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Abstract A nonlinear stepsize control framework for unconstrained optimization was
recently proposed by Toint (Optim Methods Softw 28:82–95, 2013), providing a uni-
fied setting in which the global convergence can be proved for trust-region algorithms
and regularization schemes. The original analysis assumes that the Hessians of the
models are uniformly bounded. In this paper, the global convergence of the nonlinear
stepsize control algorithm is proved under the assumption that the norm of the Hessians
can grow by a constant amount at each iteration. The worst-case complexity is also
investigated. The results obtained for unconstrained smooth optimization are extended
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to some algorithms for composite nonsmooth optimization and unconstrained multi-
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1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : R
n → R is continuously differentiable and bounded below. Traditional

iterative methods for solving (1) are trust-region [5] and line-search [7] algorithms.
As observed independently by Shultz et al. [17] and by Toint [20], line-search methods
can also be reinterpreted as trust-region methods, which ensures the derivation of a
common convergence theory for both classes of methods (for details, see Section 10.3
in Conn et al. [5]).

Recently, an adaptive regularization approach with cubics (ARC) has been proposed
by Cartis et al. [2] as a new globalization technique for unconstrained optimization.
However, with the development of the ARC methods, as well non-standard trust-
region algorithms [9] and other regularization schemes [1,8,13,24], the unified setting
for convergence analysis was lost, since for each one of these methods the global
convergence is proved in a different way.

With the purpose to obtain a unifying framework to prove the global convergence of
trust-region algorithms and regularization schemes, Toint [19] has proposed the class
of nonlinear stepsize control algorithms. In order to describe this class, it is convenient
to consider in advance the following conditions:

A1 There exists a continuous, bounded and non-negative function ω : R
n → R such

that

ω(x) = 0 �⇒ ‖∇ f (x)‖ = 0. (2)

A2 There exist three continuous non-negative functions φ,ψ, χ : R
n → R, possibly

undefined at roots of ω, such that

ω(x) > 0 and min {φ(x), ψ(x), χ(x)} = 0 �⇒ ‖∇ f (x)‖ = 0. (3)

A3 There exists κχ > 0 such that χ(x) ≤ κχ for all x . By convention, from here, we
denote

φk = φ(xk), ψk = ψ(xk), χk = χ(xk) and ωk = ω(xk).
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On the convergence and worst-case complexity

A4 The functionΔ : [0,+∞)× [0,+∞) → R defining the trust-region radius is of
the form

Δ(δ, χ) = δαχβ, (4)

for some powers α ∈ (0, 1] and β ∈ [0, 1].
A5 The step sk produces a decrease in the model, which is sufficient in the sense that

mk(xk)− mk(xk + sk) ≥ κcψk min

{
φk

1 + ‖Hk‖ ,Δ(δk, χk)

}
, (5)

for some constant κc ∈ (0, 1), and where Hk is an n × n symmetric matrix
approximating the second order behavior of f in a neighbourhood of xk .

A6 The step sk satisfies the bound

‖sk‖ ≤ κsΔ(δk, χk) whenever δk ≤ κδχk, (6)

for some constants κs ≥ 1 and κδ > 0.
A7 For all k ≥ 1, the model mk(xk + s) : R

n → R satisfies

mk(xk) = f (xk) and f (xk + s)− mk(xk + s) ≤ κm‖s‖2 ∀s ∈ R
n, (7)

for some constant κm > 0.

Now, the algorithm proposed by Toint [19] can be summarized as follows.

Algorithm 1. (Nonlinear Stepsize Control Algorithm)

Step 0 Given x1 ∈ R
n , H1 ∈ R

n×n , δ1 > 0, 0 < γ1 < γ2 < 1 and 0 < η1 ≤ η2 < 1,
set k := 1.

Step 1 Choose a model mk(xk + s) satisfying A7 and find a step sk which sufficiently
reduces the model in the sense of A5 for which ‖sk‖ satisfies A6.

Step 2 Compute the ratio

ρk = f (xk)− f (xk + sk)

mk(xk)− mk(xk + sk)
, (8)

set the next iterate

xk+1 =
{

xk + sk, if ρk ≥ η1,

xk, otherwise,
(9)

and choose the stepsize parameter δk+1 by the update rule

δk+1 ∈

⎧⎪⎨
⎪⎩

[
γ1δk, γ2δk

]
, if ρk < η1,[

γ2δk, δk
]
, if ρk ∈ [η1, η2),

[δk,+∞] , if ρk ≥ η2.

(10)
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Step 3 Compute Hk+1, set k := k + 1 and go to Step 1.

It is shown in Toint [19] that Algorithm 1 covers the following algorithms:

• the classical trust-region algorithm [5,14]:

mk(xk + s) ≡ f (xk)+ ∇ f (xk)
T s + 1

2
sT Hks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖,
δk = Δk, α = 1, β = 0,

• the ARC algorithm of Cartis et al. [2]:

mk(xk + s) ≡ f (xk)+ ∇ f (xk)
T s + 1

2
sT Hks + 1

3
σk‖s‖3,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖,
δk = 1

σk
, α = 1

2
, β = 1

2
,

• the quadratic regularization algorithm for f (x) = ‖F(x)‖ proposed by Nesterov
[13] (as extended in [1]):

mk(xk + s) ≡ ‖F(xk)+ JF (xk)s‖ + σk‖s‖2,

ω(x) = ‖F(x)‖, ψ(x) = χ(x) = ‖JF (x)T F(x)‖
‖F(x)‖ ,

φ(x) = ‖JF (x)
T F(x)‖, δk = 1

σk
, α = 1, β = 1,

where JF (x) is the Jacobian of F at x ,
• the trust region algorithm of Fan and Yuan [9]:

mk(xk + s) ≡ f (xk)+ ∇ f (xk)
T s + 1

2
sT Hks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖,
δk = μk, α = 1, β = 1,

• the quadratic regularization algorithms for f (x) = (1/2)‖F(x)‖2 proposed by
Zhang and Wang [24] and Fan [8]:

mk(xk + s) ≡ 1

2
‖F(xk)+ JF (xk)s‖2,

ω(x) = 1, φ(x) = ψ(x) = ‖JF (x)
T F(x)‖,

χ(x) = ‖F(x)‖γ , δk = ν j , α = 1, β = 1,

where γ ∈ ( 1
2 , 1), ν ∈ (0, 1), and j is reset to zero when a new iterate is accepted

and incremented by one otherwise.
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Toint [19] also provides a global convergence analysis for Algorithm 1, showing
the weak and strong convergence under conditions A1–A7 and the assumption that
the sequence {‖Hk‖} is bounded above. However, for suitable quasi-Newton update
formulas one can prove that

‖Hk‖ ≤ c1 + c2k (11)

(see Section 8.4 in Conn et al. [5]), even when the boundedness of {‖Hk‖} is not
explicit. On the other hand, regarding the worst-case complexity of Algorithm 1,
Toint [19] argues that the structure of the algorithm and assumptions A1–A7 suggest
an upper bound of O(ε−3) iterations for the algorithm to reduce the size of a first-order
criticality measure below ε. But, no proof was given for this iteration bound.

Motivated by these observations, in this paper we show the convergence of a slight
modification of Algorithm 1, assuming that (11) is satisfied for all k. Furthermore, if
the matrices Hk are uniformly bounded, we prove that this algorithm requires at most
O(ε−(2+β)) iterations to reduce the size of a first-order criticality measure below ε,
which is a complexity bound less pessimistic than that one discussed by Toint [19]. For
the particular case in which α+β ≤ 1, 2α+β ≥ 1 and φk, ψk ≥ χk (which includes
the ARC algorithm), this estimate is even improved to O(ε−2) iterations. These results
are then extended to some algorithms for composite nonsmooth optimization (NSO)
and unconstrained multiobjective optimization (MOO).

