
Noname manuscript No.
(will be inserted by the editor)

A Parallel Line Search Subspace Correction Method for
Composite Convex Optimization

Qian Dong · Xin Liu · Zaiwen Wen · Yaxiang
Yuan

Received: date / Accepted: date

Abstract In this paper, we investigate a parallel subspace correction framework for com-
posite convex optimization. The variables are first divided into a few blocks based on certain
rules. At each iteration, the algorithms solve a suitable subproblem on each block simultane-
ously, construct a search direction by combining their solutions on all blocks, then identify a
new point along this direction using a step size satisfying the Armijo line search condition.
They are called PSCLN and PSCLO, respectively, depending on whether there are over-
lapping regions between two immediately adjacent blocks of variables. Their convergence
is established under mild assumptions. We compare PSCLN and PSCLO with the parallel
version of the fast iterative thresholding algorithm and the fixed-point continuation method
using the Barzilar-Borwein step size and the greedy coordinate block descent method for
solving the `1-regularized minimization problems. Our numerical results show that PSCLN
and PSCLO can run fast and return solutions no worse than those from the state-of-the-art
algorithms. It is also observed that the overlapping domain decomposition scheme is helpful
when the data of the problem has certain special structures.
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1 Introduction

In this paper, we consider the composite convex optimization problem

min
x∈Rn

ϕ(x) := f(x) + h(x), (1)

where f(x) is differentiable convex function and h(x) is a convex function that is possibly
non-smooth. Many models in sparse optimization can be formulated as problem (1), such as
the `1-regularized minimization (LASSO) [41] and the sparse logistic regression [38].

One simple and traditional parallel algorithm for solving (1) is to compute the gradient
and other operations as many as possible in parallel in the fixed-point continuation method
(also known as proximal gradient methods) and the (fast) iterative thresholding algorithm
[2]. The alternating direction method of multipliers (ADMM) [4,6,14,15,17,18,22,24,43]
can also be parallelized in a similar fashion. The block coordinate descent (BCD) method
is widely used in parallel computation. It divides the variable x into a few small blocks,
then minimizes the objective function with respect to one block of variables while fixes
all other blocks at each iteration. The BCD method can be found under numerous names,
including linear and nonlinear Gauss-Seidel methods, subspace correction methods [25,40]
and alternating minimization approaches. Since the dimension of each block is often small,
the cost of each iteration of the BCD method is relative cheap which enables it suitable
for large scale problems [13,31,37]. When problem (1) restricted on a selected block of
variables has no closed form solution, a popular strategy is the block coordinate gradient
decent method or the block coordinate proximal gradient algorithm [3,37,42,45]. Instead
of solving the restricted problem exactly, these two methods use one gradient step or one
proximal gradient step, respectively. Nesterov’s acceleration techniques have been extended
to improve the numerical performance of the BCD method in [15,26,31]. Luo and Tseng
established linear convergence rate of the BCD method for solving several types of problem
(1) by estimating the local error bounds [28–30]. More detailed results on the convergence
rate and iteration complexity of the BCD method and its variants are referred to [15,19,23,
26,34] and the references therein.

The blocks of the variables x are often updated by using several types of strategies in the
BCD method. The cyclic (Gauss-Seidel) strategy updates blocks one by one in turn and the
values of the newly updated blocks are used in the subsequent operations on other blocks.
The essentially cyclic rule selects each block at least once every T successive iterations,
where T is an integer equal to or greater than the number of blocks. The Gauss-Southwell
rule computes a positive value qi for every block i according some criteria and then chooses
the block with the largest value of qi to work on next, or chooses the k-th block to work
on, where qk ≥ βmaxi qi for β ∈ (0, 1]. Recently, some randomized rules have been pro-
posed in [27,31,34,37]. The greedy coordinate block descent method (GRock) [32] selects
a few blocks of variables and then a few variables in each selected block, both by greedy
means, and update the latter in parallel at each iteration. Numerical experiments on a com-
puter cluster and Amazon EC2 demonstrate that GRock is an efficient parallel algorithm for
LASSO and sparse logistic regression. Another type of scheme is the Jacobian-type itera-
tion. It updates all the blocks simultaneously. Hence, it is suitable for parallel computation
and distributed optimization [7,8,20,31–33,35].
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1.1 The Domain Decomposition Methods

The domain decomposition method [36,25] is a popular method for solving partial differ-
ential equations. It can be designed as an efficient parallel computation method by split-
ting the spatial domain into several subdomains and solving the corresponding problems on
these subdomains iteratively using certain strategies. The concept of domain decomposition
has been extended to solve optimization problems, for example, the successive and parallel
subspace correction methods [5,9,11,21,40]. These two methods are exactly the Gauss-
Seidel-type and Jacobian-type BCD methods, respectively. Similar to the BCD methods, the
parallel subspace correction (PSC) method has higher scalability than the successive sub-
space correction (SSC) method. For this reason, we only consider the PSC method in this
paper.

Generally speaking, the domain decomposition approaches can be classified by whether
there are overlapping blocks among subdomains. Suppose that Rn is split into p subspaces,
namely,

Rn = X1 +X2 + · · ·+Xp, (2)

where

Xi = {x ∈ Rn|supp(x) ⊂ Ji}, 1 ≤ i ≤ p,

such that J := {1, ..., n} and J =
p⋃
i=1
Ji. It is a non-overlapping domain decomposition

of Rn if Ji
⋂
Jj = ∅, for any i 6= j, 1 ≤ i, j ≤ p. Otherwise, it is an overlapping domain

decomposition of Rn if there exist i, j ∈ {1, ..., p} and i 6= j such that Ji
⋂
Jj 6= ∅.

The overlapping domain decomposition strategy has been shown to be useful for the total
variation minimization in [11].

Throughout this paper, we make the following assumption which is commonly used in
domain decomposition.

Assumption 1 For any given x ∈ Rn, there exist xi ∈ Xi, 1 ≤ i ≤ p, such that x =∑p
i=1 xi and ||xi||2 ≤ C0||x||2, 1 ≤ i ≤ p, where C0 is a constant.

