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Abstract. A new numerical method is presented for semi-infinite optimization problems which
guarantees that each iterate is feasible for the original problem. The basic idea is to construct concave
relaxations of the lower level problem, to compute the optimal values of the relaxation problems
explicitly, and to solve the resulting approximate problems with finitely many constraints. The
concave relaxations are constructed by replacing the objective function of the lower level problem by
its concave upper bound functions. Under mild conditions, we prove that every accumulation point of
the solutions of the approximate problems is an optimal solution of the original problem. An adaptive
subdivision algorithm is proposed to solve semi-infinite optimization problems. It is shown that the
Karush—Kuhn—Tucker points of the approximate problems converge to a Karush—-Kuhn—Tucker point
of the original problem within arbitrarily given tolerances. Numerical experiments show that our
algorithm is much faster than the existing adaptive convexification algorithm in computation time.
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1. Introduction. Semi-infinite programs refer to optimization problems with
finitely many decision variables and infinitely many constraints which can be formu-
lated as follows:

min  f(z)
(P) zeX
st. glz,y) <0 Vyevy,

where f € C1(R",R) is the objective function and g € C?(R™ x R™ RP) is the
constraint function, X = [l,u] with [ < w is a box in R, Y = [a,b] with a < b is a
box in R™. In this paper, we consider the semi-infinite problem with one semi-infinite
constraint and a one dimensional index set Y, that is p = 1 and m = 1. More general
cases, that the index set is an arbitrary set in R™ or depends on the decision variable
x, will not be discussed. However, the results proposed in this paper might be helpful
to deal with these cases.

There are many applications for semi-infinite programs such as Chebyshev approx-
imation, optimal control, robust optimization, and numerous engineering problems.
More details can be found in [5, 9, 18, 24, 28, 33, 36, 38] and references therein.

Many numerical methods have been proposed to solve semi-infinite programs,
which can be mainly classified into three categories: discretization methods, local
reduction methods, and exchange methods. We refer to [12, 19, 27] for an overview
of these methods and [29] for recent developments in semi-infinite programs. Most
of these methods may not be able to guarantee the feasibility of each iterate due to
infinitely many constraints. Let F be the feasible region of the semi-infinite constraint,
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namely,
F={zeR"|g(x,y) <0 YyeY}

Discretization methods and exchange methods approximate the feasible region F
by F:

F={zeR"|g(z,y) <0 VyeY},

where Y is a subset of Y which contains finitely many elements. The main difference
between discretization methods and exchange methods is that exchange methods drop
some constraints each time Y is updated. Local reduction methods aim to obtain a
Karush-Kuhn—Tucker point of problem (P). Therefore, the iterates of such a method
are not necessarily feasible for the original problem, though their limit might be.

The authors in [6, 7] propose a branch-and-bound framework to generate conver-
gent sequences of upper and lower bounds to solve semi-infinite problems. The upper
bound problem is obtained by using inclusion bounds and interval arithmetic. The
lower bound problem is generated by discretization. A related work is proposed in [22]
where the upper bound problem is generated based on convex and linear relaxations
of the lower level problem (to be defined later). The authors in [10, 32] present a
feasible point method by adaptively constructing the convex relaxations of the lower
level problem using the idea of the «BB optimization [1, 2]. They replace the relaxed
lower level problems by their Karush-Kuhn-Tucker conditions and solve the resulting
optimization problems with complementary constraints. In [31], the method proposed
in [10] is extended to the case where the index set is arbitrary. A recent work [23]
presents an algorithm for the global optimization of generalized semi-infinite programs
which can obtain a feasible point in finite iterations. The algorithm generates conver-
gence of lower and upper bounds which are based on deterministic global nonlinear
optimization solvers. It is an extension of the work in [20] where the index set is
independent of the decision variables.

The main challenge of semi-infinite programs comes from the infinitely many
constraints. Given a point T € R”, to know whether it is feasible for the original
problem may one require to check infinitely many constraints, or equivalently, to
solve the following lower level problem Q(z) globally, where
(Q(z)) max g(z,y) st. yeY.

yeR™
It is obvious that Z is feasible if and only if the optimal value of Q(Z) is nonpositive.
If the lower level problem (Q(x)) is convex, (Q(x)) can be rewritten equivalently as
its Karush—-Kuhn—Tucker systems. Since the index set Y is convex, this only requires
the concavity of g(z,y) with respect to y. In the case that the lower level problem is
not convex, the article [10] constructs convex relaxations of the lower level problem
with ideas from the aBB method of global optimization.

