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Abstract This paper studied subspace properties of the Celis–Dennis–Tapia (CDT)
subproblem that arises in some trust-region algorithms for equality constrained opti-
mization. The analysis is an extension of that presented by Wang and Yuan (Numer.
Math. 104:241–269, 2006) for the standard trust-region subproblem. Under suitable
conditions, it is shown that the trial step obtained from the CDT subproblem is in
the subspace spanned by all the gradient vectors of the objective function and of
the constraints computed until the current iteration. Based on this observation, a sub-
space version of the Powell–Yuan trust-region algorithm is proposed for equality con-
strained optimization problems where the number of constraints is much lower than
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the number of variables. The convergence analysis is given and numerical results are
also reported.
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1 Introduction

We consider the equality constrained optimization problem

minimize f (x), x ∈ R
n, (1.1)

subject to hi(x) = 0, i = 1, · · · ,m, (1.2)

where f : Rn → R and hi : Rn → R (i = 1, · · · ,m) are continuously differentiable,
and the constraints gradients are linearly independent. For convenience, throughout
this paper the following notation is used:

c(x) = (
h1(x), · · · , hm(x)

)T
, (1.3)

A(x) = Jc(x)T = (∇h1(x), · · · ,∇hm(x)
)
, (1.4)

g(x) = ∇f (x). (1.5)

We also use ck for c(xk), Ak for A(xk), gk for g(xk), etc.
The Powell–Yuan trust-region algorithm [11] is an iterative procedure to solve

(1.1)–(1.2), which generates a sequence of points {xk} in the following way. At the
beginning of the kth iteration, xk ∈ R

n, Δk > 0 and Bk ∈ R
n×n symmetric are avail-

able. If xk does not satisfy the Kuhn–Tucker conditions, a trial step sk is computed
by solving the CDT subproblem (see Celis, Dennis and Tapia [2]):

min
d∈Rn

φk(d) ≡ gT
k d + 1

2
dT Bkd, (1.6)

s.t.
∥∥ck + AT

k d
∥∥

2 � ξk, (1.7)

‖d‖2 � Δk, (1.8)

where ξk is any number satisfying the inequalities

min‖d‖2�b1Δk

∥∥ck + AT
k d

∥∥
2 � ξk � min‖d‖2�b2Δk

∥∥ck + AT
k d

∥∥
2, (1.9)

and b1 and b2 are two given constants with 0 < b2 � b1 < 1. The merit function is
Fletcher’s differentiable function:

ψk(x) = f (x) − λ(x)T c(x) + μk

∥∥c(x)
∥∥2

2, (1.10)
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where μk > 0 is a penalty parameter and λ(x) is the minimum norm solution of

min
λ∈Rm

∥∥g(x) − A(x)λ
∥∥

2. (1.11)

The predicted change Dk in ψk(x) is defined by

Dk = (gk − Akλk)
T sk + 1

2
sT
k Bkŝk − [

λ(xk + sk) − λk

]T
(

ck + 1

2
AT

k sk

)

+ μk

(∥∥ck + AT
k sk

∥∥2
2 − ‖ck‖2

2

)
, (1.12)

where μk is chosen so that Dk < 0 and where ŝk is the orthogonal projection of sk to
the null space of AT

k , namely

ŝk = Pksk, with Pk = In − AkA
+
k . (1.13)

From the ratio

ρk = ψk(xk + sk) − ψk(xk)

Dk

, (1.14)

the next iterate xk+1 is obtained by the formula

xk+1 =
{

xk + sk, if ρk > 0,

xk, otherwise.
(1.15)

Further, the trust-region radius Δk+1 for the next iteration is given by the rule

Δk+1 =
⎧
⎨

⎩

max{Δk,4‖sk‖2}, if ρk > 0.9,

Δk, if 0.1 � ρk � 0.9,

min{Δk

4 ,
‖sk‖2

2 }, if ρk < 0.1.

(1.16)

Finally, a symmetric matrix Bk+1 is obtained and the process is repeated with k :=
k + 1.

We summarize the above trust-region algorithm as follows:

Algorithm 1.1 (Powell–Yuan Trust-Region Algorithm)

Step 0 Given x1 ∈ R
n, Δ1 > 0, B1 ∈ R

n×n symmetric, εs > 0, μ1 > 0 and 0 < b2 �
b1 < 1, set k := 1.

Step 1 If ‖ck‖2 + ‖gk − Akλk‖2 � εs , then stop. Otherwise, compute ξk satisfying
(1.9) and solve the CDT subproblem (1.6)–(1.8) to obtain a trial step sk .

Step 2 Compute Dk by (1.12). If the inequality

Dk � 1

2
μk

(∥∥ck + AT
k sk

∥∥2
2 − ‖ck‖2

2

)
(1.17)

fails, then increase μk to the value

μnew
k = 2μold

k + max

{
0,

2Dold
k

‖ck‖2
2 − ‖ck + AT

k sk‖2
2

}
(1.18)
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which ensures that the new value of expression (1.12) satisfies condition
(1.17).

Step 3 Compute ρk by (1.14);
Set xk+1 by (1.15);
Set Δk+1 by (1.16).

Step 4 Generate Bk+1 symmetric, set μk+1 := μk , k := k + 1 and go to Step 1.

To solve the CDT subproblem (1.6)–(1.8) in Step 1, some iterative algorithms have
been presented. For example, under the assumption that Bk is positive definite, two
different algorithms have been proposed by Yuan [16] and Zhang [17], respectively;
while for a general symmetric matrix Bk , an algorithm has been proposed by Li
and Yuan [9]. However, since these algorithms require repeated matrix factorizations
in each iteration, it could be very costly to solve the CDT subproblem (1.6)–(1.8),
mainly for problems with a large number of variables and constraints.

Motivated by the subspace trust-region method for unconstrained optimization
proposed by Wang and Yuan [14], in this paper we explore the subspace properties of
the CDT subproblem when the matrices Bk are updated by quasi-Newton formulas.
With an analysis totally analog to that in Wang and Yuan [14], it is found that the
trial step sk defined by the CDT subproblem (1.6)–(1.8) is always in the subspace Gk

spanned by

k⋃

i=1

{∇h1(xi), · · · ,∇hm(xi), gi

}
.

Therefore, it is equivalent to solving the subproblem within this subspace. Based on
this observation, we can solve a smaller CDT subproblem in early iterations of the
algorithm, reducing the computational effort for problems where the dimension of
the subspace Gk remains far smaller than the number of variables n.

This work is organized as follows. The equivalence between the CDT subproblem
and that in the subspace is proved in the next section. In Sect. 3, a subspace version
of the Powell–Yuan algorithm is proposed. The global convergence analysis is given
in Sect. 4. Finally, preliminary numerical results on problems in CUTEr collection
are reported in Sect. 5.

2 Subspace Properties

In this section, we shall study subspace properties of the trial step sk at the kth iter-
ation, which is assumed to be a solution of the CDT subproblem (1.6)–(1.8). All the
results here are developed corresponding to those presented in Sect. 2 of Wang and
Yuan [14].