For the given x and xi, i = 1, . . . , p in Assumption 1, a short calculation shows that

(
p∑
i=1

||xi||22

) 1
2

≤ C1||x||2; (3)

τ
p∑
i=1

||xi||22 ≥ ||x||22, (4)

where C1 = C0p
1
2 and

τ =


1, ifJi

⋂
Jj = ∅, for any i 6= j,

2, ifJi
⋂
Jj = ∅, for any |i− j| > 2,

p, otherwise.
(5)
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1.2 The PSC Method

The PSC framework for solving (1) can be formulated as follows:

dki = argmin
di∈Xi

ϕki (di), i = 1, ..., p, (6)

xk+1 = xk +
p∑
i=1

αki d
k
i ,

where ϕki is a surrogate function of ϕ restricted to the i-th subspace at k-th iteration. Tai and
Xu proved in [40] the linear convergence rate of the PSC method (6) under the assumption
of the smoothness and strongly convexity of ϕ. Carstensen derived similar results for the
SSC method in [5] when ϕ is a summation of a strongly smooth convex function and a
nonsmooth separable convex function. The PSC methods have been proposed for LASSO
[9,12] and total variation minimization [10–12,21]. However, the step size αki (1 ≤ i ≤ p)
are required to satisfy the conditions:

∑p
i=1 α

k
i ≤ 1 and αki > 0 (1 ≤ i ≤ p) in order to

ensure the convergence. Usually, the step size αki is quite small under these conditions and
convergence tends to be slow. For instance, a typical step size is αki = 1

p , which becomes
smaller and smaller as the number of subspaces increases.

1.3 Our Contribution

One of our main contributions is the adaption of the Armijo backtracking line search in the
PSC method for a large step size. The modified algorithm is called a parallel line search
subspace correction method (PSCL) and it is outlined in Algorithm 1.

Algorithm 1: Parallel Line Search Subspace Correction Method

1 Determine a domain decomposition (2) of Rn that satisfies Assumption 1.
2 Initialize x0 ∈ Rn and set k := 0.
3 while not converge do
4 Choose the surrogate functions ϕki for each block, i = 1, 2, ..., p;
5 Solve the subproblem for each block: dki = argmindi∈Xi

ϕki (di), i = 1, 2, ..., p;
6 Compute the summation of the direction dk =

∑p
i=1 d

k
i ;

7 Set xk+1 = xk + αkd
k, where αk satisfies the Armijo backtracking conditions;

8 Set k := k + 1.

When h(x) = 0 and f(x) is strongly convex, the surrogate function in Algorithm 1 is
set to the original objective ϕ, namely,

ϕki (di) = f(xk + di), for di ∈ Xi. (7)

Otherwise, it is set to a summation of a linear proximal function of the smooth part f(x)
and the nonsmooth part h(x):

ϕki (di) = ∇f(xk)Tdi +
1

2λi
||di||22 + h(xk + di), for di ∈ Xi. (8)
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We should point out that GRock also minimizes all ϕki (di), i = 1, . . . , p, at each iteration
for solving LASSO, but only some variables in a few selected blocks are updated and the
line search procedure is not used.

The global convergence of PSCL is established by following the convergence analysis
of the subspace correction methods for strongly convex problem [40], the active-set method
for l1 minimization [44] and the BCD method for nonsmooth separable minimization [42].
Specifically, linear convergence rate is proved for the strongly convex case and convergence
to the solution set of problem (1) globally is obtained for the general nonsmooth case. Both
non-overlapping and overlapping schemes (denoted by PSCLN and PSCLO, respectively)
are proposed for PSCL. Parallel versions of these algorithms are implemented in C us-
ing MPI. Our numerical experiments demonstrate that PSCLO can be more efficient than
PSCLN under certain circumstances. The numerical efficiency of the our algorithms is fur-
ther confirmed in the comparison to the state-of-the-art algorithms including GRock.

1.4 Organization

The rest of this paper is organized as follows. The convergence analysis of PSCL for the
strongly convex problems is presented in Section 2. Then the convergence properties of
PSCL for the general nonsmooth problems are discussed in Section 3. The algorithmic issues
and numerical results are reported in Section 4. Finally, some concluding remarks are given
in Section 5.

2 The Strongly Convex Case

In this section, we consider the convergence properties of PSCL for minimizing a strongly
convex function ϕ. Namely, ϕ(x) = f(x) satisfies the following assumptions.

Assumption 2 The function f is differentiable and there exist constantsK,L > 0 such that

(∇f(x)−∇f(y))T(x− y) ≥ K||x− y||22, for anyx, y ∈ Rn, (9)

||∇f(x)−∇f(y)||2 ≤ L||x− y||2, for anyx, y ∈ Rn. (10)

Assumption 2 guarantees the strongly convexity of f(x) and the Lipschitz continuity of the
gradient∇f(x). For notational brevity, we denote g(x) = ∇f(x), and gk = ∇f(xk). The
next lemma shows that dk is a descent direction and establishes the relationship between
(gk)Tdk and ||dk||22.

Lemma 1 Suppose that Assumption 2 holds. Then it holds that

(gk)Tdk ≤ −K
τ
||dk||22,

where τ is defined in (5).

Proof Since dki ∈ Xi, 1 ≤ i ≤ p is a minimizer of problem (6) with (7) and f is differen-
tiable, we have g(xk + dki )

Tdki = 0. Then it follows from Assumption 2 and relationship
(4) that

(gk)Tdk =
p∑
i=1

(g(xk)− g(xk + dki ))
Tdki ≤ −K

p∑
i=1

||dki ||22 ≤ −
K

τ
||dk||22. (11)

This completes the proof.
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At the k-th iteration of PSCL, the Armijo backtracking line search [39] determines a step
size αk = ηρl, where η > 0 is given and l is the smallest integer satisfying the condition:

f(xk + ηρldk) ≤ f(xk) + σηρl(gk)Tdk, (12)

where σ, ρ ∈ (0, 1). The existence and boundedness of the step size αk are ensured by the
standard analysis. We include the proofs for completeness.