The paper is organized as follows. In Sect. 2, the global convergence results are
given. The worst-case complexity is investigated in Sect. 3. Finally, in Sect. 4, the
results of the two previous sections are extended for composite NSO and unconstrained
MOO.

2 Global convergence analysis

In this section, the global convergence is shown for a slight modification of Algorithm
1 with Hk satisfying (11). Specifically, we replace (10) by a slightly more restrictive
rule:

δk+1 ∈

⎧⎪⎨
⎪⎩

[
γ1δk, γ2δk

]
, if ρk < η1,[

γ2δk, γ3δk
]
, if ρk ∈ [η1, η2),[

δk, γ4δk
]
, if ρk ≥ η2,

(12)

where 0 < γ1 < γ2 < γ3 < 1 < γ4. Moreover, we can replace A3, A6 and A7 by the
slightly weaker conditions:

A3′′ There exists κχ > 0 such that

χk ≤ κχ , for all k.

A6′′ The step sk satisfies the bound

‖sk‖ ≤ κsΔ(δk, χk), whenever δk M
1
α

k ≤ κδχk,
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for some constants κs ≥ 1 and κδ > 0, where

Mk = 1 + max
1≤i≤k

‖Hi‖.

A7′′ For all k ≥ 1, the model mk(xk + s) : R
n → R satisfies

mk(xk) = f (xk) and f (xk + sk)− mk(xk + sk) ≤ κm‖sk‖2,

for some constant κm > 0.

Remark 1 For convenience, for the rest of the paper, when we refer to A3, A6 and A7
we actually mean conditions A3′′, A6′′ and A7′′, respectively.

Remark 2 Except by the ARC algorithm, for all the other algorithms mentioned in
Sect. 1, there exists κs ≥ 1 such that ‖sk‖ ≤ κsΔ(δk, χk) for all k, and so A6 is
naturally satisfied. For the ARC algorithm, recall that δk = 1/σk , χk = ‖∇ f (xk)‖
and α = β = 1/2. Then, by Lemma 2.2 in Cartis et al. [2] (see the proof),

‖sk‖ ≤ 3 max {δk‖Hk‖,Δ(δk, χk)} .

Note that, in this case,

δk M
1
α

k ≤ χk �⇒ δk‖Hk‖2 ≤ χk �⇒ δ
1
2
k ‖Hk‖ ≤ χ

1
2

k

�⇒ δk‖Hk‖ = δ
1
2
k δ

1
2
k ‖Hk‖ ≤ δ

1
2
k χ

1
2

k = Δ(δk, χk),

and so, ‖sk‖ ≤ 3Δ(δk, χk). Hence, the ARC algorithm satisfies A6 with κs = 3 and
κδ = 1.

The lemma below provides a lower bound for δαk . Its proof is based on the proof of
the lemma on page 299 of Powell [16].

Lemma 1 Suppose that A1–A7 hold. If there exists ε > 0 such that

min {φk, ψk, χk} ≥ ε for all k, (13)

then, there exists a constant τ > 0 such that

δαk ≥ τ

Mk
for all k, (14)

where Mk is defined by

Mk = 1 + max
1≤i≤k

‖Hi‖. (15)

Proof We show by induction that (14) holds with

τ = min
{
δα1 M1, (γ1κδε)

α , γ α1 ε/κ
β
χ , γ

α
1 κcε(1 − η2)/κ

β
χ κmκ

2
s

}
. (16)
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By the definition of τ , clearly (14) holds for k = 1. Assuming that (14) is true for k,

we prove that (14) is also true for k + 1. If δk M
1
α

k > κδχk , it follows from (13), (15),
(12) and (16) that

δk >
κδε

M
1
α

k

≥ κδε

M
1
α

k+1

, (17)

�⇒ δαk+1 ≥ γ α1 δ
α
k >

(γ1κδε)
α

Mk+1
≥ τ

Mk+1
, (18)

that is, (14) holds for k + 1. Therefore, for the remainder of the proof we assume

δk M
1
α

k ≤ κδχk , which by A6 provides us the bound

‖sk‖ ≤ κsΔ(δk, χk). (19)

From A5 and (13) it follows that

mk(xk)− mk(xk + sk) ≥ κcεmin

{
ε

1 + ‖Hk‖ ,Δ(δk, χk)

}
. (20)

Then, by (8), A7, (20) and (19),

1 − ρk = f (xk + sk)− mk(xk + sk)

mk(xk)− mk(xk + sk)

≤ κmκ
2
sΔ(δk, χk)

2

κcεmin

{
ε

1 + ‖Hk‖ ,Δ(δk, χk)

} . (21)

Suppose that

δαk κ
β
χ < min

{
ε

1 + ‖Hk‖ ,
κcε(1 − η2)

κmκ2
s

}
. (22)

In this case, by A4 and A3 we have

Δ(δk, χk) = δαk χ
β
k ≤ δαk κ

β
χ < min

{
ε

1 + ‖Hk‖ ,
κcε(1 − η2)

κmκ2
s

}
, (23)

which implies in (21) that

1 − ρk ≤ κmκ
2
sΔ(δk, χk)

2

κcεΔ(δk, χk)
= κmκ

2
sΔ(δk, χk)

κcε
< 1 − η2

�⇒ ρk > η2. (24)

Thus, from rule (12), the induction assumption and the inequality Mk+1 ≥ Mk it
follows that
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δk+1 ≥ δk �⇒ δαk+1 ≥ δαk ≥ τ

Mk
≥ τ

Mk+1
, (25)

and so (14) holds for k + 1.
Finally, suppose that (22) is not true. Then, from (12), (15) and (16), it follows that

δαk+1 ≥ γ α1 δ
α
k ≥ min

{
γ α1 ε

κ
β
χ (1 + ‖Hk‖)

,
γ α1 κcε(1 − η2)

κ
β
χ κmκ2

s

}

≥
min

{
γ α1 ε/κ

β
χ , γ

α
1 κcε(1 − η2)/κ

β
χ κmκ

2
s

}
Mk+1

≥ τ

Mk+1
. (26)

This shows that (14) holds for k + 1 and completes the proof. ��
In what follows, we consider the lemma below given by Yuan [22], which and

whose proof are due to Powell [16].

Lemma 2 Let {μk} and {Mk} be two sequences of real numbers such thatμk ≥ τ

Mk
>

0, where τ is a positive constant. Let J be a subset of {1, 2, 3, . . .} and assume that

μk+1 ≤ c3μk, k ∈ J, (27)

μk+1 ≤ c4μk, k /∈ J, (28)

Mk+1 ≥ Mk, k ≥ 1, (29)∑
k∈J

1

Mk
< +∞, (30)

where c3 > 1 and c4 < 1 are positive constants. Then

∞∑
k=1

1

Mk
< +∞. (31)

Proof See Lemma 3.4 in Yuan [22]. ��
The proof of the next lemma is based on the proof of Lemma 3.3 in Dai and Xu [6].

Lemma 3 The conditions of Lemma 1, including bound (13), imply that (31) holds
for Mk defined by (15).