Lemma 2.1 Let sk ∈ R
n be a solution of (1.6)–(1.8), and assume that

ξk > min‖d‖2�Δk

∥∥ck + AT
k d

∥∥
2.
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Then, there exist non-negative constants αk and βk such that

(
Bk + αkIn + βkAkA

T
k

)
sk = −(gk + βkAkck), (2.1)

where αk and βk satisfy the complementarity conditions

αk

[
Δk − ‖sk‖2

] = 0, (2.2)

βk

[
ξk − ∥∥AT

k sk + ck

∥∥
2

] = 0. (2.3)

Proof See Theorem 2.1 in Yuan [15]. �

Lemma 2.2 Let Sk be an r (1 � r � n) dimensional subspace in R
n, and Zk ∈R

n×r

is an orthonormal basis matrix of Sk , namely

Sk = span{Zk}, ZT
k Zk = Ir . (2.4)

Suppose that
{∇h1(xk), · · · ,∇hm(xk), gk

} ⊂ Sk, (2.5)

and Bk ∈R
n×n is a symmetric matrix satisfying

Bku = σu, ∀u ∈ S⊥
k , (2.6)

where σ > 0. Then, the subproblem (1.6)–(1.8) is equivalent to the following problem:

min
d̄∈Rr

φ̄k(d̄) ≡ ḡT
k d̄ + 1

2
d̄T B̄kd̄, (2.7)

s.t.
∥∥ck + ĀT

k d̄
∥∥

2 � ξk, (2.8)

‖d̄‖2 � Δk, (2.9)

where ḡk = ZT
k gk , B̄k = ZT

k BkZk and Āk = ZT
k Ak . That is to say, if sk is a solution

of (1.6)–(1.8), then sk = Zks̄k ∈ Sk , where s̄k is a solution of (2.7)–(2.9). On the other
hand, if s̄k is a solution of (2.7)–(2.9), then sk = Zks̄k is a solution of (1.6)–(1.8).

Proof Let Uk ∈ R
n×(n−r) be a matrix such that [Uk,Zk] is an n × n orthogonal ma-

trix. Then, for each d ∈R
n, there exists one and only one pair d̄ ∈ R

r , u ∈R
n−r such

that d = Zkd̄ + Uku. As Bk is symmetric, it follows that

φk(d) = gT
k d + 1

2
dT Bkd

= gT
k [Zkd̄ + Uku] + 1

2
[Zkd̄ + Uku]T Bk[Zkd̄ + Uku]

= gT
k Zkd̄ + gT

k Uku + 1

2
d̄T ZT

k BkZkd̄ + 1

2
d̄T ZT

k BkUku
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+ 1

2
uT UT

k BkZkd̄ + 1

2
uT UT

k BkUku

= gT
k Zkd̄ + gT

k Uku + 1

2
d̄T ZT

k BkZkd̄ + d̄T ZT
k BkUku

+ 1

2
uT UT

k BkUku

= ḡT
k d̄ + gT

k Uku + 1

2
d̄T B̄kd̄ + d̄T ZT

k BkUku

+ 1

2
uT UT

k BkUku, (2.10)

where ḡk = ZT
k gk and B̄k = ZT

k BkZk . Since gk ∈ Sk and the columns of Uk are
vectors in S⊥

k , we obtain

gT
k Uk = 0, (2.11)

ZT
k BkUk = σZT

k Uk = 0 and UT
k BkUk = σIn−r , (2.12)

where the last line is due to the assumption (2.6). Hence, (2.10)–(2.12) imply that

φk(d) =
(

ḡT
k d̄ + 1

2
d̄T B̄kd̄

)
+ 1

2
σuT u. (2.13)

From the fact that the rows of AT
k are the vectors ∇hi(xk) ∈ Sk and the columns of

Uk belong to S⊥
k , it follows that AT

k Uk = 0. Consequently,

∥∥ck + AT
k d

∥∥
2 = ∥∥ck + AT

k Zkd̄
∥∥

2 = ∥∥ck + ĀT
k d̄

∥∥
2, (2.14)

where Āk = ZT
k Ak . In addition, by the orthonormality of Zk and Uk , we have

‖d‖2
2 = ‖d̄‖2

2 + ‖u‖2
2. (2.15)

Now, (2.13)–(2.15) imply that the subproblem (1.6)–(1.8) is equivalent to

min
d̄∈Rr ,u∈Rn−r

(
ḡT

k d̄ + 1

2
d̄T B̄kd̄

)
+ 1

2
σuT u, (2.16)

s.t.
∥∥ck + ĀT

k d̄
∥∥

2 � ξk, (2.17)

‖d̄‖2
2 + ‖u‖2

2 � Δ2
k, (2.18)

with the relation d = Zkd̄ + Uku.
Because of σ > 0, if s̄k is a solution of (2.7)–(2.9) then (s̄k,0) ∈ R

r × R
n−r is

a solution of (2.16)–(2.18) and, therefore, sk = Zks̄k is a solution of (1.6)–(1.8). To
prove the reciprocal, we assume by contradiction that there exists a solution sk =
Zks̄k + Ukuk of (1.6)–(1.8) such that uk 
= 0. In this case,

φk(sk) � φk(s), (2.19)
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for all s ∈R
n satisfying (1.7)–(1.8). In particular,

φk(sk) � φk

(
s∗
k

)
, (2.20)

where s∗
k = Zks̄k . However, since uk 
= 0 and σ > 0, from (2.13) it follows that

φk(sk) > ḡT
k s̄k + 1

2
s̄T
k B̄k s̄k = φk

(
s∗
k

)
, (2.21)

which contradicts (2.20). This shows that if sk is a solution of (1.6)–(1.8) then
sk = Zks̄k . The fact that s̄k is a solution of (2.7)–(2.9) follows from the equivalence
between (1.6)–(1.8) and (2.16)–(2.18) with u = 0. �

Remark 2.1 From the above lemma, if the assumptions (2.4)–(2.6) are satisfied, then
we can solve the subproblem (2.7)–(2.9) in R

r instead of solving the subproblem
(1.6)–(1.8) in R

n, which can reduce the computational efforts significantly when
r � n.

Remark 2.2 For the further analysis, it is useful to see that

Bku = σu, ∀u ∈ G⊥
k =⇒ Bkz ∈ Gk, ∀z ∈ Gk. (2.22)

Indeed, given z ∈ Gk and u ∈ G⊥
k , as Bk is a symmetric matrix, we have

〈Bkz,u〉2 = 〈
z,BT

k u
〉
2 = 〈z,Bku〉2

= 〈z, σu〉2 = σ 〈z,u〉2 = 0.

Thus, Bkz ∈ (G⊥
k )⊥ = Gk for all z ∈ Gk .

Lemma 2.3 Suppose that ξ1 > min‖d‖2�Δ1 ‖c1 + AT
1 d‖2, B1 = σIn (σ > 0) and Bk

is the kth update matrix given by one formula chosen from PSB and Broyden family.
Let gk = ∇f (xk), sk be a solution of (1.6)–(1.8) and

Gk = span

[
k⋃

i=1

{∇h1(xi), · · · ,∇hm(xi), gi

}
]

. (2.23)

Then, for all k, sk ∈ Gk and Bku = σu for all u ∈ G⊥
k .