Lemma 2 Suppose that Assumption 2 holds. Then

f(xk + αdk) ≤ f(xk) + σα(gk)Tdk

holds for any α ∈
[
0, 2K(1−σ)

Lτ

]
, where τ is defined by (5).

Proof Using the Lipschitz continuity of ∇f (namely g) and Lemma 1, we derive, for any
α ∈

[
0, 2K(1−σ)

Lτ

]
,

f(xk + αdk)− f(xk)− σα(gk)Tdk

≤ (1− σ)α(gk)Td+ L

2
||dk||22α2 ≤ α

[
L

2
α− K(1− σ)

τ

]
||dk||22 ≤ 0.

This completes the proof.

Lemma 3 Suppose that Assumption 2 holds. Then we have

αk ≥ min

{
2K(1− σ)ρ

Lτ
, η

}
,

where τ is defined by (5).

Proof The lemma holds ifαk = η satisfies the Armijo condition (12). Otherwise, we obtain:

f

(
xk +

αk
ρ
dk
)
> f(xk) + σ

αk
ρ
(gk)Tdk. (13)

The Lipschitz continuity of∇f yields

f

(
xk +

αk
ρ
dk
)
≤ f(xk) + αk

ρ
(gk)Tdk +

L

2
||dk||22

(
αk
ρ

)2

. (14)

It follows from (13) and (14) that

αk
ρ
(gk)Tdk +

L

2
||dk||22

(
αk
ρ

)2

≥ σαk
ρ
(gk)Tdk.

Then the boundedness of αk holds by combining this inequality with Lemma 1.

Lemma 3 provides a lower bound for the line search step size αk. According to the
definition of τ in (5), this lower bound is independent of the number of blocks p in the non-
overlapping case or when there is only overlapping between two immediate adjacent blocks.
The next theorem establish the convergence of the PSCL method.
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Theorem 3 Suppose that Assumption 2 holds. Then the sequence {xk}k∈N generated by
the PSCL method satisfies

lim
k→∞

∇f(xk) = 0, (15)

namely, the sequence {xk} converges to the global minimizer.

Proof It follows from Lemma 1 and the Armijo condition (12) that

f(xk + αkd
k) ≤ f(xk)− σαkK

p∑
i=1

||dki ||22, (16)

which yields
∑∞
k=0

∑p
i=1 ||d

k
i ||22 < ∞ due to the boundedness of {αk}k∈N . Therefore,

we obtain

lim
k→∞

dki = 0, 1 ≤ i ≤ p. (17)

Using the first-order optimality condition of the subproblems (6) and Assumption 2, we
have, for any yi ∈ Xi,

|(gk)Tyi| = |(gk)Tyi − g(xki + dki )
Tyi|

≤ ||g(xk)− g(xki + dki )||2||yi||2 ≤ L||yi||2||dki ||2. (18)

Combining the relationships (17) and (18),

lim
k→∞

(gk)Tyi = 0, for any yi ∈ Xi, 1 ≤ i ≤ p.

Consequently, we have

lim
k→∞

(gk)Ty = 0, for any y ∈ Rn.

Suppose that {s1, s2, ..., sn} is an orthonormal basis of Rn. Then we can obtain

lim
k→∞

(gk)Tsi = 0, 1 ≤ i ≤ n,

which implies (15). The strongly convexity of f(x) ensures the global convergence of the
sequence {xk}k∈N to the unique minimizer. This completes the proof.

Let x∗ be the unique minimizer under Assumption 2. We next prove the linear conver-
gence rate in terms of ek = f(xk)− f(x∗) similar to the proofs in [40].

Theorem 4 Suppose that Assumption 1 and 2 hold. There exists a constant γ ∈ (0, 1)
depending on C1, p, L,K, σ, η such that

ek ≤ γek−1 ≤ γke0, for any k ≥ 1.
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Proof Denote wkj = xk + αk
∑j
i=1 d

k
i , 0 ≤ j ≤ p. According to Assumption 2, it holds

that

(gk+1 − g(x∗))T(xk+1 − x∗)
||xk+1 − x∗||2

≥ K
[
2

L
(f(xk+1)− f(x∗))

] 1
2

. (19)

By Assumption 1, there exists vi ∈ Xi, 1 ≤ i ≤ p such that xk+1 − x∗ =
∑p
i=1 vi and

(
∑p
i=1 ||vi||

2
2)

1
2 ≤ C1||xk+1 − x∗||2. Then, we have

(gk+1 − g(x∗))T(xk+1 − x∗) = (gk+1)T(xk+1 − x∗) =
p∑
i=1

(gk+1)Tvi

=
p∑
i=1

(g(xk + αk

p∑
j=1

dkj )− g(xk))Tvi +
p∑
i=1

(g(xk)− g(xk + dki ))
Tvi

=
p∑
i=1

p∑
j=1

(g(wkj )− g(wkj−1))
Tvi +

p∑
i=1

(g(xk)− g(xk + dki ))
Tvi

≤ αkLp

(
p∑
i=1

||dki ||22

) 1
2
(

p∑
i=1

||vi||22

) 1
2

+ L
p∑
i=1

||dki ||2||vi||2

≤ L(αkp+ 1)

(
p∑
i=1

||dki ||22

) 1
2
(

p∑
i=1

||vi||22

) 1
2

≤ C1L (αkp+ 1)

(
p∑
i=1

||dki ||22

) 1
2

||xk+1 − x∗||2.

Due to (16), the Armijo line search gives

(gk+1 − g(x∗))T(xk+1 − x∗)
||xk+1 − x∗||2

≤ C1L(αkp+ 1)

[
1

σKαk
(f(xk)− f(xk+1))

] 1
2

.

Combining the above relationship and (19), we obtain ek+1 ≤ ζ̂k(ek − ek+1), where ζ̂k =
C2

1(αkp+1)2L3

2σK3αk
. Then we have ek+1 ≤ ζ̂k

ζ̂k+1
ek. Lemma 3 implies that min

{
2K(1−σ)ρ

Lτ , η
}
≤

αk ≤ η. Therefore, there exists γ ∈ (0, 1) such that ek+1 ≤ γek. This completes the proof.