Proof Consider the set J2 = {k | ρk ≥ η2}. From update rule (12) and definition (15)
of Mk , it follows that

δαk+1 ≤ γ α4 δ
α
k , k ∈ J2, (32)

δαk+1 ≤ γ α3 δ
α
k , k /∈ J2, (33)

Mk+1 ≥ Mk, k ≥ 1, (34)
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where γ α4 > 1 and γ α3 < 1 are positive constants. Moreover, since { f (xk)} is non-
increasing and bounded below, definition of J2, Conditions A5 and A4, bound (13),
Eq. (15) and Lemma 1 imply that

+ ∞ >

∞∑
k=1

( f (xk)− f (xk+1)) ≥
∑
k∈J2

( f (xk)− f (xk+1))

≥ η2

∑
k∈J2

[mk(xk)− mk(xk + sk)]

≥ η2

∑
k∈J2

κcεmin

{
ε

1 + ‖Hk‖ , δ
α
k ε
β

}

≥ η2κcε
∑
k∈J2

min

{
ε

Mk
,
τ

Mk
εβ

}

= η2κcεmin
{
ε, τεβ

} ∑
k∈J2

1

Mk
. (35)

Therefore,
∑

k∈J2
1/Mk < +∞ and, by Lemma 2 (with μk = δαk , J = J2, c3 = γ α4

and c4 = γ α3 ), we conclude that this lemma is true. ��
Now, we are ready to give the global convergence results. The proof of the next

theorem is based on the proofs of Theorem 3.4 in Toint [19] and Theorem 3.5 in Yuan
[22].

Theorem 1 Suppose that A1–A7 hold. Moreover, assume that

∞∑
k=1

1/Mk = +∞, (36)

with Mk defined by (15). Then,

lim inf
k→+∞ ωk = 0, (37)

or

lim inf
k→+∞ min {φk, ψk, χk} = 0. (38)

Therefore, at least one limit point of the sequence {xk} (if any exists) is a stationary
point of f .

Proof If (37) holds, then the conclusion follows from A1. Otherwise, there exist
εω > 0 such that

ωk ≥ εω for all k. (39)
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In this case, if (38) holds, the conclusion follows from A2. Thus, suppose by contradic-
tion that the bound (13) is true for some ε > 0. Then, by Lemma 3, we have that (31)
holds for Mk defined by (15), which contradicts assumption (36). This contradiction
shows that this theorem is true. ��

Corollary 1 Suppose that A1–A7 hold. If all the matrices Hk satisfy (11), then at least
one limit point of the sequence {xk} (if any exists) is a stationary point of f .

Proof Indeed, it follows from (15) and (11) that

Mk ≤ 1 + max
1≤i≤k

{c1 + c2i} ≤ (1 + c1 + c2) k �⇒ 1

(1 + c1 + c2)

1

k
≤ 1

Mk
.

Since the harmonic series
∑∞

k=1 1/k is divergent, from the comparison test for numeric
series it follows that

∑∞
k=1 1/Mk = +∞. Hence, the conclusion follows from Theo-

rem 1. ��

3 Worst-case complexity analysis

This section is divided in two parts. In the first subsection, an iteration complexity
bound is obtained for Algorithm 1 with update rule (12). Then, under additional
conditions, an improved complexity bound is given in the second subsection. Although
the convergence of Algorithm 1 has been proved under bound (11), to obtain the
complexity bounds we shall consider the stronger Condition:

A8 There exists a constant κH > 0 such that ‖Hk‖ ≤ κH for all k.

By convenience, we say that iteration k is successful whenever ρk ≥ η1, very suc-
cessful whenever ρk ≥ η2 and unsuccessful whenever ρk < η1. From this naming,
we consider the following notation:

S = {k ≥ 1 | k successful} , (40)

S j = {k ≤ j | k ∈ S} , for each j ≥ 1, (41)

U j = {k ≤ j | k /∈ S} for each j ≥ 1, (42)

Fk = min {ωk, φk, ψk, χk} , k ≥ 1, and (43)

SεF = {k ∈ S | Fk > ε} , ε > 0, (44)

where S j and U j form a partition of {1, . . . , j}, and |S j |, |U j | and |SεF | will denote
the cardinality of these sets. Furthermore, let S0 be a generic index set such that

S0 ⊆ SεF , (45)

and whose cardinality is denoted by |S0|.
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3.1 General case

We start considering the lemma below, which provides an upper bound on |S0|.
Lemma 4 Let { f (xk)} be bounded below by flow. Given any ε > 0, let SεF and S0 be
defined in (44) and (45), respectively. Suppose that the successful iterates xk generated
by Algorithm 1 have the property that

mk(xk)− mk(xk + sk) ≥ αcε
p, for all k ∈ S0, (46)

where αc is a positive constant independent of k and ε, and p > 0. Then,

|S0| ≤ ⌈
κpε

−p⌉ , (47)

where κp ≡ ( f (x1)− flow) / (η1αc).

Proof See Theorem 2.2 in Cartis et al. [3]. ��
Remark 3 As pointed by Cartis et al. [3], if (46) holds with S0 = SεF , then (47) implies
that Algorithm 1 takes at most

⌈
κpε

−p
⌉

successful iterations to generate an iterate k
such that Fk+1 ≤ ε.

The next result gives a lower bound for δαk and is crucial in the further analysis.

Lemma 5 Suppose that A1–A8 hold and ε ∈ (0, 1]. If

min {φk, ψk, χk} ≥ ε, for k = 1, . . . , j, (48)

then there exists a constant τ̄ > 0 independent of k and ε such that

δαk ≥ τ̄

1 + κH
ε, for k = 1, . . . , j + 1. (49)

Proof By the same argument used to prove Lemma 1, we can see that

δαk ≥ τ

Mk
, for k = 1, . . . , j + 1, (50)

where Mk and τ are given by (15) and (16), respectively. Due to Condition A8, we have
the inequality Mk ≤ 1 + κH for all k. On the other hand, the assumptions ε ∈ (0, 1]
and α ∈ (0, 1] imply that εα ≥ ε. Then, by (16) we obtain the inequality τ ≥ τ̄ ε,
where

τ̄ = min
{
δα1 M1, (γ1κδ)

α, γ α1 /κ
β
χ , γ

α
1 κc(1 − η2)/κ

β
χ κmκ

2
s

}

is independent of k and ε. Hence, combining these two observations with (50) we
conclude that

δαk ≥ τ̄

1 + κH
ε, for k = 1, . . . , j + 1. (51)

��
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The next theorem provides an iteration complexity bound for Algorithm 1 with rule
(12). Its proof is based on the proofs of Theorem 2.1 and Corollary 3.4 in Cartis et al.
[3], and on the proof of Theorem 2.4 in Cartis et al. [4].

Theorem 2 Let Conditions A1–A8 hold and { f (xk)} be bounded below by flow . Given
any ε ∈ (0, 1], assume that F1 > ε and let j1 ≤ +∞ be the first iteration such that
Fj1+1 ≤ ε. Then, Algorithm 1 with update rule (12) takes at most

Ls
1 ≡

⌈
κs

cε
−(2+β)⌉ (52)

successful iterations to generate Fj1+1 ≤ ε, where

κs
c ≡ ( f (x1)− flow) / (η1αc) , αc ≡ (κc min {1, τ̄ }) /(1 + κH ). (53)

Furthermore,

j1 ≤
⌈
κdε

−(2+β)⌉ ≡ L1, (54)

and so Algorithm 1 takes at most L1 (successful and unsuccessful) iterations to gen-
erate Fj1+1 ≤ ε, where

κd ≡
(

1 − log(γ−α
4 )

log(γ−α
2 )

)
κs

c + (1 + κH )δ
α
1

τ̄ log(γ−α
2 )

.

Proof The definition of j1 in the statement of the Theorem implies that

min {φk, ψk, χk} > ε, for k = 1, . . . , j1. (55)

Thus, by A5, A4, (55), A8, Lemma 5 and the inequality εβ ≤ 1, we have

mk(xk)− mk(xk + sk) ≥ κcεmin

{
ε

1 + κH
,

ετ̄

1 + κH
εβ

}

= κc min
{
1, τ̄ εβ

}
1 + κH

ε2

≥ κc min {1, τ̄ }
1 + κH

ε2+β

= αcε
2+β, for k = 1, . . . , j1, (56)

whereαc is defined by (53). Now, with j = j1 in (41) and (42), Lemma 4 with S0 = S j1
and p = 2 + β provides the complexity bound

|S j1 | ≤ Ls
1, (57)

where Ls
1 is defined by (52).
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On the other hand, from rule (12) and Lemma 5 it follows that

δαk+1 ≤ γ α4 δ
α
k , if k ∈ S j1 ,

δαk+1 ≤ γ α2 δ
α
k , if k ∈ U j1,

δαk ≥ τ̄

1 + κH
ε, for k = 1, . . . , j1 + 1.