Proof The PSB formula and Broyden family formulas (see, e.g., Sun and Yuan [13])
can be represented, respectively, as

B
(PSB)
k+1 = B

(PSB)
k + δks

T
k + skδ

T
k

sT
k sk

− (δT
k sk)sks

T
k

(sT
k sk)2

, (2.24)

B
(B)
k+1 = B

(B)
k − B

(B)
k sks

T
k B

(B)
k

sT
k Bksk

+ yky
T
k

sT
k yk

+ θk

(
sT
k B

(B)
k sk

)
wkw

T
k , (2.25)
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where sk = xk+1 −xk , yk = (gk+1 −gk)− (Ak+1λk+1 −Akλk) or yk = (gk+1 −gk)−
(Ak+1 − Ak)λk , δk = yk − B

(PSB)
k sk and

wk = yk

sT
k yk

− B
(B)
k sk

sT
k B

(B)
k sk

. (2.26)

We prove the result by induction over k. By Lemma 2.1 and σ > 0,

(
B1 + α1In + β1A1A

T
1

)
s1 = −(g1 + β1A1c1)

=⇒ (
σIn + α1In + β1A1A

T
1

)
s1 = −(g1 + β1A1c1)

=⇒ (σ + α1)s1 = −(
g1 + β1A1c1 + β1A1A

T
1 s1

)

=⇒ s1 = −(σ + α1)
−1(g1 + β1A1c1 + β1A1A

T
1 s1

)

=⇒ s1 ∈ G1,

where the last line is true because g1, A1c1 and A1A
T
1 s1 ∈ G1. Moreover,

B
(PSB)
1 u = B

(B)
1 u = (σ In)u = σu, ∀u ∈ G⊥

1 . (2.27)

Hence, the lemma is true for k = 1. Assume that the lemma is true for k = i, that is,

si ∈ Gi, (2.28)

and

B
(PSB)
i u = B

(B)
i u = σu, ∀u ∈ G⊥

i . (2.29)

Consider ũ ∈ G⊥
i+1. In particular, we have ũ ∈ G⊥

i (since Gi ⊂ Gi+1 =⇒ G⊥
i+1 ⊂

G⊥
i ). Then, as yi ∈ Gi+1 and B

(PSB)
i and B

(B)
i are symmetric matrices, it follows

from (2.28) and (2.29) that

B
(PSB)
i+1 ũ = B

(PSB)
i ũ + (δis

T
i + siδ

T
i )ũ

sT
i si

− (δT
i si)sis

T
i ũ

(sT
i si)2

= σ ũ + δis
T
i ũ + si(y

T
i ũ − sT

i B
(PSB)
i ũ)

sT
i si

= σ ũ − σ
sis

T
i ũ

sT
i si

= σ ũ,

and

B
(B)
i+1ũ = B

(B)
i ũ − B

(B)
i sis

T
i B

(B)
i ũ

sT
i Bisi

+ yiy
T
i ũ

sT
i yi

+ θi

(
sT
i B

(B)
i si

)
wiw

T
i ũ



A Subspace Version of the Powell–Yuan Trust-Region Algorithm 433

= σ ũ − σB
(B)
i sis

T
i ũ

sT
i B

(B)
i si

+ θi

(
sT
i B

(B)
i si

)
wi

(
yT
i

sT
i yi

− sT
i B

(B)
i

sT
i B

(B)
i si

)
ũ

= σ ũ + θi

(
sT
i B

(B)
i si

)
wi

(
yT
i ũ

sT
i yi

− sT
i B

(B)
i ũ

sT
i B

(B)
i si

)

= σ ũ − σθi

(
sT
i B

(B)
i si

)
wi

sT
i ũ

sT
i B

(B)
i si

= σ ũ.

Since ũ ∈ G⊥
i+1 is arbitrary, this proves that

B
(PSB)
i+1 u = B

(B)
i+1u = σu, ∀u ∈ G⊥

i+1. (2.30)

Now, let si+1 be a solution of the subproblem (1.6)–(1.8) for k = i + 1. Then, by
{∇h1(xi+1), · · · ,∇hm(xi+1), gi+1

} ⊂ Gi+1,

equation (2.30) and Lemma 2.2 (where k = i + 1), we conclude that si+1 =
Zi+1s̄i+1 ∈ Gi+1 (where s̄i+1 is a solution of the subproblem (2.7)–(2.9) for k =
i + 1, and Zi+1 is an orthonormal basis matrix of Gi+1). The proof is complete. �

Remark 2.3 The result of Lemma 2.3 also is true if the matrices Bk are updated by
the family of formulas

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+ ηkη
T
k

sT
k ηk

, (2.31)

where ηk = θkyk + (1 − θk)Bksk with θk ∈ [0,1], which includes the damped BFGS
formula of Powell [10]. Indeed, if B1 = σIn (σ > 0) and ξ1 > min‖d‖2�Δ1 ‖c1 +
AT

1 d‖2, then by the same argument used in the proof of Lemma 2.3 we conclude that
s1 ∈ G1 and B1u = σu for all u ∈ G⊥

1 . Thus, the result is true for k = 1. Assume that
it is true for k = i, that is,

si ∈ Gi, (2.32)

and

Biu = σu, ∀u ∈ G⊥
i . (2.33)

Then, from Remark 2.2 it follows that Bisi ∈ Gi ⊂ Gi+1. As yi ∈ Gi+1, we also have
ηi = θiyi + (1 − θi)Bisi ∈ Gi+1. Now, given ũ ∈ G⊥

i+1 ⊂ G⊥
i , it follows from (2.32)

and (2.33) that

Bi+1ũ = Biũ − Bisis
T
i Bi ũ

sT
i Bisi

+ ηiη
T
i ũ

sT
i ηi

= σ ũ − σBisis
T
i ũ

sT
i Bisi

= σ ũ.
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Since ũ ∈ G⊥
i+1 is arbitrary, this proves that

Bi+1u = σu, ∀u ∈ G⊥
i+1. (2.34)

Therefore, the conclusion follows by induction in the same way as in the proof of
Lemma 2.3.

By Lemmas 2.2, 2.3 and Remark 2.3, we obtain the following theorem.

Theorem 2.1 Let Zk be an orthonormal basis matrix of the subspace

Gk = span

[
k⋃

i=1

{∇h1(xi), · · · ,∇hm(xi), gi

}
]

. (2.35)

Suppose that ξ1 > min‖d‖2�Δ1 ‖c1 + AT
1 d‖2, B1 = σIn (σ > 0) and Bk is the kth

update matrix given by one formula chosen from damped BFGS, PSB and Broyden
family. Let sk be a solution of the subproblem (1.6)–(1.8). Then, there exists a solution
s̄k of (2.7)–(2.9) such that sk = Zks̄k , which implies sk ∈ Gk . Reciprocally, if s̄k is a
solution of (2.7)–(2.9), then sk = Zks̄k is a solution of (1.6)–(1.8).

From the above theorem, the trial step sk is in the subspace Gk . Hence, we can
update the approximate Hessian matrix Bk in the subspace Gk by the damped BFGS
formula, the PSB formula or any one from the Broyden family. The following result
has been given by Siegel [12] and Gill and Leonard [5] for Broyden family, and by
Wang and Yuan [14] including the PSB formula. We give it here for completeness.

Lemma 2.4 Let Z ∈ R
n×r be a column orthogonal matrix. Suppose that sk ∈

span{Z}, and the matrix Bk+1 = Update(Bk, sk, yk) is obtained by the damped
BFGS formula, the PSB formula or any one from the Broyden family. Then, de-
noting B̄k+1 = ZT Bk+1Z, B̃k = ZT BkZ, s̃k = ZT sk and ỹk = ZT yk , we have
B̄k+1 = Update(B̃k, s̃k, ỹk).

Proof First, note that

sk ∈ span{Z} =⇒ sk = ZZT sk. (2.36)

Then,

sT
k yk = (

ZZT sk
)T

yk = (
ZT sk

)T
ZT yk = s̃T

k ỹk,

sT
k Bksk = (

ZZT sk
)T

Bk

(
ZZT sk

) = (
ZT sk

)T
ZT BkZ

(
ZT sk

) = s̃T
k B̃k s̃k,

ZT Bksk = ZT BkZ
(
ZT sk

) = B̃ks̃k.

Therefore, multiplying (2.24), (2.25), and (2.31) by ZT from the left and Z from the
right, we can obtain the result of the lemma. �
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Remark 2.4 By Theorem 2.1, we can solve the CDT subproblem (1.6)–(1.8) by solv-
ing (2.7)–(2.9) in the subspace Gk , provided that ξ1 and B1 are appropriately chosen
and a suitable quasi-Newton formula is used to update Bk . Further, it follows from
Lemma 2.4 that the reduced matrix B̄k = ZT

k BkZk of Bk in the subspace Gk can
be obtained by updating the reduced matrix B̃k−1 = ZT

k Bk−1Zk , where Zk is the
orthonormal basis matrix of the subspace Gk . These subspace properties can be ex-
plored to reduce the amount of computation required to compute the trial step sk
when n � m and the dimension of the subspace Gk remains far smaller than n.