3 The General Convex Case

In this section, we consider the convergence properties of the PSCL method for solving (1)
with h(x) 6= 0. In this case, the surrogate function takes the following form

ϕki (di) := ∇f(xk)Tdi +
1

2λi
||di||22 + h(xk + di), (20)

where the parameter λi are constants only related to the convex part f . Without loss of
generality, we assume

λ = max
1≤i≤p

λi, λ = min
1≤i≤p

λi. (21)

We make the following assumption for ϕ(x).
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Assumption 5 (i) The functions f(x) and h(x) are convex and ϕ is bounded from below.
The function f is differentiable and its gradient ∇f(x) is Lipschitz continuous with a con-
stant L.
(ii) There exists a constant Q > 0 for the function h(x) such that

|h(x)− h(y)| ≤ Q||x− y||2, for anyx, y ∈ Rn. (22)

(iii) Given a domain decomposition satisfying Assumption 1, the function h(x) satisfies, for
any x, y ∈ Rn, there exist yi ∈ Xi (i = 1, ..., p) such that

h(x+ y)− h(x) =
p∑
i=1

(h(x+ yi)− h(x)). (23)

Assumption 5 (iii) describes the separability of h(x) under certain domain decomposi-
tion X =

∑p
i=1Xi. Assumption 5 (iii) holds if h(x) is separable and the domain decom-

position is grouped by the coordinates of x. Specifically, we point out that Assumption 5 (ii)
and (iii) hold, if the nonsmooth part h(x) takes the form ||x||1.

Proposition 1 Assumption 5 (ii) and (iii) hold for h(x) = ||x||1.

Proof (1) Let y(j) be the j-th entry of y. By using the triangle inequality, we have, for any
x, y ∈ Rn,

|h(x)− h(y)| ≤
n∑
j=1

∣∣|x(j)| − |y(j)|∣∣ ≤ n∑
j=1

|x(j) − y(j)| ≤
√
n||x− y||2.

(2) Assumption 1 implies that there exist yi ∈ Xi such that y =
∑p
i=1 yi and there is

only one non-zero element in {y1,(j), ..., yp,(j)}, where yi,(j) is the j-th component of yi.

Hence, we have yi,(j) = 0 if j /∈ Ji,
p∑
i=1

yi,(j) = y(j), and

n∑
j=1

(|xj + yj | − |xj |) =
p∑
i=1

∑
j∈Ji

(|xj + yj | − |xj |)

 ,
which gives

h(x+ y)− h(x) = ||x+ y||1 − ||x||1 =
p∑
i=1

∑
j∈Ji

(|xj + yj | − |xj |)


=

p∑
i=1

∑
j∈Ji

(|xj + yj | − |xj |) +
∑
j /∈Ji

(|xj | − |xj |)


=

p∑
i=1

(||x+ yi||1 − ||x||1) =
p∑
i=1

(h(x+ yi)− h(x)).

This completes the proof.
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Suppose that Assumption 5 (i) holds. It is well known that x∗ is a minimizer of (1) if
and only if

∇f(x∗)T(y − x∗) + h(y)− h(x∗) ≥ 0, for any y ∈ Rn. (24)

Define

∆k = (dk)T∇f(xk) + p

(
h

(
xk +

1

p
dk
)
− h(xk)

)
. (25)

Given some constants η > 0 and σ, ρ ∈ (0, 1), the Armijo backtracking line search chooses
a step size

αk = ηρl, (26)

where l is the smallest positive integer satisfied the condition

ϕ(xk + ηρldk) ≤ ϕ(xk) + σηρl∆k. (27)

The next lemma shows the relationship between ∆k and ||dk||22.

Lemma 4 It holds that ∆k ≤ − 1
λτ ||d

k||22, where λ and τ are defined by (21) and (5),
respectively.

Proof It follows from the first-order optimality condition of the subproblems (6) that

yTi

(
∇f(xk) + 1

λi
dki

)
+ h(xk + dki + yi)− h(xk + dki ) ≥ 0, for any yi ∈ Xi. (28)

Let yi = −dki . The following inequalities holds for any i = 1, ..., p,

(dki )
T∇f(xk) + h(xk + dki )− h(xk) ≤ −

1

λi
||dki ||22.

Using the convexity of h(x) and the inequality (4), we can derive

∆k = (dk)T∇f(xk) + p

(
h

(
xk +

1

p
dk
)
− h(xk)

)
≤

p∑
i=1

[
(dki )

T∇f(xk) + h(xk + dki )− h(xk)
]

≤ −
p∑
i=1

1

λi
||dki ||22 ≤ −

1

λτ
||dk||22. (29)

This completes the proof.

It can be shown that the Armijo condition (26) holds for certain step sizes and αk is
bounded from below.

Lemma 5 Suppose that Assumption 5 holds. It holds

ϕ(xk + αdk) ≤ ϕ(xk) + σα∆k, for anyα ∈
[
0,min

{
1

p
,
2(1− σ)
λLτ

}]
;

αk ≥ min

{
2(1− σ)ρ
λLτ

, η

}
, for any η ∈

(
0,

1

p

]
, k ∈ N. (30)
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The proof of Lemma 5 is similar to those of Lemma 2 and 3 and hence it is omitted. We next
prove the global convergence of the PSCL method.

Theorem 6 Suppose that Assumptions 1 and 5 hold. Let {xk} be a sequence generated by
the PSCL method. For any given y ∈ Rn, it holds

lim inf
k→∞

[
yT∇f(xk) + h(xk + y)− h(xk)

]
≥ 0. (31)

Moreover, we have lim
k→∞

ϕ(xk) = ϕ∗, where ϕ∗ is the minimum of problem (1).

Proof Using Lemma 4 and the Armijo condition (26), we have

ϕ(xk + αkd
k) ≤ ϕ(xk)− σαk

λ

p∑
i=1

||dki ||22.