Thus, considering νk ≡ 1/δαk , we have

α4νk ≤ νk+1, if k ∈ S j1 , (58)

α2νk ≤ νk+1, if k ∈ U j1 , (59)

νk ≤ ν̄ε−1, for k = 1, . . . , j1 + 1, (60)

where α4 = γ−α
4 ∈ (0, 1), α2 = γ−α

2 > 1 and ν̄ = (1 + κH )/τ̄ . From (58) and (59)
we deduce inductively

ν1α
|S j1 |
4 α

|U j1 |
2 ≤ ν j1+1.

Hence, from (60) it follows that

α
|S j1 |
4 α

|U j1 |
2 ≤ ν̄

ν1
ε−1,

and so, taking logarithm on both sides, we get

|U j1 | ≤
[
− log(α4)

log(α2)
|S j1 | + ν̄

ν1log(α2)
ε−1

]
. (61)

Finally, since j1 = |S j1 | + |U j1 | and ε−(2+β) ≥ ε−1, the bound (54) is the sum of
the upper bounds (57) and (61). ��
Remark 4 In words, Theorem 2 says that Algorithm 1 [with rule (12)] requires at most
O(ε−(2+β)) iterations to drive the optimality measure Fk below the desired accuracy
ε, which is less pessimistic than the bound of O(ε−3) iterations discussed by Toint
[19]. This improved complexity result is due to the bound Δ(δk, χk) ≥ O(ε1+β)
derived from Lemma 5, which is sharper than the boundΔ(δk, χk) ≥ O(ε2) given by
Lemma 3.2 in [19]. Table 1 below summarizes the complexity bounds obtained from
Theorem 2 for the algorithms mentioned in Sect. 1.

3.2 Particular case

The generality of the nonlinear stepsize control framework and of our analysis may
lead to pessimistic complexity results. An example is the ARC algorithm, for which
the complexity bound of O(ε−5/2) derived from Theorem 2 is worse than the bound

123



G. N. Grapiglia et al.

Table 1 Worst-case complexity
bounds

Algorithm β Complexity bound

Classical trust-region [5,14] 0 O(ε−2)

ARC algorithm [2,3] 1/2 O(ε−5/2)

Quadratic regularization [1,13] 1 O(ε−3)

Trust-region of Fan and Yuan [9] 1 O(ε−3)

Quadratic regularization [8,24] 1 O(ε−3)

of O(ε−2) obtained by Cartis et al. [3]. In this subsection, we shall refine the analy-
sis to prove a complexity bound of O(ε−2) for a subclass of methods represented
by Algorithm 1, including the ARC algorithm. For that, we consider the additional
Conditions:

A9 The powers α and β satisfy the inequality α + β ≤ 1.
A10 For all k, φk ≥ χk and ψk ≥ χk .
A11 The powers α and β satisfy the inequality 2α + β ≥ 1.

The proof of the next lemma is based on the proof of Lemma 3.2 in Cartis et al. [3].

Lemma 6 Let Conditions A1–A8 hold. Also, assume that

(
1

δk

)α
min

{
χαk , χ

−β
k φk, χ

−β
k ψk

}

> max

{
κmκ

2
s

(1 − η2)κc
,

1 + κH

καδ
, 1 + κH

}
≡ κH B . (62)

Then, iteration k is very successful and consequently

δk+1 ≥ δk . (63)

Proof Inequality (62) imply that min {φk, ψk, χk} > 0, and so, by Condition A5, we
have mk(xk)− mk(xk + sk) > 0. Hence, it follows from (8) that

ρk > η2 ⇐⇒ rk ≡ f (xk + sk)− f (xk)− η2 [mk(xk + sk)− mk(xk)] < 0. (64)

In order to prove (63), we shall derive a negative upper bound on rk . First, from the
equality mk(xk) = f (xk), note that

rk = [ f (xk + sk)− mk(xk + sk)] + (1 − η2) [mk(xk + sk)− f (xk)] . (65)

A bound for the first term in (65) is given by Condition A7:

f (xk + sk)− mk(xk + sk) ≤ κm‖sk‖2. (66)
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On the other hand, by (62), Condition A8 and (15), we have

(
1

δk

)α
χαk >

1 + κH

καδ
�⇒ καδ χ

α
k > δαk (1 + κH ) ≥ δαk Mk

�⇒ δk M
1
α

k < κδχk .

Hence, Condition A6 implies that ‖sk‖ ≤ κsΔ(δk, χk), which together with (66) and
Condition A4 gives

f (xk + sk)− mk(xk + sk) ≤ κmκ
2
s δ

2α
k χ

2β
k . (67)

Regarding the second difference in (65), from (62) and A8 note that

(
1

δk

)α
χ

−β
k φk > 1 + κH ≥ 1 + ‖Hk‖,

and so

Δ(δk, χk) = δαk χ
β
k = φk(

1

δk

)α
χ

−β
k φk

<
φk

1 + ‖Hk‖ .

Consequently, by Conditions A5 and A7, we obtain

f (xk)− mk(xk + sk) ≥ κcψkΔ(δk, χk) = κcψkδ
α
k χ

β
k

�⇒ mk(xk + sk)− f (xk) ≤ −κcδ
α
k χ

β
k ψk . (68)

Now, (65), (67) and (68) provide the following upper bound for rk , namely,

rk ≤ κmκ
2
s δ

2α
k χ

2β
k − (1 − η2)κcδ

α
k χ

β
k ψk

= δ2α
k χ

2β
k

[
κmκ

2
s − (1 − η2)κc

(
1

δk

)α
χ

−β
k ψk

]
.

But, it follows from (62) that

(
1

δk

)α
χ

−β
k ψk >

κmκ
2
s

(1 − η2)κc
�⇒ (1 − η2)κc

(
1

δk

)α
χ

−β
k ψk > κmκ

2
s

�⇒ κmκ
2
s − (1 − η2)κc

(
1

δk

)α
χ

−β
k ψk < 0.

Thus, rk < 0, which means that k is very successful. Therefore, (63) follows from
(12). ��

The next lemma gives a lower bound on δk when Fk is bounded away from zero.
Its proof is based on the proof of Lemma 3.3 in Cartis et al. [3].
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Lemma 7 Let Conditions A1–A10 hold. Also, let ε ∈ (0, 1] such that Fk > ε for all
k = 1, . . . , j , where j ≤ +∞. Then, there exists τ̄ > 0 independent of k and ε such
that

δk ≥ τ̄ ε(1−β)/α for k = 1, . . . , j + 1. (69)

Proof First, by induction, we shall prove that

δk ≥ min

{
δ1,

γ1

κ
1/α
H B

ε(1−β)/α
}
, (70)

for k = 1, . . . , j + 1, where κH B is defined as the constant in the right hand side of
(62). Clearly, (70) is true for k = 1. We assume that (70) is true for k ∈ {1, . . . , j}
and prove it is also true for k + 1. From inequalities φk, ψk ≥ χk (due to A10),
Fk > ε ∈ (0, 1] and 0 < α ≤ (1 − β) (due to A9), it follows that

min
{
χαk , χ

−β
k φk, χ

−β
k ψk

}
≥ min

{
χαk , χ

(1−β)
k

}

≥ min
{
εα, ε(1−β)}

= ε(1−β) (71)

Therefore, by (62), Lemma 6 and the induction assumption, if
(

1

δk

)α
ε(1−β) > κH B, (72)

then

δk+1 ≥ δk ≥ min

{
δ1,

γ1

κ
1/α
H B

ε(1−β)/α
}
, (73)

and so, (70) is true for k + 1.
Now, suppose that (72) is not true. Then

(
1

δk

)α
ε(1−β) ≤ κH B �⇒ 1

δk
ε(1−β)/α ≤ κ

1/α
H B

�⇒ δk ≥ 1

κ
1/α
H B

ε(1−β)/α

and by rule (12) we see that (70) is true for k + 1:

δk+1 ≥ γ1δk ≥ γ1

κ
1/α
H B

ε(1−β)/α ≥ min

{
δ1,

γ1

κ
1/α
H B

ε(1−β)/α
}
.