In this paper, we present a new method to construct a sequence of inner approxi-
mate regions to approximate the feasible region of the original problem. The method
is based on constructing concave relaxation problems of the lower level problem. More
precisely, we need to construct upper bound functions of the objective function of the
lower level problem.

The rest of this paper is organized as follows. In section 2 we propose our motiva-
tion and the techniques to construct upper bound functions of the constraint function.
Section 3 presents our numerical method as well as the adaptive subdivision algorithm
to obtain an approximate Karush—Kuhn—Tucker point of the original problem. Gener-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/15 to 124.16.148.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

FEASIBLE METHOD FOR SEMI-INFINITE PROGRAMS 2539

alizations and remarks about the method proposed in this paper are given in section 4.
Numerical experiments are proposed in section 5. At last, we conclude our paper in
section 6.

2. Preliminaries. In this section, we first present our motivation for dealing
with the feasibility of semi-infinite programs. Then, several upper bound functions
are proposed which are used to construct the inner approximate regions of the original
feasible region. At last, the first order necessary conditions will be introduced.

2.1. Motivation. Let Yy = {y1,¥2,...,yn} be a subset of Y which contains
finitely many elements. If we replace the index set Y in the problem (P) by Yy, the
resulting feasible set Fly is an outer approximate region of the original feasible region,
that is F' C F)y, where

Fn={zeR"|g(z,y;) <0,i=1,2,...,N}.

Our motivation is to make a small perturbation to Fx by introducing Ay =
{51, 52, ceey 5]\/} with 51 Z 0, 1 = 1, 2, ceey N, and hrnN_,OO maxlSiSN{(Si} = 0, in
order to obtain a new set

FAy)={zeR" | g(z,y;) +0; <0, i=1,2,...,N}
such that this set is contained in the original feasible region:
F(Any) CF.

In the following part, we will illustrate how to choose perturbation Ay for a given
subset Yy and refine it adaptively to approximate F' by F(Ay).

The feasible region F' can be represented by finitely many constraints if the lower
level problem has some special structures. For example, it has been mentioned that
if the lower level problem is convex, it can be rewritten as its Karush—-Kuhn—Tucker
conditions such that the upper level problem (P) can be formulated as a mathematical
program with complementarity constraints [10]. The drawback of such a method is
that extended Mangasarian—Fromovitz constraint qualification (EMFCQ) fails at all
feasible points because of the complementarity constraints [30]. Therefore, one may
obtain a stationary solution in the sense of Fritz John rather than a Karush—-Kuhn—
Tucker point.

Consider the cases that the constraint function g(z, y) is monotone or convex with
respect to y for any fixed z € X. Then we know that the maximum of the lower level
problem is attained on the boundary of the index set Y = [a,b]. This implies that
the semi-infinite constraint

g(z,y) <0VyeY
is equivalent to
max{g(z,a),g(x,b)} < 0.

It is easy to see that the above result is true when g(z,y) is monotone with respect to
y for all x € X. The latter case follows immediately from the following lemma with
C=Y and S =9Y.

LEMMA 2.1 (see [26]). Let f be a convex function, and let C = conv(S), where
S is an arbitrary set of points. Then

sup{f(z) | € C} = sup{f(z) [ = € S},

where the first supremum is attained only when the second (more restrictive) supre-
mum s attained.
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2.2. Upper bound function and interval method. Suppose that g : [a,b] —
R is a real-valued function; we say that g : [a,b] — R is an upper bound function of
g on [a,b] if

9(y) < g(y) Yy € [a, D).

There are many approaches to construct an upper bound function g for a given func-
tion g. We define the upper bound function g of g on [a, ] by adding a nonnegative
function ¢(y, «, a,b) to g, that is,

g(yv «Q, a, b) = g(y) + @(y, @, a, b),

where ¢(y, , a,b) is dependent on a parameter o and the boundary points of the
interval [a, b]. In this paper, the term ¢(y, o, a, b) is set as

« a+b 2
w(y,a,a,b)=§(y— 5 ) :

In this case, the function g(y, «, a, b) is twice continuously differentiable with respect to
y if g(y) is twice continuously differentiable. Furthermore, the second order derivative
of gy, a,a,b) is

V2g(y, a,a,b) = Vg (y) + o
It follows that g(y, a, a,b) is convex on [a, b] if the parameter « satisfies

a > max —Vig(y).
y€la,b]
On the other hand, if @ > 0, we can conclude that g(y, a, a,b) is an upper bound
function of g(y). Consequently, if