Since ϕ(x) is bounded from below and {αk}k∈N is bounded, we obtain
∑∞
k=0 ||d

k||22 <
∞, which implies

lim
k→∞

dk = 0. (32)

Using Assumption 5 and the optimality condition (28), we obtain, for any y ∈ Rn,

yT∇f(xk) + h(xk + y)− h(xk)

=
(
yT∇f(xk) + h(xk + dk + y)− h(xk)

)
+ (h(xk + y)− h(xk + dk + y))

≥
p∑
i=1

(
yTi

(
∇f(xk) + 1

λi
dki

)
+ h(xk + dki + yi)− h(xk)

)
−

p∑
i=1

1

λi
yTi d

k
i −Q||dk||2

≥
p∑
i=1

(
yTi

(
∇f(xk) + 1

λi
dki

)
+ h(xk + dki + yi)− h(xk + dki )

)

+
p∑
i=1

(h(xk + dki )− h(xk))−
p∑
i=1

1

λi
||yi||2||dki ||2 −Q||dk||2

≥ −
p∑
i=1

(
Q||dki ||2 +

1

λ
||yi||2||dki ||2

)
−Q||dk||2

≥ −
(
√
pQC1 +

C2
1

λ
||y||+Q

)
||dk||2, (33)

where the last inequality follows from the inequality (3). The inequality (33) together with
(32) gives (31).

Recalling the convexity of f , we have, for any y ∈ Rn,

ϕ(xk + y)− ϕ(xk) ≥ yT∇f(xk) + h(xk + y)− h(xk). (34)

Since ϕ(x) is bounded below and {ϕ(xk)} is monotonically decreasing, lim
k→∞

ϕ(xk) exists.

Without loss of generality, we assume that lim
k→∞

ϕ(xk) = ϕ̃. Taking limits from both sides

of (34) and using (33), we obtain that ϕ(y) ≥ ϕ̃ holds for any y ∈ Rn, which implies
ϕ̃ = ϕ∗. This completes the proof.
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If the level set {x | ϕ(x) ≤ ϕ(x0)} is bounded in Theorem 6, any accumulation point
of {xk} is a minimizer of problem (1). The boundedness of the level set can be guaranteed
if f(x) is bounded from below and the nonsmooth part h(x) is of the form ||x||1.

Proposition 2 Suppose that Assumptions 1 and 5 hold. Let {xk} be a sequence generated
by the PSCL method starting from x0 ∈ Rn. If the level set {x | ϕ(x) ≤ ϕ(x0)} is bounded,
then any accumulation point of {xk} is a minimizer of problem (1).

Proof It follows from the monotonicity of {ϕ(xk)} and the boundedness of the level set that
the sequence {xk} is bounded. Therefore, there exists accumulation point x∗. According to
(31), we have yT∇f(x∗)+h(x∗+y)−h(x∗) ≥ 0 for any y ∈ Rn, which is the first-order
optimality condition (24). Hence, x∗ is a minimizer of problem (1) due to the convexity of
ϕ(x). This completes the proof.

Remark 1 Two specific formulations of problem (1) are discussed in [11,12]. They showed
that any accumulation point of the sequence generated by their algoirthm is a minimizer of
problem (1), under the same assumptions as Theorem 3 and an additional assumption called
coercive condition. Note that the coercive condition is not needed in our proof.

Remark 2 In [9–12,21], it requires that λ < 2
L , whereL is the Lipschitz constant of∇f(x).

We show that our step size is O(1/τ) at the worst case without any assumption on λ. If
λ < 2

L holds, the global convergence of the PSCL method using a step size not less than 1
τ

is guaranteed.

4 Numerical Implementation

In this section, we demonstrate the efficiency of the PSCLN and PSCLO methods for solving
LASSO [41]:

min
x∈Rn

ϕ(x) :=
1

2
||Ax− b||22 + µ||x||1, (35)

where A ∈ Rm×n and µ is a parameter. We compare PSCLN and PSCLO with the classic
PSC method, the parallel versions of FISTA [2] using backtracking line search and FPC BB
[16] by computing the gradient in parallel (denoted by P-FISTA, and P-FPC BB, respec-
tively) and the GRock method1. The potential of PSCLN and PSCLO is further illustrated in
solving two huge scale problems. Our experiments are run on a computer cluster LSSC-III
at the State Key Laboratory of Scientific and Engineering Computing (LSEC), CAS. This
cluster has 282 nodes. Every node has two quad-core 2.67GHz CPUs (Intel X5550) and 24
GB memory.

4.1 Algorithmic Issues of PSCL

The non-overlapping domain decomposition scheme is designed as follows. Suppose that
the variables x ∈ Rn are divided into blocks as

x = (xTI1 , x
T
I2 , ..., x

T
Ip)

T, (36)

1 Here an old version of GRock is used. We notice that a robust new version of GRock is released in
November 2014 (http://www.math.ucla.edu/∼wotaoyin/papers/GRock/cdes.html), which is reported to be
much efficient than the old version.
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where xI contains the components of x corresponding to the index set I . Similarly, the
matrix A is also split by columns according to the division of x as

A = [AI1 , AI2 , ..., AIp ],

whereAI contains the columns ofA corresponding to the index set I . The subsets I1, ..., Ip
are chosen to have the same size.

Our overlapping domain decomposition scheme is chosen as follows. We split Ii into
three parts Ili , Ici and Iri by the order of coordinates. Then a new subset Ĩi of coordinates
is constructed from Iri−1 , Ii and Ili+1

. More specifically, we have

Ĩ1 = I1
⋃
Il2 ,

Ĩi = Iri−1

⋃
Ii
⋃
Ili+1

, 2 ≤ i ≤ p− 1

Ĩp = Irp−1

⋃
Ip.

Consequently, two immediately adjacent blocks have a overlapping part, which is denoted
by Oi = Iri

⋃
Ili+1

, 1 ≤ i ≤ p− 1. The sizes of Oi(1 ≤ i ≤ p− 1) are set to the same.
When Oi = 0 (for all i), it reduces to the non-overlapping case.

The computation of Axk done in parallel. Communication between nodes is needed for
assembling dk and computing the step size αk. Different from the P-FISTA method, the
parameters λi (1 ≤ 1 ≤ p) are not necessary the same among every blocks in the PSCL
method. We choose them as the following Barzilai-Borwein step [1]:

λki =


min

{
1 + 1.665

(
1− m

n

)
, 1.999

}
, k = 0,

max

{
1.7||xk

Ĩi
−xk−1

Ĩi
||22

(xk
Ĩi
−xk−1

Ĩi
)T(gk

Ĩi
−gk−1

Ĩi
)
, 1

}
, k > 0.