3 The Algorithm

Using the subspace properties of the CDT subproblem studied in the previous section,
we shall construct a subspace version of Algorithm 1.1. Suppose at the kth iteration,
Zk ∈ R

n×rk has been obtained, which is an orthonormal basis matrix of Gk . Further,
suppose that s̄k is obtained by solving (2.7)–(2.9) and sk = Zks̄k , xk+1 = xk + sk
and gk+1 = ∇f (xk+1). Then, we have to compute Zk+1, ḡk+1 = ZT

k+1gk+1, Āk+1 =
ZT

k+1Ak+1 and B̄k+1 = ZT
k+1Bk+1Zk+1 for the next iteration.

Thinking about numerical stability, as in Wang and Yuan [14], we could use the
procedure of Gram–Schmidt with reorthogonalization (see Sect. 2 in Daniel et al. [3])
to obtain Zk+1. For this purpose, consider the notation:

p
(k+1)
j =

{∇hj (xk+1), j = 1, · · · ,m,

gk+1, j = m + 1.
(3.1)

Let W1 = Zk and q1 = rk , where rk denotes the number of columns of Zk . For j =
1, · · · ,m + 1, by the reorthogonalization procedure, compute the decomposition

p
(k+1)
j = Wju

(k)
j + τ

(k+1)
j z

(k+1)
j , (3.2)

where

u
(k)
j = WT

j p
(k+1)
j , z

(k+1)
j ⊥ span{Wj },

∥∥z
(k+1)
j

∥∥
2 = 1, (3.3)

and

τ
(k+1)
j = ∥∥(

I − WjW
T
j

)
p

(k+1)
j

∥∥
2 � 0. (3.4)

If τ
(k+1)
j > 0, it follows that p

(k+1)
j /∈ span{Wj }, and we set

Wj+1 = [
Wj z

(k+1)
j

]
and qj+1 = qj + 1. (3.5)

Otherwise, it follows that p
(k+1)
j ∈ span{Wj }, and we set

Wj+1 = Wj and qj+1 = qj . (3.6)

At the end of the loop, we obtain Zk+1 = Wm+2 and rk+1 = qm+2.
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Now, using the data obtained in the calculation of Zk+1, we can compute ḡk+1,
Āk+1 and B̄k+1 in a cheaper way. Indeed, from (3.2), (3.3), and the fact that sk ,
gk ∈ span{Wj }, it follows that

(
z
(k+1)
j

)T
p

(k+1)
j = τ

(k+1)
j ,

(
z
(k+1)
j

)T
sk = 0,

(
z
(k+1)
j

)T
gk = 0. (3.7)

If Zk+1 
= Zk , that is, Zk+1 = [Zk Z̄k+1], then Lemma 2.3 and Remark 2.2 imply
that BkZ̄k+1 = σZ̄k+1 and the columns of BkZk belong to Gk . Thus, denoting q =
rk+1 − rk , we get

s̃k = ZT
k+1sk =

[
ZT

k sk

Z̄T
k+1sk

]

=
[

s̄k

0

]

, (3.8)

B̃k = ZT
k+1BkZk+1 =

[
ZT

k

Z̄T
k+1

]

Bk[Zk Z̄k+1]

=
[

ZT
k

Z̄T
k+1

]

[BkZk BkZ̄k+1] =
[

ZT
k

Z̄T
k+1

]

[BkZk σ Z̄k+1]

=
[

ZT
k BkZk σZT

k Z̄k+1

Z̄T
k+1BkZk σ Z̄T

k+1Z̄k+1

]

=
[

B̄k 0

0 σIq

]

. (3.9)

To compute ḡk+1, from (3.3) and (3.1), note that

WT
m+1p

(k+1)
m+1 = u

(k)
m+1 =⇒ WT

m+1gk+1 = u
(k)
m+1

=⇒ [Zk Z̃k+1]T gk+1 = u
(k)
m+1

=⇒ ZT
k gk+1 = [(

u
(k)
m+1

)
1 · · · (

u
(k)
m+1

)
rk

]T
,

(3.10)

where the columns of Z̃k+1 are distinct vectors of the set {z(k+1)
1 , · · · , z

(k+1)
m+1 }. Fur-

ther,

Z̄T
k+1Wm+1 = Z̄T

k+1[Zk Z̃k+1]
= [

0 Z̄T
k+1Z̃k+1

]

=

⎧
⎪⎨

⎪⎩

[
0 Iq−1

0 · · ·0 0 · · ·0

]
, if τ

(k+1)
m+1 > 0,

[
0 Iq

]
, otherwise.

(3.11)

Then, multiplying (3.2) from the left by Z̄k+1 (with j = m + 1), we obtain

Z̄T
k+1gk+1 = Z̄T

k+1Wm+1u
(k)
m+1 + τ

(k+1)
m+1 Z̄T

k+1z
(k+1)
m+1

=
{ [(u(k)

m+1)rk+1 · · · (u(k)
m+1)rk+1−1 τ

(k+1)
m+1 ]T , if τ

(k+1)
m+1 > 0,

[(u(k)
m+1)rk+1 · · · (u(k)

m+1)rk+1 ]T , otherwise.
(3.12)
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Hence, combining (3.10) and (3.12), we have

ḡk+1 = ZT
k+1gk+1 =

[
ZT

k gk+1

Z̄T
k+1gk+1

]

=
{ [(u(k)

m+1)1 · · · (u(k)
m+1)rk+1−1 τ

(k+1)
m+1 ]T , if τ

(k+1)
m+1 > 0,

[(u(k)
m+1)1 · · · (u(k)

m+1)rk+1]T , otherwise.
(3.13)

By (3.1),

Āk+1 = ZT
k+1Ak+1 =

[
ZT

k Ak+1

Z̄T
k+1Ak+1

]

=
⎡

⎣
[ZT

k p
(k+1)
1 · · · ZT

k p
(k+1)
m ]

[Z̄T
k+1p

(k+1)
1 · · · Z̄T

k+1p
(k+1)
m ]

⎤

⎦ . (3.14)

Thus, denoting

Ūk+1 = [
ZT

k p
(k+1)
1 · · · ZT

k p(k+1)
m

]
(3.15)

and

Ũk+1 = [
Z̄T

k+1p
(k+1)
1 · · · Z̄T

k+1p
(k+1)
m

]
, (3.16)

it follows that

Āk+1 =
[
Ūk+1

Ũk+1

]
. (3.17)

Again, by (3.3), for each j = 1, · · · ,m,

WT
j p

(k+1)
j = u

(k)
j =⇒ [

Zk Z̃
j

k+1

]T
p

(k+1)
j = u

(k)
j

=⇒ ZT
k p

(k+1)
j = [(

u
(k)
j

)
1 · · · (

u
(k)
j

)
rk

]T
, (3.18)

where the columns of Z̃
j

k+1 are distinct vectors of the set {z(k+1)
1 , · · · , z

(k+1)
j }. Fur-

ther, multiplying (3.2) from the left by Z̄k+1, we obtain

Z̄T
k+1p

(k+1)
j =

⎧
⎨

⎩

[(u(k)
j )rk+1 · · · (u(k)

j )qj
τ

(k+1)
j 0 · · ·0]T , if τ

(k+1)
j > 0,

[(u(k)
j )rk+1 · · · (u(k)

j )qj
0 · · ·0]T , otherwise,

(3.19)

for each j = 1, · · · ,m, which completes the computation of Āk+1.
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Finally, if yk = (gk+1 − gk) − (Ak+1λk+1 − Akλk) then1