(2.1) o > max (0, max —Vzg(y)> ,

y€la,b]
function g(y, a, a, b) is a convex upper bound function of g(y) on [a, b]. We know from
Lemma 2.1 that the maximum of g(y, @, a,b) must be attained on the boundary of
[a, b], that is,

max gy, a, a,b) = max{g(a), g(b)} + = (b — a)>.
y€la,b] 8

The distance between g(y, a, a,b) and g(y) is defined as

dist(7, 9) = max {g(y. a,a,b) — g(y)} = = (b—a)”.
y€la,b] 8
Such a distance measures the tightness of the upper bound function. The smaller
the distance, the tighter the upper bound function is. From its definition, dist(g, g)
decreases quadratically to zero as |b — a| tends to zero.

Other choices of the additive term can be ¢(y, @, a,b) = a(y —a) or ¢(y, o, a,b) =
a(b—y), where « is selected such that g(y, a, a,b) is monotone. This kind of formula-
tion is widely used in Lipschitz optimization and related areas (see, e.g., [4, 13, 17]).
Furthermore, the upper bound function may have different forms. For example,

bg(a) —ag(b)  g(b) —g(a)

_ «
g(yaaaaab): b—a + b—a y+§(y_a‘)(b_y)
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with o > maxy e, ) |[V2g(y)| being an upper bound function of g(y) which can be
obtained directly by the Lagrangian interpolation formula. We skip the detailed
discussions for these cases.

Note that the computation of the parameter a in (2.1) requires us to solve a
global optimization problem. However, we can use any upper bound of the right-
hand side in (2.1). Such upper bounds can be obtained by interval methods. In the
next paragraph, we give a brief description of the interval analysis. The reader is
referred to [4, 6, 7, 21] for more details.

Given a box B = [b,b%] € R™, the width of the box is defined by w(B) =
max;<j<m{ (b} — bé)} The range of a real-valued function g(y) on B is defined by
R(g9,B) = [R',R*] = {9(y) | vy € B}. An interval function G is called an inclusion
function for ¢g(y) on B if

R(g,B) € G(B) = [G",G"].
A natural way to derive an inclusion function G is to replace each variable y; € [bé , by]
with the interval variable B; = [bé , by] and to evaluate the resulting expression using
interval arithmetic [21]. For functions with special structure, the inclusion may be
tight, that is, R(g, B) = G(B). In general, such an interval range may overestimate
the true range of the original function. However, the tightness of the inclusion can be
measured by Hausdorff metric H(R(g, B), G(B)) which is defined by

H(R(g, B),G(B)) = max{|R' — G'|,|R" — G"|}.
For general nonlinear functions, we have
H(R(g, B),G(B)) <yw(B)" and w(G(B)) < dw(B)”,

where p > 1, v > 0, and § > 0 are constants depending on the expression of the
function g(y) and the box B. It follows that a tighter inclusion can be achieved by a
subdivision of the box B.

2.3. Necessary conditions. In this subsection, we present the first order nec-
essary optimality conditions for semi-infinite programs. For clarity, we assume that
all the stationary points are contained in the interior of X.

Given a feasible point Z € F', the active index set at T is defined as

A(T) ={y €Y | g(z,y) = 0}.

Note that for z € 9F, the active index set A(Z) is nonempty and compact. Further-
more, any point y € A(Z) is a global solution of the lower level problem Q(z).
We say that the EMFCQ holds at Z € F, if there exists a vector d € R™ such that

d"V.g9(z,y) < 0Vy € A(Z).

THEOREM 2.2 (see [12]). Let z* be a local minimizer of (P). Then we have the
following:
1. There exist some nonnegative multipliers A;, 0 < j < k, and indices y; €
Alx*), 1 <j <k, with1 <k <n+1 such that Z?:o Aj =1 and

MoV f(z +ZA Vag(@*,y5)
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2. If EMFCQ holds at x*, then there exist some nonnegative multipliers \;,
1<j <k, and indices y; € A(z*), 1 < j <k, with 1 <k <n such that

+Z)\ vwg 7y])

3. Numerical method. Our numerical method consists of constructing a se-
quence of inner approximate regions and solving the resulting approximate problems
to obtain approximate solutions to the original problem. It is achieved in two steps.
First, we subdivide the index set into a union of subsets. Then we replace the lower
level problem by its relaxation problems on each subset. Furthermore, we propose a
refinement procedure to update the subdivisions which guarantees that the approxi-
mate regions are monotone.