Finally, since ε(1−β)/α ≤ 1, by (70) we conclude that, for k = 1, . . . , j + 1,

δk ≥ min

{
δ1,

γ1

κ
1/α
H B

}
ε(1−β)/α = τ̄ ε(1−β)/α, (74)
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where τ̄ is independent of k and ε. ��
We are now ready to obtain an iteration complexity bound in this particular case.

The proof is a direct adaptation of the proof of Theorem 2.

Theorem 3 Let Conditions A1–A10 hold and { f (xk)} be bounded below by flow.
Given any ε ∈ (0, 1], assume that F1 > ε and let j1 ≤ +∞ be the first iteration such
that Fj1+1 ≤ ε. Then, Algorithm 1 with update rule (12) takes at most

Ls
1 ≡

⌈
κs

cε
−2

⌉
(75)

successful iterations to generate Fj1+1 ≤ ε, where

κs
c ≡ ( f (x1)− flow) /(η1αc), αc = κc min

{
1/(1 + κH ), τ̄

α
}
. (76)

Additionally, assume that Condition A11 holds. Then,

j1 ≤
⌈
κdε

−2
⌉

≡ L1, (77)

and so Algorithm 1 takes at most L1 (successful and unsuccessful) iterations to gen-
erate Fj1+1 ≤ ε, where

κd ≡
(

1 − log(γ−1
4 )

log(γ−1
2 )

)
κs

c + δ1

τ̄ log(γ−1
2 )

.

Proof The definition of j1 in the statement of the Theorem implies that

min {φk, ψk, χk} > ε, for k = 1, . . . , j1. (78)

Thus, by A5, A4, (78), A8 and Lemma 7,

mk(xk)− mk(xk + sk) ≥ κcεmin

{
ε

1 + κH
,
(
τ̄ ε(1−β)/α)α εβ

}

= κcεmin

{
ε

1 + κH
, τ̄ αε

}

= κc min

{
1

1 + κH
, τ̄ α

}
ε2

= αcε
2, for k = 1, . . . , j1, (79)

whereαc is defined by (76). Now, with j = j1 in (41) and (42), Lemma 4 with S0 = S j1
and p = 2 provides the complexity bound

|S j1 | ≤ Ls
1, (80)

where Ls
1 is defined by (75).
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On the other hand, from rule (12) and Lemma 7 it follows that

δk+1 ≤ γ4δk, if k ∈ S j1 ,

δk+1 ≤ γ2δk, if k ∈ U j1,

δk ≥ τ̄ ε(1−β)/α, for k = 1, . . . , j1 + 1.

Thus, considering νk ≡ 1/δk , we have

α4νk ≤ νk+1, if k ∈ S j1 , (81)

α2νk ≤ νk+1, if k ∈ U j1 , (82)

νk ≤ ν̄ε−(1−β)/α, for k = 1, . . . , j1 + 1, (83)

where α4 = γ−1
4 ∈ (0, 1), α2 = γ−1

2 > 1 and ν̄ = τ̄−1. From (81) and (82) we
deduce inductively

ν1α
|S j1 |
4 α

|U j1 |
2 ≤ ν j1+1.

Hence, from (83) it follows that

α
|S j1 |
4 α

|U j1 |
2 ≤ ν̄

ν1
ε−(1−β)/α,

and so, taking logarithm on both sides, we get

|U j1 | ≤
[
− log(α4)

log(α2)
|S j1 | + ν̄

ν1log(α2)
ε−(1−β)/α

]
. (84)

Finally, since j1 = |S j1 | + |U j1 | and ε−2 ≥ ε−(1−β)/α (due to Condition A11), the
bound (77) is the sum of the upper bounds (80) and (84). ��
Remark 5 Note that Conditions A9–A11 are satisfied for the ARC algorithm [2,3],
where α = β = 1/2 and φ = ψ = χ . Hence, Theorem 3 provides the known
complexity bound of O(ε−2) iterations for this algorithm.

The complexity result given by Theorem 3 is due to the bound Δ(δk, χk) ≥ O(ε)
derived from Lemma 7. It is worth notice that, with a specific analysis, such bound
can also be obtained for the quadratic regularization algorithm in [1]. In fact, as we
saw in Sect. 1, for this algorithm we have α = 1, β = 1 and δk = 1/σk , where σk is
the quadratic regularization parameter. Suppose that χk ≥ ε, for some ε ∈ (0, 1]. By
Lemma 4.7 in [1], there exists σmax > 0, independent of k and ε, such that σk ≤ σmax .
Consequently, δk ≥ 1/σmax , and so Δ(δk, χk) ≥ O(ε). Thus, by the same argument
used above, we can prove a complexity bound of O(ε−2) iterations for the quadratic
regularization algorithm in [1], which is better than the bound of O(ε−3) derived
from Theorem 2 (see Table 1). This is another example of the lack of sharpness in
the complexity bound given by Theorem 2. However, it is unclear whether a specific
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analysis can be done to yield less pessimistic complexity estimates for the trust region
algorithm of Fan and Yuan [9] or for the quadratic regularization algorithms in [8,24].

4 Extensions

As pointed by Toint [19], the nonlinear stepsize control framework is not limited to
unconstrained optimization problems. It can be extended, for example, to projection-
based trust-region algorithms for optimization of a function f (possibly non-convex)
over a convex set C . In this section, we extend the nonlinear stepsize control approach
and the results of the previous sections to algorithms for composite nonsmooth opti-
mization and unconstrained multiobjective optimization.

Throughout this section, given a point x ∈ R
n and a number r > 0, we shall

consider the following notation:

B[x, r ] ≡ {
y ∈ R

n | ‖y − x‖ ≤ r
}

and B(x, r) ≡ {
y ∈ R

n | ‖y − x‖ < r
}
.

4.1 Composite nonsmooth optimization

Consider the composite nonsmooth optimization (NSO) problem

min
x∈Rn

f (x) ≡ g(x)+ h(c(x)), (85)

where h : R
m → R is convex but may be nonsmooth, and g : R

n → R and c : R
n →

R
m are continuously differentiable.

Definition 1 (Yuan [23], page 271) A point x∗ is said to be a stationary point of f if

g(x∗)+ h(c(x∗)) ≤ g(x∗)+ ∇g(x∗)T s + h(c(x∗)+ Jc(x
∗)s), ∀s ∈ R

n, (86)

where Jc denotes the Jacobian of c.

For each x ∈ R
n , define

l(x, s) ≡ g(x)+ ∇g(x)T s + h(c(x)+ Jc(x)s), ∀s ∈ R
n . (87)

Then, for all r > 0, let

ξr (x) ≡ l(x, 0)− min‖s‖≤r
l(x, s). (88)

Following Cartis et al. [4], as a stationarity measure for f , we shall use the quantity

ξ1(x) ≡ l(x, 0)− min‖s‖≤1
l(x, s). (89)

This choice is justified by the lemma below.
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Lemma 8 Let ξ1 : R
n → R be defined by (89), and let S be a bounded subset of R

n.
Suppose that h : R

m → R is convex, and that g : R
n → R and c : R

n → R
m are

continuously differentiable. Then:

(a) ξ1 is continuous on S;
(b) ξ1(x) ≥ 0 for all x ∈ R

n;
(c) x∗ is a stationary point of f ⇐⇒ ξ1(x∗) = 0.