ỹk = ZT
k+1yk =

[
ZT

k yk

Z̄T
k+1yk

]

=
[

ZT
k [gk+1 − gk − Ak+1λk+1 + Akλk]

Z̄T
k+1[gk+1 − gk − Ak+1λk+1 + Akλk]

]

=
[
ZT

k gk+1 − ḡk − Ūk+1λk+1 + Ākλk

Z̄T
k+1gk+1 − Ũk+1λk+1

]
. (3.20)

For the case in which Zk+1 = Zk , it follows that

s̃k = ZT
k sk = s̄k, (3.21)

B̃k = ZT
k BkZk = B̄k, (3.22)

ḡk+1 = ZT
k gk+1 = [(

u
(k)
m+1

)
1 · · · (

u
(k)
m+1

)
rk

]T
, (3.23)

Āk+1 = ZT
k Ak+1 = Ūk+1, (3.24)

ỹk = ZT
k yk = ḡk+1 − ḡk − Ūk+1λk+1 + Ākλk. (3.25)

According to Lemma 2.4, the reduced matrix

B̄k+1 = ZT
k+1Bk+1Zk+1

in the subspace span{Zk+1} can be obtained by any formula among the damped
BFGS, PSB and Broyden family, by use of s̃k , B̃k and ỹk computed by (3.8), (3.9),
and (3.20), or by (3.21), (3.22), and (3.25). Then, by Theorem 2.1 we can solve the
subproblem (2.7)–(2.9) with the reduced matrix B̄k+1, the reduced matrix Āk+1 and
the reduced gradient ḡk+1 to obtain s̄k+1 and the trial step sk+1 = Zk+1s̄k+1.

We summarize the above observations in the following algorithm.

Algorithm 3.1 (Subspace Version of the Powell–Yuan Algorithm)

Step 0 Given x1 ∈ R
n, Δ1 > 0, εs > 0, γ ∈ [0,1), μ1 > 0, and 0 < b2 � b1 < 1,

choose one matrix updating formula among the damped BFGS, PSB and
Broyden family, and compute ∇h1(x1), · · · ,∇hm(x1) and g1 = ∇f (x1). Ap-
ply the procedure of Gram–Schmidt with reorthogonalization to

{∇h1(x1), · · · ,∇hm(x1), g1
}

1Similarly, if yk = (gk+1 − gk) − (Ak+1 − Ak)λk then

ỹk =
⎡

⎣
ZT

k
gk+1 − ḡk − Ūk+1λk + Ākλk

Z̄T
k+1gk+1 − Ũk+1λk

⎤

⎦ .
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in order to obtain a column orthogonal matrix Z1 ∈ R
n×r1 such that

span{Z1} = span
{∇h1(x1), · · · ,∇hm(x1), g1

}
. (3.26)

Set B̄1 = σIr1 , ḡ1 = ZT
1 g1, Ā1 = ZT

1 A1 and k := 1.
Step 1 If ‖ck‖2 + ‖ḡk − Ākλ̄k‖2 � εs (where λ̄k = Ā+

k ḡk), then stop. Otherwise,
compute ξk satisfying (1.9), with Āk in place of Ak , and solve the CDT sub-
problem (2.7)–(2.9) to obtain s̄k .

Step 2 Compute sk = Zks̄k and Dk by (1.12). If the inequality

Dk � 1

2
μk

(∥∥ck + AT
k sk

∥∥2
2 − ‖ck‖2

2

)
(3.27)

fails, then increase μk to the value

μnew
k = 2μold

k + max

{
0,

2Dold
k

‖ck‖2
2 − ‖ck + AT

k sk‖2
2

}
(3.28)

which ensures that the new value of expression (1.12) satisfies condition
(3.27).

Step 3 Compute ρk by (1.14);
Set xk+1 by (1.15);
Set Δk+1 by (1.16).

Step 4 If rk = n, set Āk+1 = Ak+1, ḡk+1 = gk+1, s̃k = sk , B̃k = B̄k , ỹk = (gk+1 −
gk) − (Ak+1λk+1 − Akλk), Zk+1 = In, rk+1 = n and go to Step 6.

Step 5 Set W1 = Zk , q1 = rk , and consider the notation (3.1);
For j = 1 : m + 1
(a) Obtain (3.2) by the reorthogonalization procedure;
(b) If τ

(k+1)
j > γ ‖p(k+1)

j ‖2, set Wj+1 = [Wj z
(k+1)
j ] and qj+1 = qj + 1.

Otherwise, set Wj+1 = Wj and qj+1 = qj .
End(For).
Set Zk+1 = Wm+2 and rk+1 = qm+2;
If Zk+1 
= Zk compute s̃k , B̃k , ḡk+1, Āk+1, ỹk according to (3.8), (3.9), (3.13),
(3.17) and (3.20), respectively. Otherwise, compute s̃k , B̃k , ḡk+1, Āk+1, ỹk by
(3.21)–(3.25), respectively.

Step 6 Obtain B̄k+1 = Update(B̃k, s̃k, ỹk) by the chosen matrix updating formula.
Set μk+1 := μk , k := k + 1 and go to Step 1.

Remark 3.1 By Step 4, when the dimension rk of the subspace span{Zk} reaches
n, Algorithm 3.1 reduces to Algorithm 1.1. The reason for this step is to avoid the
computational effort required by Step 5, when it is not necessary anymore.

Remark 3.2 The subspace properties of the CDT subproblem described in Sect. 2
can be used in the same way to construct a subspace version of the CDT trust-region
algorithm for equality constrained optimization proposed by Celis, Dennis and Tapia
[2], as well of any algorithm based on the CDT subproblem.
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In order to compare Algorithms 1.1 and 3.1 with respect to the number of floating
point operations per iteration, recall that n denotes the number of variables, m denotes
the number of constraints and rk denotes the number of columns of the matrix Zk .
First, let us consider Algorithm 3.1. The computation of λ̄k in Step 1 by Algorithm
5.3.2 in Golub and Van Loan [6] requires O(m2rk) flops. As will be described in
Sect. 5, the number ξk can be obtained as a solution of an LSQI problem. In this
case, the computation of ξk in Step 1 by Algorithm 12.1.1 in Golub and Van Loan
[6] requires approximately O(mr2

k ) + O(rk) flops (see p. 208 in Bjorck [1]). Still
in the Step 1, the computation of a solution of the CDT subproblem (2.7)–(2.9) by
the dual algorithm of Yuan [16] requires about O(r3

k ) + O(r2
k ) + O(rk) flops.2 The

computation of sk = Zks̄k in Step 2 requires O(nrk) flops. The reorthogonalization
procedure in Step 5 requires about O((m + 1)nrk) + O(mn) + O(n) flops. Finally,
the update B̄k+1 of B̄k in Step 6 requires about O(r2

k ) + O(rk) flops. Therefore,
Algorithm 3.1 requires approximately

O
(
r3
k

) + O
(
mr2

k

) + O
(
r2
k

) + O
(
m2rk

) + O(rk) + O(nrk) + O
(
(m + 1)nrk

)

+ O(mn) + O(n)

flops for each iteration (after the first one). The Algorithm 1.1, by its turn, requires
approximately

O
(
n3) + O

(
mn2) + O

(
n2) + O

(
m2n

) + O(n)

flops for each iteration, with the same update formula for Bk . Thus, when n is large,
m is small and rk � n, the Algorithm 3.1 can reduce the amount of computation in
comparison with the Algorithm 1.1.