DEFINITION 3.1. Given an integer N € N, T' = {r, | k € Ko ={0,1,2,...,N}}
is called a subdivision of the index set Y = [a,b] if

a=1 < <---<1ty=b

The length of the subinterval Y* = [r;,_1, 73] is defined by |Y*| = |7, — 7._1| and
the length of the subdivision T is defined by

|T| = maX|Y |—inax|7'k—rk 1l,

where K = {1,2,..., N}. It follows by the definition of subdivision that Y = Upe g Y'*.
A trivial observation in [10] is that the original semi-infinite constraint can be formu-
lated equivalently as the finitely many semi-infinite constraints

g(z,y) <OVyeYF ke K.

Based on such an observation, we will construct the concave relaxation problems of
the lower level problem for each of these finitely many semi-infinite constraints. Then
we solve the resulting approximate problems and refine the subdivisions adaptively
to obtain better approximate solutions of the original problem.

3.1. Approximation. Let X x Y* be a subset of X x Y; the upper bound
function ¢* of g on X x Y* is defined by

2
a Tk—1 + T}

(3.1) 9" (z,y) = g(z,y) + 7]“ (y - %) ,

where the parameter oy, satisfies

(3.2) Q> max {O, (w)ygxéz)m{xxyk ~Vig(z, y)} .

Some useful properties of the upper bound function ¢g* are summarized in the
following lemma which is easily verified.

LEMMA 3.2. Given a subdiwision T = {1, | k € Ko = {0,1,2,...,N}} of the
index set' Y, let g (x,y) be defined by (3.1) for each k € {1,2,..., N}. If the parameter
oy, satisfies (3.2), then we have the following:

(i) g%(x,y) is an upper bound function of g(z,y) on X x Y, that is,

g(z,y) < g (z,y) V(z,y) € X x Y*.
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(ii) For any fived x € X, g*(x,y) is convex with respect to y, which implies that

max gk(x, y) = max{gk(x,m,l),gk(x, k) }-
yeYk

(iii) The distance between g*(x,y) and g(x,y) on X x Y* is

i - Xk 2
(z,y?éé)l(xxyk(g (Qf,y) g(x,y)) 3 (Tk Tk—l) .

For any given subdivision T = {7 | ¥ € Ky = {0,1,2,...,N}} of the index
set Y, with the parameters ai, k € K = {1,2,..., N}, being selected by (3.2), the
approximate region F(«,T) of F is defined by

F(a,T)={z €R" | ¢*(z,y) <OVy e Y* k€ K}.

By the first result (i) in Lemma 3.2, we know that F(«,7) C F. Furthermore, the
result (ii) in Lemma 3.2 implies that

(3.3) F(a,T) ={z € R" | g"(x,7,_;) <0,k € K,i=0,1}.

We can see from (3.3) that the total number of constraints of F(a,T) are 2N.
However, not all these constraints are necessary since F'(«,T') can be represented by
N + 1 constraints where each subdivision point in T" contributes to one constraint:

gl(vaO)Soa
(3.4) Fla,T)={2zeR"| gFz,7)<0,k=1,2,...,N—1,
gN(vaN)Sov

2 2
_k o % Tk — Tk—1 Q41 [ Tk+1 — Tk
g"(x, 1) —g(ﬂ:,m)—l—max{ 5 < 5 ) o ( 5 ) }

Denoting §°(x,79) = g'(z,7) and g% (z,7n) = g™ (z, 7n), (3.4) can be rewritten as

F(a,T)={z €R" | g"(z,7) <0,k =0,1,...,N}.

where

For clarity, we denote a series of integer indices k for k =1,2,..., N — 1 as follows:

- k if % Tk — Tk—1 2204k+1 Tk+1 — Tk 27
(3.5) k 2 2 2 2

k+1 otherwise.

At the same time, we define k = 1if k=0 and k = N if k = N. Then we have

2
o [ Te — Te—
gk(xaﬁc) = g(ﬂ?,Tk) + 7k (%)

Consequently, we obtain an inner approximate region of the original feasible region
provided that F(a,T) is nonempty. A subdivision T is called consistent if the corre-
sponding approximate region F'(a,T') is nonempty. It will be shown in the following
that if the Slater condition holds for the original problem, then F'(«,T) is nonempty
provided that |T'| is small enough. We say that the Slater condition holds for the
original problem if there exists a point € X such that

9(Z,y) <0VyeY.