For the Armijo line search (27), we set ρ = 0.5, σ = 0.5 and η = 2.

4.2 Data Preparation

In our numerical experiments, the data matrix A and the exact solution x∗ are generated
randomly. Then the right-hand-side b is calculated in the same fashion as [32]. The detailed
information of the data sets is described in Table 1. Note that there are two types of data sets
in Table 1. For the data sets I, III, IV and VII, the 2-norm of each column of the matrix A
is set to one. For the data sets II, V, VI and VIII, the columns of A are designed to have a
special structure in favor of the PSCLO method. For example, the matrix A in the data set II
has 32 blocks. Each immediately adjacent pair of blocks has 20 overlapping columns. The
2-norm of the columns in the overlapping regions are 0.4 and the 2-norm of other columns
is 1. For brevity, we use “32/20/0.4” to describe the structure of matrix A. The distribution
of the norms of the columns is illustrated in Figure 1(a). The vertical lines in Figure 1(a)
show the difference between the norms of the overlapping and non-overlapping parts. An
amplified view of the difference is depicted in Figure 1(b) more clearly. A full block of
variables is located between the first and the last dashed vertical lines. The regions between
the first two dashed vertical lines and between the last two dashed vertical lines represent
the overlapping domains. Our numerical experience shows that the PSCLO method works
better than the PSCLN method under this special pattern.
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Table 1 Test data sets for LASSO

Data Set A Type A Size µ Sparsity of x∗ Size Overlap Str.
I Gaussian 2048× 4096 0.1 200 64.00MB —
II Gaussian 2048× 4096 0.1 200 64.00MB 32\20\0.4
III Gaussian 10240× 20480 0.05 2000 1.56 GB —
IV Gaussian 15360× 30720 0.01 2000 3.52 GB —
V Gaussian 10240× 20480 0.1 1000 1.56 GB 128\24\0.4
VI Gaussian 5120× 10240 0.1 500 0.39 GB 128\12\0.5
VII Gaussian 50000× 100000 0.01 4000 37.25 GB —
VIII Gaussian 50000× 100000 0.01 4000 37.25 GB 160\100\0.4

1000 2000 3000 4000

0.4

1

column

no
rm

(a) Column Norm of A in Data Set II

104 119 129138 247256 266 281

0.4

1

column

no
rm

(b) Column Norm of the Second Block

Fig. 1 The structure of the matrix A in the data set II

The initial point x0 is set to 0. All algorithms are terminated if the stopping criterion

||xk − x∗||2 < ε||x∗||2

is satisfied for a tolerance ε = 10−7. The blocks used by both PSCLN or PSCLO have
the same size. For PSCLO, the size of the overlapping blocks between two immediately
adjacent blocks is the same as the pattern of the matrix A on the data sets II, V, VI and VIII,
and it is set to 24, 36 and 100 (around n/1000), respectively, on the data sets III, IV and
VII.

4.3 Numerical Comparisons between PSCL and PSC

The PSCLN and PSCLO methods using a fixed step size 1
p are denoted by PSCAN and

PSCAO, respectively. They are equivalent to the classic PSC methods. The maximal number
of iterations is set to 200. We compare the performance of PSCAN, PSCAO, PSCLN and
PSCLO on the data sets I and II. The relative error ||xk − x∗||2 versus iteration history is
shown in Figure 2. We can see that PSCAN and PSCAO converge slowly and the relative
error is of orderO(10−1) after 200 iterations. Both PSCLN and PSCLO achieve an accuracy
of order O(10−7) within 100 iterations. In particular, PSCLO takes fewer iterations than
PSCLN on the data set II.

The step sizes used at each iteration of the four algorithms are presented in Figure 3. The
red dash lines in Figure 3 correspond to the step size 1

p in PSCAN and PSCAO. It is clear
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that the step sizes determined by the Armijo rule can be much larger than 1
p . This partly

explains why PCSLN and PSCLO perform better than PSCAN and PSCAO.
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Fig. 2 The relative error history on the data sets I and II
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Fig. 3 Illustration of the step sizes chosen by the Armijo rule on the data sets I and II

Figure 3 shows that the step sizes taken by PSCL are mostly 0.25 or 0.5. Therefore, we
compare PSCLN and PSCLO with PSCAN and PSCAO using a fixed step size 0.25 and 0.5
instead of 1

p . The computational results are summarized in Table 2. From the table, we can
observe that PSCLO and PSCLN are still more efficient than PSCAN and PSCAO. More-
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over, the overlapping scheme PSCLO is better than the non-overlapping scheme PSCLN on
the data set II.

Table 2 Numerical results of PSC using αk = 0.25, 0.5

data Iteration No. Total Time (s) Comm. Time (s) Iteration No. Total Time (s) Comm. Time (s)
PSCAN PSCAO

αk = 0.25
I 122 0.1243 0.0189 116 0.1440 0.0294

II 146 0.1449 0.0284 122 0.1357 0.0242
αk = 0.5, failed to find the solutions

PSCLN PSCLO
I 26 0.0236 0.0092 27 0.0298 0.0090

II 76 0.0616 0.0240 45 0.0411 0.0128

4.4 Comparisons of Complexity with the State-Of-The-Art Algorithms

In this subsection, we compare the complexities of the arithmetic operations of P-FISTA,
P-FPC BB, GRock, PSCLN and PSCLO for LASSO. Here we analyze P-FISTA using
a constant step size and similar results can be obtained for P-FISTA using backtracking
line search. Among all of the above parallel algorithms, P-FISTA is the simplest one. The
computational cost of each iteration of P-FISTA includes two matrix-vector multiplications
O(mn/p) for computing the gradient of the smooth part and the shrinkage step O(n/p),
which is dominated by the matrix-vector multiplication. P-FPC BB, PSCLN and PSCLO
take inexact or exact Armijo line search strategies compared with P-FISTA. These line
search strategies are efficient and always terminate after a few trials. Each line search step
evaluates one objective function value whose cost is O(n/p). Different from the others, a
sorting algorithm is needed in GRock for the greedy strategy, and the cost of the quick sort
is O((n/p) log(n/p)). Consequently, the computational cost per iteration of all algorithms
is O(mn/p).