4 Global Convergence

If we suppose that Gk = span{Zk} and ξ1 > min‖d‖2�Δ1 ‖c1 +AT
1 d‖2 then, by Theo-

rem 2.1 and Lemma 2.4, Algorithm 3.1 is equivalent to Algorithm 1.1. As pointed in
Remark 3.1, the same is true from the moment in which rk reaches n. In both cases the
global convergence of the Algorithm 3.1 follows from the fact that the Algorithm 1.1
is globally convergent (see Theorem 3.9 in Powell and Yuan [11]). In this section,
we shall study the convergence of Algorithm 3.1 in a more general setting, allowing
more freedom for the choice of the matrix Zk in Step 5. Specifically, we consider the
assumptions:

A1 The functions f : Rn → R and hi : Rn → R (i = 1, · · · ,m) are continuously
differentiable;

A2 There exists a compact and convex set Ω ∈R
n such that xk and xk + sk are in Ω

for all k;
A3 A(x) has full column rank for all x ∈ Ω ;

2This estimates is obtained if we assume a maximum number of iterations for the algorithm and that the
numbers I (k) in its Step 7 are bounded from above (see Algorithm 3.1 in Yuan [16]).
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A4 For each k, ZT
k Zk = Irk , {∇h1(xk), · · · ,∇hm(xk), gk} ⊂ span{Zk} and Bkz ∈

span{Zk} for all z ∈ span{Zk}.
A5 The sequence (‖B̄k‖2)k∈N is bounded.

We also consider the following remark, which will be extensively called in the proofs.

Remark 4.1 From ZT
k Zk = Irk , it follows that

v ∈ span{Zk} =⇒ v = ZkZ
T
k v. (4.1)

Lemma 4.1 Suppose that A1–A4 hold. Then, the sequence (‖Ā+
k ‖2)k∈N is bounded.

Proof By A1 and A2, there exists κ1 > 0 such that

‖Ak‖2 � κ1, for all k. (4.2)

On the other hand, given x ∈ R
m, by A4 we have Akx ∈ span{Zk}, and from Re-

mark 4.1 it follows that

‖Ākx‖2
2 = ∥∥ZT

k Akx
∥∥2

2

= (
ZT

k Akx
)T (

ZT
k Akx

)

= (Akx)T ZkZ
T
k Akx

= (Akx)T Akx

= ‖Akx‖2
2. (4.3)

Hence,

‖Āk‖2 = max
‖x‖2=1

‖Ākx‖2 = max
‖x‖2=1

‖Akx‖2 = ‖Ak‖2 � κ1, for all k, (4.4)

and, consequently, there exists κ2 > 0 such that
∥∥ĀT

k Āk

∥∥
2 � κ2, for all k. (4.5)

Now, since {∇h1(xk), · · · ,∇hm(xk)} ⊂ span{Zk}, from Remark 4.1 it follows that

Ak = ZkZ
T
k Ak. (4.6)

Thus,

ĀT
k Āk = (

ZT
k Ak

)T (
ZT

k Ak

) = AT
k ZkZ

T
k Ak = AT

k Ak, (4.7)

and, by A3, the matrix ĀT
k Āk is invertible. This implies that Āk has full column rank

and, therefore,

Ā+
k = (

ĀT
k Āk

)−1
ĀT

k . (4.8)

Let GL(n,R) be the set of n×n invertible matrices of real numbers. It is well known
that the matrix inversion ϕ : GL(n,R) → GL(n,R) defined by ϕ(M) = M−1 is a
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continuous function (see, e.g., Theorem 2.3.4 in Golub and Van Loan [6]). Hence, by
(4.5), there exists κ3 > 0 such that

∥∥(
ĀT

k Āk

)−1∥∥ � κ3, for all k. (4.9)

Finally, by (4.8), (4.9), and (4.4), there exists κ4 > 0 such that
∥∥Ā+

k

∥∥ � κ4, for all k, (4.10)

and the proof is complete. �

Lemma 4.2 The inequality

‖ck‖2 − ∥∥ck + AT
k sk

∥∥
2 � min

{
‖ck‖2,

b2Δk

‖Ā+
k ‖2

}
(4.11)

holds for all k, where b2 is introduced in (1.9).

Proof By following the same argument as in the proof of Lemma 3.3 in Powell and
Yuan [11], we conclude that the inequality

‖ck‖2 − ∥∥ck + ĀT
k s̄k

∥∥
2 � min

{
‖ck‖2,

b2Δk

‖Ā+
k ‖2

}
(4.12)

holds for all k. Since sk = Zks̄k ∈ span{Zk}, it follows from Remark 4.1 that sk =
ZkZ

T
k sk , and then

ĀT
k s̄k = (

ZT
k Ak

)T
ZT

k sk = AT
k ZkZ

T
k sk = AT

k sk. (4.13)

Now, by replacing (4.13) in (4.12) we obtain (4.11). �

Lemma 4.3 There exists a positive constant m1 such that the inequality

Dk + 1

2
μk

(‖ck‖2
2 − ∥∥ck + AT

k sk
∥∥2

2

)

� −1

4

∥∥Pkg
∗
k

∥∥2
2 min

{
1

2‖B̄k‖2
,

Δ∗
k

‖Pkg
∗
k‖2

}
+ m1‖sk‖2‖ck‖2

− 1

2
μk‖ck‖2 min

{
‖ck‖2,

b2Δk

‖Ā+
k ‖2

}
(4.14)

holds for all k, where Dk is given by (1.12) and we use the notation

g∗
k = gk + Bks

∗
k , (4.15)

Δ∗
k = (

Δ2
k − ∥∥s∗

k

∥∥2
2

) 1
2 , (4.16)

s∗
k = (In − Pk)sk, (4.17)

Pk = In − AkA
+
k . (4.18)
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Proof By following the same argument as in the proof of Lemma 3.4 in Powell and
Yuan [11], we conclude that there exists a positive constant m1 for which the inequa-
lity

D̃k + 1

2
μk

(‖ck‖2
2 − ∥∥ck + ĀT

k s̄k
∥∥2

2

)

� −1

4
‖P̃kg̃k‖2

2 min

{
1

2‖B̄k‖2
,

Δ̃k

‖P̃kg̃k‖2

}
+ m1‖s̄k‖2‖ck‖2

− 1

2
μk‖ck‖2 min

{
‖ck‖2,

b2Δk

‖Ā+
k ‖2

}
(4.19)

holds for all k, where

D̃k = (ḡk − Ākλ̄k)
T s̄k + 1

2
s̄T
k B̄k šk − [λ̄k+1 − λ̄k]T

(
ck + 1

2
ĀT

k s̄k

)

+ μk

(∥∥ck + ĀT
k s̄k

∥∥2
2 − ‖ck‖2

2

)
, (4.20)

λ̄k = Ā+
k ḡk, (4.21)

šk = P̃k s̄k, (4.22)

P̃k = Irk − ĀkĀ
+
k , (4.23)

g̃k = ḡk + B̄ks̃k, (4.24)

Δ̃k = (
Δ2

k − ‖s̃k‖2
2

) 1
2 , (4.25)

s̃k = (Irk − P̃k)s̄k. (4.26)

From (4.13) we have
∥∥ck + ĀT

k s̄k
∥∥

2 = ∥∥ck + AT
k sk

∥∥
2. (4.27)

We shall prove that

D̃k = Dk, Δ̃k = Δ∗
k,

∥
∥P̃kg̃k

∥
∥

2 = ∥
∥Pkg

∗
k

∥
∥

2, and ‖s̄k‖2 = ‖sk‖2.

(4.28)
Then, (4.14) will follow directly from (4.19). Since sk = Zks̄k and gk belong to
span{Zk}, from Remark 4.1 it follows that

sk = ZkZ
T
k sk, (4.29)

gk = ZkZ
T
k gk. (4.30)

Moreover, recalling the definitions of g∗
k , s∗

k , ŝk and Pk (in (4.15), (4.17), (1.13) and
(4.18), respectively) and assumption A4, we see that {g∗

k , s∗
k , ŝk,Pkg

∗
k } ⊂ span{Zk}.