In this paper, we always assume that the Slater condition holds.
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Given a consistent subdivision 7', the corresponding approximate problem of the
original problem is defined by
(P(a, T)) min  f(z) st. x€ F(a,T).

zeX

It is obvious that (P(a,T)) is a nonlinear optimization problem with finitely
many inequality constraints for any given consistent subdivision T'. Furthermore, any
feasible point of (P(«, T')) is feasible for the original problem. Thus, if * is a solution
of (P(a, T)), then f(z*) provides an upper bound for the optimal value of the original
problem.

In order to prove the convergence of the approximate regions to the feasible region
of the original problem, we present the definition of the convergence of sets as follows.
Let M be a subset of R™; the distance between a point x € R™ and the subset M is
defined by

Dist(x, M) = inf{[|z —y[| [ y € M},

where || - || represents the Euclidean norm.
DEFINITION 3.3 (see [3]). Let {My}ren be a sequence of subsets in R™; a subset
M is called the limit of the sequence { My }ren if

M = limsup My, = liminf M £ lim M;,
k—s 00 k—o0 k—o0

where limsup,,_, .o My = {x € R" | liminfy_,o Dist(x, My) = 0} is the outer limit of
the sequence { My }ren and liminfy_yoo My = {z € R | limg_,oc Dist(z, My) = 0} is
the inner limit of the sequence { My} ken-

It is obvious that the outer and inner limits of the sequence { M} }ren exist and
are closed. Furthermore, we have

lim inf M}, C lim sup Mj,.

k—o00 k—o00

Denote by F° the set of all the Slater points of the original problem, i.e.,
F° ={z eR" | ¢(x) < 0},

where ¢(z) = maxyey ¢g(x,y). Let cl(F°) be the closure of the set F°.

We present in the following theorem that the sequence of the approximate regions
{F(a*,Ty)}ren converges to the original feasible set F as |T}| goes to zero under some
conditions.

THEOREM 3.4. Assume that the Slater condition holds for the original problem
and cl(F°) = F. A sequence of subdivisions {Ty, | k € N} is constructed such that Ty
is consistent and limg_, o0 |Tx| = 0 with Ty, C Tg41 for all k € N. Then we have

lim F(a* T}) = F.
k—o00

Proof. Since the function g is continuous with respect to (z,y) € X x Y and
Y is compact, ¥(z) = maxyey g(z,y) is continuous on X. Thus the feasible set
F ={z | ¢¥(x) <0} is closed.

Let Ty, = {r; | j € {0,1,2,..., Ni}} and ¢, (x) = maxo<j<n, §’(z,7;) for each
k € N. The approximate regions F(a*,T}), k € N, can be rewritten as

F(o*, Ty) = {z | ¢r(x) < 0}.
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It is obvious that () is continuous on R", thus F(a*,T}) is closed for each k €
N. We know from Lemma 3.2 that F(a*,T*) C F for all k € N. It follows that
Dist(z, F) = 0 for all z € F(a®,Ty),k € N.

For any # € limsup,_,. F(a¥,T), the definition of outer limit implies that
liminfy_,oo Dist(Z, F(a*, T;)) = 0. Moreover, the triangle inequality indicates that

Dist(z, F) < Dist(z,z) + Dist(x, F) Yz € F(a*, T},), k € N.
This implies that
Dist(z, F) < liminf Dist(z, F(a®,Ty)) = 0.
This result, combined with the fact that F' is closed, implies that £ € F. Therefore,
the outer limit of the sequence {F(a*,T})}ren is contained in F, i.e.,

(3.6) limsup F(a*,T},) C F.

k—o00

On the other hand, we can obtain immediately by the definitions of 1 (x) and
¥(x) that

ma; z)—Y(x) < ma ma; Iz, y) — g(x,
max [Ve(@) —v(@)] < _max - max 19'(2.y) - 9@ y)]
S a?( i) < DITP
= i, 8 V9T Tt = gk

where & is the uniform bound of all the parameters {a?,j =1,2,...,Ng, k € N}
which satisfies

(3.7) & > max {O, " £1€a§xy—vzyg(x,y)} .

This implies that 15 (x) converges to ¥ (z) uniformly on X as k tends to infinity. For
any T € F°, the following inequality holds:

Un(E) < 0(@) + SITHP.