As for the communication cost, P-FISTA needsO(m log(p)) for the matrix-vector mul-
tiplication in each iteration. The evaluation of the objective function in the Armijo line
searches (P-FPC BB, PSCLN and PSCLO) and the greedy strategy (GRock) is O(log(p))
and O(p log(p)), respectively. PSCLO also needs O(Oi) for updating the iteration but it is
cheaper than the cost in matrix-vector multiplication. Hence, the communication cost of all
algorithms in each iteration is O(m log(p)).

Therefore, the complexity per iteration of PSCLN and PSCLO is comparable with that
of the state-of-the-art algorithms.

4.5 Numerical Comparisons to the State-Of-The-Art Algorithms

In this subsection, we compare the numerical performance of P-FISTA, P-FPC BB, GRock,
PSCLN and PSCLO on the data sets III, IV, V and VI using 1, 2, 4, . . . , 128 processors,
respectively. The total number of iterations, the total wall-clock time and the time spend on
communication of these algorithms are reported in Table 3.

Since P-FISTA and P-FPC BB are sequential algorithms whose operations are paral-
lelized as many as possible, their number of iterations are the same when different numbers
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Table 3 Numerical results of LASSO: iteration number, total time and communication time

data core no. Iteration No. Total Time (s) Comm. Time (s)
P-FISTA P-FPC BB GRock PSCLN PSCLO P-FISTA P-FPC BB GRock PSCLN PSCLO P-FISTA P-FPC BB GRock PSCLN PSCLO

III

1 90 227 ∗5000 69 69 51.1716 86.3665 1638.6536 29.1741 29.1810 0.0041 0.0039 0.1041 0.0012 0.0013
2 90 227 ∗5000 65 67 28.6598 48.4448 933.9151 15.5991 16.3330 0.0165 0.0171 0.2722 0.0062 0.0076
4 90 227 ∗5000 75 69 15.1800 26.4313 518.4890 9.7874 8.9497 0.0291 0.0255 0.4490 0.0070 0.0062
8 90 227 3433 74 70 8.2043 14.1053 190.9595 5.1537 5.1588 0.1353 0.0736 1.4160 0.0238 0.0105

16 90 227 1777 74 72 4.1499 7.1174 50.5900 2.7352 2.5909 0.2112 0.1573 1.2846 0.0304 0.0523
32 90 227 889 72 78 2.2301 3.7146 13.3647 1.3282 1.4389 0.2540 0.2141 0.9371 0.0991 0.1084
64 90 227 484 73 81 1.2305 2.0154 3.9686 0.7288 0.8452 0.2786 0.2786 0.5727 0.0964 0.0944

128 90 227 282 65 86 0.8020 1.1939 1.4028 0.3885 0.5545 0.2973 0.3041 0.3937 0.0865 0.1361

IV

1 99 197 ∗5000 107 107 193.8786 257.0118 4248.2967 144.7893 143.8059 0.0070 0.0051 0.1361 0.0027 0.0030
2 99 197 ∗5000 114 112 97.7049 130.4537 2218.6784 79.7377 77.3608 0.0255 0.0188 0.4453 0.0108 0.0117
4 99 197 4994 106 111 67.5096 92.0222 1619.1294 51.6309 54.6253 0.3063 0.0292 0.7350 0.0196 0.6081
8 99 197 2568 104 102 27.6192 35.6501 320.8674 19.0977 19.5880 0.9565 0.3535 0.6588 0.2342 0.5440

16 99 197 1271 109 113 13.8061 18.6568 81.3370 10.6888 11.6383 0.5585 0.7141 2.5432 0.4997 0.5244
32 99 197 654 107 109 7.2666 9.5667 21.7961 5.4443 5.5921 0.7152 0.7222 1.2619 0.4483 0.3680
64 99 197 349 116 106 3.9461 5.0214 6.1636 3.1111 2.9299 0.6010 0.4863 0.6760 0.2895 0.3128

128 99 197 215 106 124 2.2421 2.7023 2.2111 1.5021 2.0532 0.5587 0.3739 0.4516 0.2452 0.3517

V

1 171 115 ∗5000 77 77 65.7541 39.1495 1581.2636 26.2855 26.3564 0.0079 0.0020 0.1048 0.0014 0.0014
2 171 115 4267 82 86 36.7643 21.8967 758.1660 15.5775 16.3405 0.1269 0.0083 0.6577 0.0048 0.0052
4 171 115 2175 80 81 20.0329 12.0982 214.4555 8.7594 8.8763 0.1149 0.0636 0.6097 0.1754 0.1585
8 171 115 1118 82 77 10.8228 6.4566 59.1331 4.5887 4.3388 0.2837 0.0516 0.5717 0.0559 0.0539

16 171 115 565 79 81 5.7849 3.2727 16.5432 2.2805 2.3192 0.4907 0.0794 1.7729 0.0760 0.0411
32 171 115 305 80 77 3.1679 1.7308 4.4449 1.2319 1.2015 0.5279 0.1282 0.3545 0.1092 0.0969
64 171 115 180 79 72 1.7967 0.9322 1.4442 0.6478 0.6333 0.4918 0.1191 0.2314 0.0916 0.1020

128 171 115 110 73 47 1.2556 0.5883 0.5344 0.3620 0.2701 0.5609 0.1687 0.1364 0.0947 0.0691

VI

1 124 79 4227 56 56 12.2770 6.8332 336.2071 4.9732 4.9721 0.0042 0.0010 0.0697 0.0008 0.0007
2 124 79 2112 56 52 6.8449 3.8013 93.7195 2.7366 2.5616 0.0121 0.0025 0.0670 0.0018 0.0018
4 124 79 1110 59 58 3.7216 2.0919 27.2833 1.6322 1.6093 0.0523 0.0038 0.1096 0.0031 0.0073
8 124 79 580 50 54 2.0332 1.1265 7.7368 0.7271 0.7897 0.0876 0.0153 0.1149 0.0100 0.0156