Consequently, by Remark 4.1,

g∗
k = ZkZ

T
k g∗

k , (4.31)
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s∗
k = ZkZ

T
k s∗

k , (4.32)

ŝk = ZkZ
T
k ŝk, (4.33)

Pkg
∗
k = ZkZ

T
k Pkg

∗
k . (4.34)

From (4.21), (4.8), (4.7), and (4.30), it follows that

λ̄k = Ā+
k ḡk

= (
ĀT

k Āk

)−1
ĀT

k ḡk

= (
AT

k Ak

)−1
AT

k ZkZ
T
k gk

= (
AT

k Ak

)−1
AT

k gk

= A+
k gk

= λk. (4.35)

By (4.35) and (4.29) we obtain

(ḡk − Ākλ̄k)
T s̄k = (

ZT
k gk − ZT

k Akλk

)T
ZT

k sk

= (gk − Akλk)
T ZkZ

T
k sk

= (gk − Akλk)
T sk. (4.36)

Further, by (4.22), (4.23), (4.8), (4.7), (4.29), and (1.13),

šk = P̃k s̄k

= (
Irk − ĀkĀ

+
k

)
s̄k

= s̄k − Āk

(
ĀT

k Āk

)−1
ĀT

k s̄k

= ZT
k sk − ZT

k Ak

(
AT

k Ak

)−1
AT

k Zks̄k

= ZT
k

(
sk − Ak

(
AT

k Ak

)−1
AT

k sk
)

= ZT
k

[(
In − AkA

+
k

)
sk

]

= ZT
k Pksk

= ZT
k ŝk. (4.37)

Note that the equalities (4.37), (4.29), and (4.33) imply that

s̄T
k B̄k šk = s̄kB̄kZ

T
k ŝk
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= (ZT
k sk)

T
(
ZT

k BkZk

)
ZT

k ŝk

= (
sT
k ZkZ

T
k

)
Bk

(
ZkZ

T
k ŝk

)

= (
ZkZ

T
k sk

)T
Bk

(
ZkZ

T
k ŝk

)

= sT
k Bkŝk. (4.38)

Now, by (4.36), (4.38), (4.35), (4.13), and (4.27), we conclude that

D̃k = Dk. (4.39)

From (4.26), (4.23), (4.8), (4.7), (4.29), (4.18), and (4.17) it follows that

s̃k = ĀkĀ
+
k s̄k

= Āk

(
ĀT

k Āk

)−1
ĀT

k s̄k

= ZT
k Ak

(
AT

k Ak

)−1
AT

k ZkZ
T
k sk

= ZT
k Ak

(
AT

k Ak

)−1
AT

k sk

= ZT
k AkA

+
k sk

= ZT
k

[
(In − Pk)sk

]

= ZT
k s∗

k . (4.40)

Then, by (4.32),

‖s̃k‖2
2 = ∥∥ZT

k s∗
k

∥∥2
2 = (

s∗
k

)T
ZkZ

T
k s∗

k = (
s∗
k

)T
s∗
k = ∥∥s∗

k

∥∥2
2, (4.41)

which implies that

Δ̃k = (
Δ2

k − ‖s̃k‖2
2

) 1
2 = (

Δ2
k − ∥∥s∗

k

∥∥2
2

) 1
2 = Δ∗

k. (4.42)

On the other hand, from (4.24), (4.40), (4.32), and (4.15) it follows that

g̃k = ḡk + B̄k s̃k

= ZT
k gk + ZT

k BkZkZ
T
k s∗

k

= ZT
k

(
gk + Bks

∗
k

)

= ZT
k g∗

k . (4.43)

Thus, by (4.23), (4.8), (4.7), (4.31), and (4.18),

P̃kg̃k = (
Irk − ĀkĀ

+
k

)
g̃k

= (
Irk − ZT

k Ak

(
AT

k Ak

)−1
AT

k Zk

)
ZT

k g∗
k
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= ZT
k

[
g∗

k − AkA
+
k g∗

k

]

= ZT
k Pkg

∗
k . (4.44)

Now, equalities (4.44) and (4.34) imply that

‖P̃kg̃k‖2
2 = ∥∥ZT

k Pkg
∗
k

∥∥2
2

= (
Pkg

∗
k

)T
ZkZ

T
k Pkg

∗
k

= (
Pkg

∗
k

)T (
Pkg

∗
k

)

= ∥
∥Pkg

∗
k

∥
∥2

2

=⇒ ‖P̃kg̃k‖2 = ∥∥Pkg
∗
k

∥∥
2. (4.45)

Finally, by (4.29),

‖s̄k‖2
2 = ∥∥ZT

k sk
∥∥2

2 = sT
k ZkZ

T
k sk = sT

k sk = ‖sk‖2
2

=⇒ ‖s̄k‖2 = ‖sk‖2. (4.46)

Hence, by (4.39), (4.27), (4.45), (4.42), and (4.46), the inequality (4.19) reduces to
the inequality (4.14) and the proof is complete. �

Theorem 4.1 Suppose that A1–A5 hold. Then, Algorithm 3.1 will terminate after
finitely many iterations. In other words, if we remove the convergence test from Step 1,
then sk = 0 for some k or the limit

lim inf
k→∞

[‖ck‖2 + ‖Pkgk‖2
] = 0 (4.47)

is obtained, which ensures that {xk} is not bounded away from stationary points of
the problem (1.1)–(1.2).

Proof It follows from Lemmas 4.1, 4.2 and 4.3 by the same argument as in Powell
and Yuan [11]. �

Remark 4.2 By Theorem 4.1, the Algorithm 3.1 is globally convergent for any sub-
space Sk = span{Zk} such that Zk satisfies A4.

5 Numerical Results

In order to investigate the proposed algorithm from a computational point of view,
and to explore its potentialities and limitations, we have tested MATLAB imple-
mentations of Algorithms 1.1 and 3.1 on a set of 50 problems from CUTEr col-
lection [8]. The dimension of the problems varies from 3 to 1498, while the number
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of constraints are between 1 and 96. Here, we refer to our implementations of Al-
gorithms 1.1 and 3.1 as “PYtr” and “SPYtr”, respectively. No attempt is made to
compare either of the codes with other solvers.

In both implementations, the CDT subproblem is solved by the dual algorithm
proposed by Yuan [16], with the parameters s0 = 1, υ = 0.001 and ε = 10−12. In this
algorithm, instead of update Mk by the rule

Mk = max
{
Mk−1, d

T H−1d + yT H−1y
}
,

we use

Mk = dT H−1d + yT H−1y,

since the latter rule allowed a faster convergence in the numerical tests (see Algo-
rithm 3.1 in [16]). Moreover, the maximum number of iterations for this algorithm
was fixed as 200.

To find a value of ξk in the interval (1.9), the LSQI problem

min
∥∥ck + AT

k d
∥∥

2,

s.t. ‖d‖2 � b1Δk,

is solved by Algorithm 12.1.1 described in Golub and Van Loan [6], which provides
a solution dk . Then, ξk is taken as

ξk = ∥∥ck + AT
k dk

∥∥
2.

For both implementations, the parameters in Step 0 are chosen as Δ1 = 1, εs =
10−4, μ1 = 1, γ = 10−8 and b1 = b2 = 0.9. Therefore, each implementation was
terminated when ‖ck‖2 + ‖gk − Akλk‖2 � 10−4. The initial matrix B1 is chosen as
the identity matrix and Bk is updated by the damped BFGS formula of Powell [10],
namely

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+ ηkη
T
k

sT
k ηk

,

where

sk = xk+1 − xk, ηk = θkyk + (1 − θk)Bksk,

and

θk =
{

1, if sT
k yk � 0.2sT

k Bksk
0.8sT

k Bksk/[sT
k Bksk − sT

k yk], otherwise.