It follows immediately that ¥ (z) < 0 if |Tx| < %@. We can conclude from

limg o0 |Tk| = 0and T, € Ti41, k € N that there exists an integer k € Nsuch that z €
F(a®,Ty) for all k > k. Therefore, we have Dist(z, F(a*,T;)) = 0 for k > k which im-
plies that limy_, Dist(Z, F(a*,T})) = 0. Thus, we have z € liminfy_,o, F(a¥,T}).
It follows that

F° C liminf F(a*, T},).
k—o0
The closeness of liminf;,_ ., F(a¥, Ty) implies that
(3.8) cl(F?) € lim inf F(aF, Ty).
— 00
By (3.6), (3.8), and the assumption cl(F°) = F, we can conclude that the limit

of the sequence {F(a*, Ty)}ren exists and limy_,o F(a¥,Ty) = F. This completes
the proof of our theorem. O
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From the proof of Theorem 3.4, we can see that F(«,T) is nonempty for suffi-
ciently small |T'| provided that the Slater condition holds for the original problem.
On the other hand, if there is a global minimizer z* of the original problem satisfying
x* € F°, then 2* can be achieved by solving the approximate problem P(a*,T},) for
k large enough.

We will prove in the following lemma that if EMFCQ is satisfied everywhere in
the feasible set F, then the condition ¢l(F°) = F in Theorem 3.4 can be achieved.

LEMMA 3.5. Assume that EMFCQ holds for all x € F, then we have

cl(F°) =F.

Proof. Theorem 2.1 in [14] shows that if EMFCQ is satisfied at all points of the
feasible set F', then the boundary of F' is

F = R™ = .
0 {x eR" | I;leaécg(x,y) 0}

Since the index set Y = [a,b] is compact, the function ¢(xz) = maxyey g(z,y) is
continuous. It follows that the feasible set F' = {x € R™ | ¥(z) < 0} is closed. Thus,
we have cl(F°) C F. Furthermore,

F={zeR"|¢Yx)<0}Uu{xeR"|¢()=0}=F°UIF.

It is sufficient to prove that OF C cl(F°).
For any z € JF, since EMFCQ holds at Z, there exists a vector d € R™ such that

(3.9) V.9(Z,y)Td < 0Vy e AZ),

where A(Z) = {y € Y | g(Z,y) = 0}. The compactness of Y and the fact that g(z,y)
is continuous imply that A(Z) is also a compact set. Thus, it follows from (3.9) that
there exists a constant § > 0 such that

V.9(Z,y) d < =8 Vy € A(%).

The continuity of V,g(z,y) implies that there exists a sufficiently small § > 0 such
that

(3.10) V.9(z,y)"d < —g Vy € Az(T),

where A;(z) ={y €Y | g(z,y) > —0}. Hence, it follows from (3.10) that there exists
7 > 0 such that

(3.11) 9(z7 +nd,y) = g(Z,y) + nV.9(z,y) " d+ o(n]|d]|) <0

for all n € (0,7) and y € As(z). For y € Y\A;(Z), we have g(z,y) < —6. Thus, there
exists a 6 > 0 such that

(3.12) 9(z +nd,y) <0 Vn e (0,7),y € Y\A ().
Now, from (3.11) and (3.12), we have that

9(z +nd,y) <0Vne (0,7),y €Y,
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where 77 = min{#,7}. Thus, Z + nd € F° Vn € (0,7), which implies Z € cl(F°).
Therefore, we have

F = F°UJF C cl(F°).

This completes our proof. 0

THEOREM 3.6. Assume that EMFCQ holds everywhere in F. Also, assume that
the initial subdivision Ty is consistent and limg_,o0 [T| = 0 with Ty C Tyy1. Let
be a solution of the approzimate problem P(a*,Ty), then every accumulation point x*
of the sequence {x} }ren is a solution of the original problem.

Proof. Since {z}}ren € X and X is compact, there exists at least an accumulation
point z* of the sequence {z} }ren. It suffices to prove that z* is an optimal solution of
the original problem. Assume without loss of generality that limy_,o 2} = 2*. Since
F(a*,T},) C F for all k € N and F is closed, x* is feasible for the original problem.
From Theorem 3.4 and Lemma 3.5, the assumption that EMFCQ holds everywhere
in F' implies that

lim F(a*,T}) = F.

k—o0
Consequently, for any # € F, there exists a point Zr € F(a¥,T}) such that
limy,_, o Zx = x. Since xj, is a solution of P(a®, Ty), we have

f@y) < f(@k).
It follows that

fa) = lim f(a}) < Jim f@) = f(z).
k—o0 k—o0

This completes our proof. 0

As pointed out by an anonymous referee, the above result can be proved by epi-
convergence (see [15]).

