider the problem LGP, q) with M = (mjj) € ®"*" and

H o —I
-1 H
M: )
. S
—I H
whereH e %%k k = ,/n and
4 -1
-1 4
H =
-1
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€ n = 100 n = 400 n = 900 n = 1600 n = 2500 n = 3600

10t 13463x 1073  1.3063x 1072  7.7890x 1073  4.6964x 1073  2.3229x 103  2.1577x 1073
10° 10740x 1072 32756x 103  4.7064x 103 56017x 1073  3.2634x 1073  3.6529x 103
1001 17994x 1073 88600x 103 6.6397x 103  6.8918x 1073  4.6962x 103  4.7909x 103
102 56892x 1073 82067x 1073  42431x 103 32666x 103 3.3089x 10°3  4.2454x 103
103 52584x 103 27136x 1073  7.3654x 103 23826x 103 5.7360x 1073  3.1293x 1073
104 20426x 1002 59763x 103 3.7591x 103 3.7955x 1073 4.7315x 103  4.3478x 1073

It can be verified thaM is an H-matrix. We letx* = (x*) € %" with x* = maxQ,v; — 0.5) x
1010 =05 q = (g;) € K" with

o —(Mx*);
v —(Mx*); + max@, 5; — 0.5) x 1010@i—05)

x>0,
XI* = O,
andX = (%) € R} with & = x* +ew;, wherew;, vj, ¥;, o andw; arerandom numbers in [A]. Such
an LCP appears frequently in modelling obstacle problemsReekigues1987). It is easy to see that
x* is the solution of LCRM, q). For different choices of the dimensiorand ofe we report in Tablel
the values of

e X+ M~ max0, =)l

IM=Imax®, el MIN&, MX + ) lloo

Thenumerical results illustrate that the error bound (2.11) is much smaller than the error halind (

4. Final remarks

In this article we have presented an approach for computing the bound of th¢esrat |, wherex* is

asolution of LCRM, q) andX is a given vector. The following are some remarks on the accuracy and

the computational cost of our error bounds.

e For the case thatl is an H-matrix our error bound®(11) was proved to be more accurate than the

bound (.1) given by Chen and Xiang. Numerical tests indicated that the new bound is much sharper.

e Forthe case oM being a P-matrix, that is, a matrix whose principal minors are all positive, the error

bound
IR = x*lp < max [I(I = D+ DM) Il min®, MR+ q)llp (4.1)
de[0,1]"

was given inChen & Xiang(2006), whered = (di) € ®", d; € [0,1] fori = 1,...,n and

D = diagd). So far, no theoretical results have been obtained that compare the accuracy of the

error boundsZ.9) and 4.1).
Some numerical examples indicated tHaB] could be more accurate than (4.1). For an illustration
we consider the problem LGM, q) with

o [

AS pue soiewayrel\ Jo Awspedy 1e Blo sjeulnolpiojxo-eulewr woiy papeojumoq
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It is easy to see tha¥l is a P-matrix and LCRM, q) has a unique solutior* = [3,0]". This
problem was studied i€hen & Xiang(2006). We choosg = [4, 1]T andcompute

S AR R A

Itis easy to verify that* = [7, 0]" is the least element of the feasible set REA §). So from @.9)
we obtain the error bound

Olviously, we havg|X — x*|l1 < le(X)l1 = 8and||X — x*|leo < [l9(X)]lcoc = 7. While the error
bound (4.1) yields

IR =x*l1 <20 and [X — X"l < 15.

(seeChen& Xiang, 2006). This indicates that, for this special example, the bo@r) s more
accurate than (4.1).

e Our error bounds can be computed if an element of the feasible setNEED is available, and
such an element can be obtained by solving a convex quadratic programming pradlejrir the
general case, and by solving a linear system in the case of an H-matrix. The exact solution of the
convex programming problen2 (10) gives a ‘sharpest’ error bound (2.9), while any feasible solution
of (2.10) delivers an error boun@.{7). For the latter case one can expect a smaller computational
cost.

e The problem remains open when the feasible set @EA)) is empty. Otherwise, our algorithm
works efficiently, due to the convex programming formulatiari(Q).

e Finally, we mention that our error estimation may work in a loose setting, say for the problem
LCP(M, q) studied in Example 1, whend is not a P-matrix. ActuallyM is not even an Rmatrix.
M is called an B-matrix if LCP(M, 0) has a unique solution. It is well known that a P-matrix is an
Ro-matrix. The error bound for LCBM, q), whereM is not an R-matrix, has not yet been studied.
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