Proof See Lemma 2.1 in [22]. ��
Now, let us consider the following trust-region algorithm, which is a modification

of the model algorithm proposed by Fletcher [10].

Algorithm 2. (Trust-Region Algorithm for Composite NSO)

Step 0 Given x1 ∈ R
n , H1 ∈ R

n×n symmetric, Δ̄ > 0,Δ1 ∈ (
0, Δ̄

]
, 0 < γ1 < γ2 <

γ3 < 1 < γ4 and 0 < η1 ≤ η2 < 1, set k := 1.
Step 1 Let s∗

k be a solution of the subproblem

min
s∈Rn

mk(xk +s) ≡ g(xk)+∇g(xk)
T s+h(c(xk)+ Jc(xk)s)+ 1

2
sT Hks,

(90)

s. t. ‖s‖ ≤ Δk . (91)

Compute a step sk for which ‖sk‖ ≤ Δk and

mk(xk)− mk(xk + sk) ≥ γ0
[
mk(xk)− mk(xk + s∗

k )
]
, (92)

where γ0 ∈ (0, 1) is a constant independent of k.
Step 2 Compute the ratio

ρk = f (xk)− f (xk + sk)

mk(xk)− mk(xk + sk)
, (93)

set the next iterate

xk+1 =
{

xk + sk, if ρk ≥ η1,

xk, otherwise,
(94)

and choose the trust-region radius Δk+1 by the update rule

Δk+1 ∈

⎧⎪⎨
⎪⎩

[
γ1Δk, γ2Δk

]
, if ρk < η1,[

γ2Δk, γ3Δk
]
, if ρk ∈ [η1, η2),[

Δk,min
{
γ4Δk, Δ̄

}]
, if ρk ≥ η2.

(95)

Step 3 Compute Hk+1, set k := k + 1 and go to Step 1.

Remark 6 The matrix Hk is an n × n symmetric matrix approximating the second
order behavior of g and c in a neighbourhood of xk [for example, see equation (1.5)
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in [23]]. If Hk = 0 for all k, and the step sk is a solution of the subproblem (90)–
(91), then Algorihm 2 reduces to an instance of the first-order trust-region algorithm
proposed by Cartis et al. [4]. On the other hand, when g = 0, Algorithm 2 reduces to
an instance of the trust-region algorithms of Powell [15] and Yuan [22] for the problem
minx∈Rn h(c(x)). Finally, note that (95) is a particular case of (12).

We claim that, under suitable conditions and replacing the stationarity measure
‖∇ f (x)‖ by ξ1(x) in A1 and A2, Algorithm 2 is a particular case of Algorithm 1 with
the choices

mk(xk + s) ≡ g(xk)+ ∇g(xk)
T s + h(c(xk)+ Jc(xk)s)+ 1

2
sT Hks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ξ1(x),
δk = Δk, α = 1, β = 0.

(96)

Specifically, we assume the conditions below:

C1 The function h : R
m → R is convex and globally Lipschitz continuous, with

Lipschitz constant Lh ;
C2 The functions g : R

n → R and c : R
n → R

m are continuously differentiable;
C3 The gradient function of g, ∇g : R

n → R
n , and the Jacobian function of c,

Jc : R
n → R

m×n , are Lipschitz continuous on [xk, xk + sk] for all k, with
constants Lg ≥ 1 and L J , respectively;

C4 There exists a constant κH > 0 such that ‖Hk‖ ≤ κH for all k;
C5 There exists a bounded set S ⊂ R

n such that xk and xk + sk belong to S for all k.

Let us now justify our claim. Conditions A1 and A2 follow from Lemma 8(c), while
Condition A3 is satisfied due C5 and the continuity of ξ1 [Lemma 8(a)]. On the other
hand, by Step 1 in Algorithm 2, we have ‖sk‖ ≤ Δk for all k. Hence, A4 and A6
are naturally satisfied. Regarding A7, from (90) it follows that mk(xk) = f (xk). The
second part of A7 is provided by the following result.

Lemma 9 Suppose that C1–C5 hold. Then, there exists a constant κm > 0 such that
for all k,

f (xk + sk)− mk(xk + sk) ≤ κm‖sk‖2. (97)

Proof By C1 and C4, we have

f (xk + sk)− mk(xk + sk) ≤ |g(xk + sk)− g(xk)− ∇g(xk)
T sk | + κH

2
‖sk‖2

+ Lh‖c(xk + sk)− c(xk)− Jc(xk)sk‖. (98)

On the other hand, from C2 and C3 it follows that1

|g(xk + sk)− g(xk)− ∇g(xk)
T sk | ≤ Lg

2
‖sk‖2 (99)

1 See Theorem 1.2.22 in Sun and Yuan [18].
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and

‖c(xk + sk)− c(xk)− Jc(xk)sk‖ ≤ L J

2
‖sk‖2. (100)

Now, combining (98)–(100), we obtain (97) with κm = (
Lg + Lh L J + κH

)
/2. ��

It remains to prove that A5 is satisfied. For that, we consider the following lemma.

Lemma 10 Suppose that C1 holds and let r > 0. Then, for all x

ξr (x) ≥ min {1, r} ξ1(x). (101)

Proof See Lemma 2.1 in Cartis et al. [4]. ��
Now, Condition A5 follows from the theorem below. Its proof is based on the proof
of Lemma 2.2 in Yuan [22].

Lemma 11 Suppose that C1 holds. Then, there exists a constant κc ∈ (0, 1) such that,
for all k,

mk(xk)− mk(xk + sk) ≥ κcξ1(xk)min

{
ξ1(xk)

1 + ‖Hk‖ ,Δk

}
. (102)

Proof Let s∗
k be a solution of subproblem (90)–(91). Then, for all s ∈ B[0,Δk],

mk(xk)− mk(xk + s∗
k ) ≥ mk(xk)− mk(xk + s). (103)

Since h is continuous (by C1), l(x, .) is also continuous. Then, by the Weierstrass
Theorem, there exists s̃k ∈ B[0,Δk] such that

min‖s‖≤Δk
l(xk, s) = l(xk, s̃k). (104)

Now, using (103), (104), the convexity of h and the Cauchy-Schwarz inequality, for
all θ ∈ [0, 1] we obtain:

mk(xk)− mk(xk + s∗
k ) ≥ mk(xk)− mk(xk + θ s̃k)

≥ θ
[
l(xk, 0)− l(xk, s̃k)

] − 1

2
‖Hk‖Δ2

kθ
2

≥ θξΔk (xk)− 1

2
(1 + ‖Hk‖)Δ2

kθ
2. (105)

As inequality (105) holds for all θ ∈ [0, 1], we conclude that

mk(xk)− mk(xk + s∗
k ) ≥ sup

0≤θ≤1

{
θξΔk (xk)− 1

2
(1 + ‖Hk‖)Δ2

kθ
2
}

≥ 1

2
min

{
ξΔk (xk),

[
ξΔk (xk)

]2

(1 + ‖Hk‖)Δ2
k

}
. (106)
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From (92), (106) and Lemma 10, it follows that

mk(xk)− mk(xk + sk) ≥ γ0

2
min {1,Δk} ξ1(xk)min

{
1,

min {1,Δk} ξ1(xk)

(1 + ‖Hk‖)Δ2
k

}
.