Consider a special case that the original problem is convex, that is, the objective
function f is convex and the constraint function g(-,y) is convex with respect to the
decision variable z for all y € Y. In this case, it is shown in [19] that the Slater
condition holds if and only if EMFCQ holds everywhere in the feasible set. This
implies that the condition c¢l(F°) = F holds for the convex semi-infinite problem
under the Slater condition.

COROLLARY 3.7. Assume that the problem (P) is convex and the Slater condition
holds. Also, assume that the initial subdivision Ty is consistent and limy_, o [Tk| = 0
with Ty, C Try1. Let xf be a solution of the approximate problem P(a®,Ty,), then
every accumulation point x* of the sequence {z}}ren is a solution of the original
problem.

3.2. Adaptive subdivision algorithm. In this section, we present an algo-
rithm to compute a Karush-Kuhn—Tucker point of the original problem within given
tolerances. At each iteration, we solve the approximate problem (P(a,T')) to obtain
a Karush—-Kuhn—Tucker point. The algorithm terminates if the current iterate is a
Karush—Kuhn—Tucker point of the original problem within the given tolerance. Oth-
erwise, the current subdivision is refined adaptively in the spirit of exchange methods
[12, 27] and the method proposed in [10].

We know from Theorem 2.2 that if EMFCQ holds at a local minimizer z*, then
x* must satisfy the corresponding Karush—-Kuhn—Tucker conditions. The following
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lemma implies that if EMFCQ holds at « € F' for the original problem, then MFCQ
holds at « for (P(a,T)) when [T is sufficiently small.

LEMMA 3.8. Assume that EMFCQ holds for all x € F, then MFCQ holds every-
where in F(a,T) for all T with |T| small enough.

Proof. The result follows immediately from the assumption that g(x,y) is twice
continuously differentiable and the compactness of the active set A(x) for all
e F. O

We assume throughout the following parts that EMFCQ holds everywhere in F for
the original problem and that MFCQ holds for the approximate problem (P(«,T)).
The first assumption is a strong assumption. Under this condition, it is proved in
Lemma 3.5 that cl(F°) = F. Furthermore, this condition guarantees that the set of
the Lagrangian multipliers at a stationary point of the original problem is bounded
[16].

In order to obtain a Karush—-Kuhn—Tucker point of the original problem within
given tolerances, we solve the approximate problem (P(«,T)) with T = {r; | i =
0,1,...,N}. Let * be a Karush-Kuhn—Tucker point of the problem (P(«,T)); we
have that

k
(3.13) V@) + ) AiVeg' (=" u) = 0, yi € A(z"),

where A(x*) = {r; € T | g*(z*,7;) = 0}. From the definition of g, it follows that
Vg (x,7) = Vaeg(z, ), 7 €T.

Thus, the Karush-Kuhn—Tucker conditions (3.13) can be reformulated as

(3.14) +Z/\ng o, yi) =0, y; € A(z").

This implies that if z* is a Karush-Kuhn-Tucker point of (P(a,T)), it is an ap-
proximate Karush—-Kuhn—Tucker point of the original problem. For designing our
algorithm, we first define an (¢, §) Karush—-Kuhn—Tucker point of the original problem
as follows.

DEFINITION 3.9. z* € F is called an (¢,6) Karush-Kuhn-Tucker point of (P) if
there exist some Lagrangian multipliers \; > 0,1 =1,... k, k <n, such that

+ZAVQ 7yl Sea ylEA(x*76)7

where A(z*,8) ={y €Y | g(z*,y) € [-4,0]}.
Similarly, z* € F(«,T') is called an (e, §) Karush-Kuhn-Tucker point of (P(c,T))
if there exist some Lagrangian multipliers \; > 0,i=1,...,k, k < n, such that

H —|—Z)\Vg ", yi)

where A(x*ad) = {yl SA | gl(x*ayz) € [_67 O]}

<€ yi € A(ﬂf*,(S),
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The following lemma indicates that an (e, ) Karush-Kuhn-Tucker point of the
original problem can be obtained directly by solving (P(a,T)) for |T'| small enough.