16 124 79 307 52 52 1.0527 0.5748 2.1003 0.3859 0.3903 0.1061 0.0256 0.0841 0.0194 0.0203
32 124 79 181 52 52 0.6315 0.3206 0.6899 0.2176 0.2224 0.1653 0.0433 0.0848 0.0331 0.0318
64 124 79 103 55 47 0.4032 0.1872 0.2333 0.1319 0.1293 0.1742 0.0474 0.0529 0.0342 0.0368

128 124 79 67 52 34 0.3438 0.1314 0.1105 0.0885 0.0701 0.2265 0.0588 0.0461 0.0409 0.0309

of cpu processors are used. The number of iterations of other three algorithms are not the
same when the number of processors invoked are different. This is most obvious in GRock
since the number of updated blocks at each iteration is equal to the number of processors.
Table 3 shows that GRock is faster than P-FISTA and P-FPC BB in most of cases, but it is
slower than the PSCL algorithms. PSCLN and PSCLO always take fewer iterations than the
others since they are more suitable for the structures of the large problems in our setting.
They seem to be able to take advantage of the local information more than P-FISTA and
P-FPC BB and also preserve more global information than GRock. Consequently, they con-
sumed less total wall-clock time and communication time than other algorithms. Moreover,
PSCLO is faster than PSCLN on data sets V and VI when 128 processors are invoked.

Figure 4 shows the parallel speedup factor (PSF(p)) and parallel efficiency (PE(p)) of
P-FISTA, P-FPC BB, PSCLN and PSCLO. They are defined as

PSF(p) =
T1
Tp
, PE(p) =

T1
pTp

, (37)

where Tp is the total time using p cores to run a algorithm. Since the number of updated
blocks are different when different numbers of processors are used in GRock, the definitions
(37) are not suitable to measure its efficiency. Hence, the figures on GRock are not reported.

Finally, we test all algorithms on the huge data sets VII and VIII. A summary of compu-
tational results is presented in Table 4. We can observe the similar numerical performance
as Table 3. The advantage of PSCLO can be seen from the data set VIII.

5 Conclusion

The SSC and PSC methods are two well known domain decomposition methods for solving
partial differential equations. The SSC method is not suitable for parallel computation since
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Fig. 4 Parallel analysis on the data sets III and V

Table 4 Numerical results on the large data sets

P-FISTA P-FPC BB GRock PSCLN PSCLO
data set/size VII/37.25GB

accuracy tolerance 1e-7
core no. 160

iteration no. 90 127 230 74 86
comm. time (s) 5.4461 5.5142 8.2352 3.2796 5.7410
relative error 8.9257e-08 6.6115e-08 9.3870e-08 7.3944e-08 1.4595e-08
total time (s) 20.1560 20.4863 24.7613 11.9848 16.9488
data set/size VIII/37.25GB

accuracy tolerance 1e-7
core no. 160

iteration no. 212 191 243 128 86
comm. time (s) 12.1959 7.7972 9.1687 5.0911 4.8956
relative error 9.5259e-08 9.5288e-08 9.7444e-08 8.3672e-08 9.1491e-08
total time (s) 35.5718 26.9156 26.6191 17.7854 14.7187

the blocks are updated sequentially. The PSC method may not be efficient due to the conser-
vative step size in order to ensure global convergence of the algorithm. In order to accelerate
the PSC method, we propose a new parallel line search subspace correction framework for
composite convex optimization. Two versions called PSCLN and PSCLO are proposed de-
pending on whether there are overlapping between two immediately adjacent blocks. Global
convergence are established under mild conditions.

We compare our proposed algorithms with the state-of-the-art parallel optimization al-
gorithms including P-FISTA, P-FPC BB, and GRock for solving the LASSO problem. Our
numerical results show that PSCLN and PSCLO can perform better than other algorithms
to achieve similar accuracy. Although PSCLN is slightly better than PSCLO on most cases,
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PSCLO can perform better than PSCLN when the test problem has certain special struc-
tures. It remains an interesting topic to develop a more efficient general overlapping domain
decomposition scheme and to investigate its efficiency on practical applications.

Acknowledgements The authors thank Prof. Wotao Yin for the insightful discussion, and Mr. Zhimin Peng
for providing the source codes of GRock.
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34. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for min-

imizing a composite function. Mathematical Programming 144(1-2), 1–38 (2014)
35. Scherrer, C., Tewari, A., Halappanavar, M., Haglin, D.: Feature clustering for accelerating parallel coor-

dinate descent. In: NIPS, pp. 28–36 (2012)
36. Schwarz, H.A.: Ueber einige abbildungsaufgaben. Journal für die reine und angewandte Mathematik 70,

105–120 (1869)
37. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l1-regularized loss minimization. The Journal of

Machine Learning Research 12, 1865–1892 (2011)
38. Shevade, S.K., Keerthi, S.S.: A simple and efficient algorithm for gene selection using sparse logistic

regression. Bioinformatics 19(17), 2246–2253 (2003)
39. Sun, W., Yuan, Y.X.: Optimization theory and methods: nonlinear programming, vol. 1. springer (2006)
40. Tai, X.C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex

optimization problems. Mathematics of Computation 71(237), 105–124 (2002)
41. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.

Series B (Methodological) pp. 267–288 (1996)
42. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math-

ematical Programming 117(1-2), 387–423 (2009)
43. Wang, X., Hong, M., Ma, S., Luo, Z.Q.: Solving multiple-block separable convex minimization problems

using two-block alternating direction method of multipliers. arXiv preprint arXiv:1308.5294 (2013)
44. Wen, Z., Yin, W., Zhang, H., Goldfarb, D.: On the convergence of an active-set method for l1 minimiza-

tion. Optimization Methods and Software 27(6), 1127–1146 (2012)
45. Zhang, H., Jiang, J., Luo, Z.Q.: On the linear convergence of a proximal gradient method for a class of

nonsmooth convex minimization problems. Journal of the Operations Research Society of China 1(2),
163–186 (2013)