(107)

If Δk ≤ 1, then (107) reduces to (102) with κc = γ0/2. Without loss of generality,
assume Δ̄ > 1. In this case, if Δk ≥ 1, it follows from (107) and Δk ≤ Δ̄ ≤ Δ̄2 that

mk(xk)− mk(xk + sk) ≥ γ0

2Δ̄2
ξ1(xk)min

{
Δk,

ξ1(xk)

1 + ‖Hk‖
}
,

which gives (102) with κc = γ0/2Δ̄2. Therefore, we obtain (102) with the constant
κc = min

{
γ0, γ0/Δ̄

2
}
/2. ��

Hence, Algorithm 2 is covered by Algorithm 1 [with update rule (12)]. By the the-
ory presented in Sect. 3, we have the following worst-case complexity result for the
composite NSO problem.

Theorem 4 Let C1–C5 hold and { f (xk)} be bounded below by flow. Then, to reduce
the stationarity measure ξ1(x) below ε ∈ (0, 1], Algorithm 2 takes at most O(ε−2)

iterations.

Remark 7 The order of the complexity bound given above is the same as that proved
by Cartis et al. [4] for a first-order trust-region method and a first-order quadratic
regularization method, which require the exact solution of the subproblem on each
iteration. However, the result presented here is more general, in the sense that Algo-
rithm 2 may employ second-order information in the models mk(xk + s) and requires
only an approximate solution of the subproblem on each iteration.

As discussed by Toint [19], the nonlinear stepsize control framework also can
be used to design new algorithms. In the case of the composite NSO problem, a
generalization of Algorithm 2 is obtained from the relaxationsα ∈ (0, 1] andβ ∈ [0, 1]
in (96). By Theorems 2 and 3, such nonlinear stepsize control trust-region algorithm
takes at most O(ε−(2+β)) iterations to reduce ξ1(x) below ε ∈ (0, 1], and this bound
is reduced to O(ε−2) when α + β ≤ 1 and 2α + β ≥ 1.

4.2 Unconstrained multiobjective optimization

Let R
m+ = {z ∈ R

m | zi ≥ 0, i = 1, . . . ,m}, R
m++ = {z ∈ R

m | zi > 0, i = 1, . . . ,m},
and consider the relations � and �w given, respectively by

y � x ⇐⇒ y − x ∈ R
m+ − {0} and y �w x ⇐⇒ y − x ∈ R

m++.

In this subsection, we shall extend the nonlinear stepsize control framework to deal
with the unconstrained multiobjective optimization (MOO) problem
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min
x∈Rn

f (x) ≡ ( f1(x), . . . , fm(x))
T . (108)

Definition 2 (Guerraggio and Luc [12], page 619) Given a point x∗ ∈ R
n ,

(a) x∗ is said to be an efficient solution of (108) when there is no y ∈ R
n such that

f (x∗) � f (y);
(b) x∗ is said to be a weakly efficient solution of (108) when there is no y ∈ R

n such
that f (x∗) �w f (y); and

(c) x∗ is said to be a local (or local weakly) efficient solution of (108) when there
exists a neighborhood N (x∗) of x∗ for which there is no y ∈ N (x∗) such that
f (x∗) � f (y) (or, respectively, f (x∗) �w f (y)).

The theorem below gives a necessary condition for a point x∗ ∈ R
n to be a local

weakly efficient solution of (108).

Theorem 5 Let f : R
n → R

m be a continuously differentiable function. If x∗ is a
local weakly efficient solution of (108), then

range(J f (x
∗)) ∩ (−R

m++) = ∅, (109)

where J f (x∗) = [∇ f1(x∗) . . .∇ fm(x∗)
]T ∈ R

m×n.

Proof See Theorem 5.1 [item (ii)–(a)] in Guerraggio and Luc [12]. ��
Definition 3 (Fliege and Svaiter [11], page 481) A point x∗ ∈ R

n is said to be a Pareto
critical point of f if it satisfies condition (109).

Remark 8 Note that when m = 1, the MOO problem (108) reduces to problem (1),
local and weakly local efficient solutions correspond to local minimizers of f , and the
Pareto criticality condition (109) implies the stationarity condition ‖∇ f (x)‖ = 0.

In order to extend Algorithm 1 to solve unconstrained multiobjective optimization
problems, we consider the conditions below:

A1′ There exists a continuous, bounded and non-negative functionω : R
n → R such

that, if ω(x) = 0 then x is a Pareto critical point of f .
A2′ There exist three continuous non-negative functions φ,ψ, χ : R

n →
R, possibly undefined at roots of ω, such that, provided ω(x) > 0, if
min {φ(x), ψ(x), χ(x)} = 0 then x is a Pareto critical point of f .

A3′ There exists κχ > 0 such that χk ≤ κχ for all k.
A4′ The function Δ : [0,+∞) × [0,+∞) → R defining the trust-region radius is

of the form

Δ(δ, χ) = δαχβ, (110)

for some powers α ∈ (0, 1] and β ∈ [0, 1];
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A5′ The step sk produces a decrease in the model, which is sufficient in the sense that

mk(xk)− mk(xk + sk) ≥ κcψk min

{
φk

1 + ‖Hk‖ ,Δ(δk, χk)

}
, (111)

for some constant κc ∈ (0, 1), and where Hk is an n × n symmetric matrix
approximating the second order behavior of the functions fi in a neighbourhood
of xk (the connection between Hk and the Hessians of the functions fi will
depend of the model mk);

A6′ The step sk satisfies the bound

‖sk‖ ≤ κsΔ(δk, χk), whenever δk M
1
α

k ≤ κδχk, (112)

for some constants κs ≥ 1 and κδ > 0, where Mk is defined by (15).
A7′ For all k ≥ 1, the model mk(xk + s) : R

n → R and the merit function� : R
n →

R satisty

mk(xk) = �(xk) and �(xk + sk)− mk(xk + sk) ≤ κm‖sk‖2, (113)

where κm > 0 is a constant.

Clearly, when m = 1, conditions A1′–A7′ are reduced to conditions A1–A7 with
�(x) = f (x) (where the correspondence between A1′–A2′ and A1–A2 follows from
Remark 10). Hence, Algorithm 1 can be generalized to MOO problems in the following
way.

Algorithm 3. (Nonlinear Stepsize Control Algorithm for unconstrained MOO)

Step 0 Given x1 ∈ R
n , H1 ∈ R

n×n symmetric, δ1 > 0, 0 < γ1 < γ2 < 1 and
0 < η1 ≤ η2 < 1, set k := 1.

Step 1 Choose a model mk(xk + s) and a function � satisfying A7′ and find a step
sk which sufficiently reduces the model in the sense of A5′ for which ‖sk‖
satisfies A6′.

Step 2 Compute the ratio

ρk = �(xk)−�(xk + sk)

mk(xk)− mk(xk + sk)
, (114)

set the next iterate

xk+1 =
{

xk + sk, if ρk ≥ η1,

xk, otherwise,
(115)

and choose the stepsize parameter δk+1 by the update rule

δk+1 ∈

⎧⎪⎨
⎪⎩

[
γ1δk, γ2δk

]
, if ρk < η1,[

γ2δk, δk
]
, if ρk ∈ [η1, η2),

[δk,+∞] , if ρk ≥ η2.

(116)
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Step 3 Compute Hk+1, set k := k + 1 and go to Step 1.

Remark 9 Note that Algorithm 3 is nothing else than Algorithm 1 applied to minimize
the merit function �. This function is used as a scalar representation of the vector
function f , and the relation between � and f is given implicitly by conditions A7′,
A5′ and A2′.

Proceeding as in Sects. 2 and 3 (with � in place of f ), we obtain the following
results, which generalize Corollary 1 and Theorems 2 and 3.