The algorithms were coded in MATLAB language, and the tests were performed with
MATLAB 7.8.0 (R2009a), on an PC with a 2.53 GHz Intel(R) i3 microprocessor, and
using a Ubunto virtual machine with memory limited to 896 MB.

Problems and results are given in Table 1, where “Itr” represents the number of
iterations, “Time” represents the CPU time (in seconds), “n” represents the number
of variables, “m” represents the number of constraints, and an entry “F” indicates
that the code stopped due some error during the solution of the CDT subproblem.
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Table 1 Numerical results for CUTEr problems

Problem Dim PYtr SPYtr

n m Itr Time Itr Time

ALLINITC∗ 4 1 10 0.7 sec F F

BT3 5 3 9 0.7 sec 11 0.8 sec

BT6 5 2 14 0.9 sec 10 0.7 sec

BT8 5 2 94 8.8 sec 111 9.8 sec

BT9 4 2 30 1.9 sec 35 1.9 sec

BT11 5 3 9 0.6 sec 18 1.3 sec

BT12 5 3 19 1.6 sec 63 3.8 sec

HS21MOD 7 1 4 0.3 sec 4 0.4 sec

HS26 3 1 16 0.9 sec 17 0.9 sec

HS27 3 1 32 1.9 sec 34 1.7 sec

HS28 3 1 8 0.6 sec 10 0.8 sec

HS29∗ 3 1 10 0.7 sec 9 0.7 sec

HS30∗ 3 1 3 0.4 sec 3 0.5 sec

HS31∗ 3 1 17 1.3 sec 9 0.9 sec

HS35∗ 3 1 6 0.5 sec 6 0.6 sec

HS36 3 1 F F 8 0.4 sec

HS39 4 2 30 1.7 sec 35 1.8 sec

HS42 4 2 7 0.8 sec 5 0.6 sec

HS46 5 2 12 0.8 sec 10 0.7 sec

HS47 5 3 22 1.1 sec 17 0.9 sec

HS48 5 2 9 0.7 sec 10 0.8 sec

HS49 5 2 19 1.1 sec 24 1.3 sec

HS50 5 3 15 1.1 sec 14 1.0 sec

HS51 5 3 7 0.6 sec 6 0.7 sec

HS52 5 3 9 0.7 sec 13 1.0 sec

HS53∗ 5 3 8 0.7 sec 9 0.8 sec

HS54∗ 6 1 2 0.3 sec 2 0.3 sec

HS56 7 4 15 1.6 sec 16 1.5 sec

HS60∗ 3 1 11 0.7 sec 16 1.4 sec

HS65∗ 3 1 25 2.4 sec 25 2.4 sec

HS77 5 2 15 0.9 sec 9 0.7 sec

HS78 5 3 9 0.7 sec 6 0.6 sec

HS79 5 3 10 0.5 sec 9 0.5 sec

HS80∗ 5 3 5 0.4 sec 5 0.5 sec

HS100LNP 7 4 18 1.9 sec 20 2.3 sec

DECONVC∗ 61 1 129 28.0 sec 129 21.2 sec

DUAL1∗ 85 1 244 94.0 sec 293 103.4 sec

DUAL2∗ 96 1 104 43.8 sec 104 21.4 sec

DUAL3∗ 111 1 120 64.3 sec 113 23.4 sec

DUAL4∗ 75 1 52 16.7 sec 52 7.1 sec
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Table 1 (Continued)

Problem Dim PYtr SPYtr

n m Itr Time Itr Time

FCCU∗ 19 8 35 3.3 sec 20 1.8 sec

GENHS28 10 8 6 0.6 sec 7 0.7 sec

HIMMELBI∗ 100 12 38 6.4 sec 38 2.1 sec

HS111LNP 10 3 48 2.7 sec F F

ORTHREGB 27 6 7 0.4 sec 9 0.6 sec

PORTFL1∗ 12 1 59 1.8 sec 65 2.2 sec

PRIMAL4∗ 1498 75 3 605.2 sec 3 1.1 sec

STEENBRA∗ 432 96 F F 84 34.3 sec

ZAMB2-8∗ 138 48 784 388.9 sec 775 265.3 sec

ZAMB2-9∗ 138 48 914 530.5 sec 733 227.2 sec

The asterisk indicates that the original CUTEr problem has been modified for our
case, for example, inequalities constraints may have been considered as equalities, or
the bounds on the variables may have been ignored. We report only the number of
iterations Itr because the number of evaluations of f (x), c(x), g(x) and A(x) is equal
to Itr+1 in both algorithms. For each problem in which both codes were successful,
the optimal objective function values obtained were the same.

To facilitate comparison between the two algorithms, we use the performance pro-
file proposed by Dolan and Moré [4]. This tool for benchmarking and comparing
optimization softwares works in the following way. Let tp,s denote the time to solve
problem p by solver s. The performance ratio is defined as

rp,s = tp,s

t∗p
,

where t∗p is the lowest time required by any solver to solve problem p. Therefore,
rp,s � 1 for all p and s. If a solver does not solve a problem, the ratio rp,s is assigned
a large number rM , which satisfies rp,s < rM for all p, s where solver s succeeds
in solving problem p. The performance profile for each code s is defined as the
cumulative distribution function for the performance ratio rp,s , which is

ρs(τ ) = no. of problems s.t. rp,s � τ

total no. of problems
.

If τ = 1, then ρs(1) represents the percentage of problems for which the solver s’s
runtime is the best. The performance profile can also be used to analyze the number
of iterations required to satisfy the stopping criteria.

Based on the numerical results in Table 1, we give the performance profile for
the codes PYtr and SPYtr considering two distinct subsets of problems. The first one
corresponds to the first 35 problems in Table 1 (for which n < 10), while the second
subset corresponds to the remaining 15 problems (for which n � 10). The perfor-
mance profiles in Fig. 1 for the first subset of problems show that PYtr is slightly
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Fig. 1 Performance profiles for
problems with n < 10

Fig. 2 Performance profiles for
problems with n � 10

more efficient than SPYtr with respect to the number of iterations and the compu-
tational time required to reduce the stationarity measure below εs . Regarding the
computational time, this result is not surprising, since in the problems considered the
gap between n and m is very small. In this case, the trial step is computed on the
subspaces only in very few iterations, and the time saved in this computation is not
enough to compensate the time consumed in the reorthogonalization procedure.

On the other hand, the performance profiles in Fig. 2 show a different picture for
the second subset of problems, which includes medium size instances where n � m.
For these problems, both codes require almost the same number of iterations, but
SPYtr is significantly faster than PYtr.

6 Conclusion and Future Research

Based on subspace properties of the CDT subproblem, we have presented a subspace
version of the Powell–Yuan trust-region algorithm for equality constrained optimiza-
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tion. Under suitable conditions, the new algorithm is proved to be globally conver-
gent. Preliminary numerical experiments indicate that the subspace algorithm outper-
forms its “full space” counterpart on problems where the number of constraints is
much lower than the number of variables. Future research include the conducting of
extensive numerical tests using more sophisticated implementations, and the deve-
lopment of a strategy to control the size of the subspaces, similar that one proposed
by Gong [7] for unconstrained optimization. Further, it is worth to mention that the
subspace properties of the CDT subproblem derived in this work can be used to de-
velop subspace versions of any algorithm based on the CDT subproblem, such as the
algorithm of Celis, Dennis and Tapia [2].
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