Theorem 6 Suppose that A1′–A7′ hold and let {xk} be a sequence generated by Algo-
rithm 3 with update rule (12). If {�(xk)} is bounded below and all the matrices Hk

satisfy (11), then at least one limit point of {xk} (if any exists) is a Pareto critical point
of f .

Theorem 7 Suppose that A1′–A7′ and A8 hold, and let {�(xk)} be bounded below by
�low. Then, to reduce the Pareto criticality measure Fk = min {ωk, φk, ψk, χk} below
ε ∈ (0, 1], Algorithm 3 with update rule (12) takes at most O(ε−(2+β)) iterations. If,
additionaly, A9–A11 are satisfied, then this worst-case complexity bound is reduced
to O(ε−2) iterations.

To justify our generalization of the nonlinear stepsize control algorithm, we need
provide at least one non-trivial special case of Algorithm 3. For this purpose, we
shall consider the trust-region method for unconstrained MOO recently proposed by
Villacorta et al. [21], which is called TRMP algorithm. First, let I = {1, . . . ,m} and
define the function μ : R

n → R by

μ(x) ≡ − min‖d‖≤1

(
max
i∈I

{
∇ fi (x)

T d
})
. (117)

The next result, due to Fliege and Svaiter [11], provides some useful properties of the
function μ and establishes its relation with the concept of Pareto critical points.

Lemma 12 Let f : R
n → R

m be continuously differentiable and μ : R
n → R be

defined by (117). Then,

(a) μ is continuous;
(b) μ(x) ≥ 0 for all x ∈ R

n;
(c) x∗ is a Pareto critical point of f ⇐⇒ μ(x∗) = 0.

Proof See Lemma 3 in Fliege and Svaiter [11]. ��
Now, the TRMP Algorithm can be summarized in the following way.

Algorithm 4. (TRMP Algorithm for unconstrained MOO)

Step 0 Given x1 ∈ R
n , H1 ∈ R

n×n symmetric, Δ1 > 0, 0 < γ1 < γ2 < 1 and
0 < η1 ≤ η2 < 1, set k := 1.
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Step 1 Let the model mk(xk + s) : R
n → R be defined by

mk(xk + s) ≡ max
i∈I

{
fi (xk)+ ∇ fi (xk)

T s
}

+ 1

2
sT Hks. (118)

Compute a step sk for which ‖sk‖ ≤ Δk and

mk(xk)− mk(xk + sk) ≥ κcμ(xk)min

{
μ(xk)

1 + ‖Hk‖ ,Δk

}
, (119)

where κc ∈ (0, 1) is a constant independent of k and where μ(x) is defined
by (117).

Step 2 Compute the ratio

ρk = maxi∈I { fi (xk)} − maxi∈I { fi (xk + sk)}
mk(xk)− mk(xk + sk)

, (120)

set the next iterate

xk+1 =
{

xk + sk, if ρk ≥ η1,

xk, otherwise,
(121)

and choose the trust-region radius Δk+1 by the update rule

Δk+1 ∈

⎧⎪⎨
⎪⎩

[
γ1Δk, γ2Δk

]
, if ρk < η1,[

γ2Δk,�k
]
, if ρk ∈ [η1, η2),

[Δk,+∞] , if ρk ≥ η2.

(122)

Step 3 Compute Hk+1, set k := k + 1 and go to Step 1.

Remark 10 Note that the model mk given by (118) can be rewrited as

mk(xk + s) = h( f (xk)+ J f (xk)s)+ 1

2
sT Hks,

where h( f ) = maxi∈I fi . Thus, the matrix Hk can be chosen according to equation
(1.5) in [23].

We claim that, under suitable conditions, the TRMP algorithm is a particular case
of Algorithm 3 with the choices

mk(xk + s) = max
i∈I

{
fi (xk)+ ∇ fi (xk)

T s
}

+ 1

2
sT Hks,

�(x) = max
i∈I

{ fi (x)} , ω(x) = 1, φ(x) = ψ(x) = χ(x) = μ(x), (123)

δk = Δk, α = 1 and β = 0.

123



G. N. Grapiglia et al.

Indeed, conditions A1′, A2′, A4′, A5′ and A6′ are naturally satisfied. The possibility
of obtain sk satisfying A5′ is guaranteed by Lemma 4.1, Corollary 4.1 and Lemma
4.2 in Villacorta et al. [21]. On the other hand, if we assume that xk ∈ S ⊂ R

n for
all k, with S bounded, then condition A3′ is satisfied due to the continuity of χ (=μ).
Finally, it is direct the fact that mk(xk) = maxi∈I { fi (xk)} = �(xk), while the second
part of A7′ is given by the theorem below (regarding Algorithm 4).

Theorem 8 Let f : R
n → R

m be twice continuously differentiable. Suppose that
there exist constants κ f > 0 and κH ≥ 1 such that ‖∇2 fi (x)‖ ≤ κ f for all i ∈ I and
x ∈ R

n, and ‖Hk‖ ≤ κH − 1 for all k. Then,

�(xk + sk)− mk(xk + sk) ≤ κm‖sk‖2,

where κm = max
{
κ f , κH

}
.

Proof See Proposition 5.1 in Villacorta et al. [21]. ��
Therefore, the TRMP algorithm is a particular case of Algorithm 3. As a consequence
of Theorem 7, we have the following worst-case complexity result.

Corollary 2 Assume that the conditions of Theorem 8 are satisfied. Moreover, suppose
that xk ∈ S ⊂ R

n for all k, with S bounded, and let {�(xk)} be bounded below by
�low. Then, to reduce the Pareto criticality measureμ(x) below ε ∈ (0, 1], the TRMP
algorithm [21] with update rule (12) (where δk = Δk) takes at most O(ε−2) iterations.

Remark 11 As far we know, the result above is the first iteration complexity bound
of this kind for unconstrained multiobjective optimization in which the coordinate
functions fi are allowed to be nonlinear and nonconvex.

We finish this section noting that, as in the case of composite nonsmooth opti-
mization, the nonlinear stepsize control framework also can be used to design new
algorithms for unconstrained multiobjective optimization. For example, a generaliza-
tion of the TRMP algorithm is obtained from the relaxations α ∈ (0, 1] and β ∈ [0, 1]
in (123). By Theorem 7, such nonlinear stepsize control trust-region algorithm takes
at most O(ε−(2+β)) iterations to reduce the Pareto criticality measure μ(x) below
ε ∈ (0, 1], and this bound is reduced to O(ε−2) when α + β ≤ 1 and 2α + β ≥ 1.

5 Conclusion

In this paper, we investigate the global convergence and the worst-case complexity of
the nonlinear stepsize control algorithm recently proposed by Toint [19] for uncon-
strained optimization. Using a slightly more restrictive update rule for the stepsize
parameter, we proved that the algorithm of Toint [19] still remains globally conver-
gent if we assume that the norm of the Hessians Hk of the models can grow by a
constant amount at each iteration. In this sense, our results are a generalization of
the results of Powell [14,16] for trust region algorithms. In particular, they provide a
convergence guarantee when the matrices Hk are updated by standard quasi-Newton
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methods. Furthermore, assuming that the matrices Hk are uniformly bounded, we have
proved a worst-case complexity of O(ε−(2+β)) iterations for the algorithm to achieve
the first order criticality within ε, which is less pessimistic than the bound of O(ε−3)

discussed by Toint [19]. For the particular case in which α + β ≤ 1, 2α + β ≥ 1
and φk, ψk ≥ χk (including the ARC algorithm), this estimate was even improved
to O(ε−2). Finally, we have extended the nonlinear stepsize control framework to
some algorithms for composite nonsmooth optimization and unconstrained multiob-
jective optimization, which allowed us to obtain new complexity results. As a topic for
future research, it would be interesting to investigate whether the complexity results
presented here can be obtained under weaker assumptions over Hk .
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