LEMMA 3.10. Suppose that z* is an (e, 3) Karush-Kuhn-Tucker point of (P(c, T))
with T = {7, | k €{0,1,2,...,N}}, then z* is an (¢,0) Karush—-Kuhn—Tucker point
of the original problem if

(3.15) SITP <

where & is defined by (3.7). B
Proof. 1t suffices to prove that if y; € A(z*, %), i=1,2,...,k, then y; € A(z*,0),
1 =1,2,...,k, provided that condition (3.15) holds. For each y; € T', we have

2
e e G (T T
) = oo ) + 5 ()

g'(z*,y;) € A(a™, %) implies that g(z*,y;) <0 and

* Oq 5
g(«/x 791) 2 _g(T; — 7-271)2 _ 5
> Qo f,

8 2

It follows that y; € A(%,6), i =1,2,...,k, if the condition in the lemma holds. d
Consider a special case that the subdivision T is obtained by subdividing the
index set Y into N equal subintervals. In this case, we have |T| = b_Ta. Lemma

3.10 implies that an (¢,d) Karush-Kuhn-Tucker point of (P) can be obtained by

solving (P(«,T)) for N > \/g(b;a). Therefore, the number of the constraints of

the approximate problem (P(a,T')), which equals N + 1, might be large when 0 is
small. Such an approximate problem (P(«,T)) might be difficult to solve. In fact,
to compute an (¢, 0) Karush-Kuhn—Tucker point z* of the original problem, we solve

(P(a,T)) to obtain an (e, 3) Karush-Kuhn-Tucker point z* which satisfies

k
Vi) + ) AiVg(a®, i)
=1

- 1)
<, yieA(x*,i),i:1,2,...,k,1<k<n.

It is obvious that if the subinterval Y;, which is related to the active index y;, is small
enough, that is S (r; — 75_1)? < 3, then we have y; € A(z*,0). Otherwise, we need
to refine the current subdivision 7" by adding some new points to those subintervals
which are related to the active index set A(z*, %)

At the kth iteration, the refinement procedure is taken to generate a new subdi-
vision Tx11 based on the current subdivision Tj. Thus, we obtain a sequence of the
approximate regions {F(a”, Ty)}ren. We expect that the sequence is monotone in

the sense that
F(a®,Ty) € F(a** Ty11),k € N.

It will be shown that the monotone property of the sequence {F(a¥, T})}ren can
be obtained by the trisection refinement strategy. Suppose we have a subdivision
T ={m | k€ {0,1,...,N}} and Y* = [r4_1, 7] is selected to be refined for some
k,1 <k < N. Let 74,1, 7,2 be the trisection points of the subinterval Y*, that is,

Tkl = Tk—1 + §(Tk — Th-1), Th2 = Th—1+ g(Tk — Th—1).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/15 to 124.16.148.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2550 SHUXIONG WANG AND YAXIANG YUAN

The convex upper bound functions of g(x,y) on each subset are defined by

2
) = ol + 5 (5= BTy e vR <)
2
g"%(2,y) = gla,y) + 22 <y - W) Yy €YP? = [mo1, i,
2
9" (x,y) = gla,y) + % <y - W) , Yy €YP3 = [r0, 7],

where the parameters oy, ;, 1 = 1,2, 3, are chosen such that oy > ay5, 7 = 1,2, 3, and

Qi > max {O, " y)rél)%};yk,i —Viyg(x,y)} ,i=1,2,3.

The new region F(«, T U {7y.1,7k,2}) is defined by replacing the constraint
gz, y) <0vy eY*
in F(a,T) by the following constraints:
gz, y) <0Vy e YR i=1,2,3.

LEMMA 3.11. Let T = {r, | k € {0,1,2,...,N}} be a consistent subdivision
of the index set Y. Assume that Ty 1,7k 2 are trisection points of Y* for some k €
{1,2,...,N} and F(a,TU{Tk,1,Tk2}) is obtained by the refinement procedure. Then
we have

F(a,T) C F(o, TU{7%1,7%2}) C F.
Proof. Tt suffices to prove that for any fixed z € X, the following holds:
g(@,y) < "' (z,y) < ¢"(x,y) Yy e Y™, i=1,2,3.

The first inequality can be obtained directly by the definitions of g*(z,y),i =
1,2,3. The second inequality is equivalent to

(3.16) i (Y i YO < oy, an, YF) Wy € YR i = 1,2, 3,

where @k(yvakayk) = %(y - W)Za ye ka and

Pk (y, o1, YE) = % (y - L;LT“)Q y e YP =, 7],
2
Pr2 (Y, a2, YH?) = % (y - w> , Yy €YP? = [, T,
2
Or3(Y, a3, YH3) = % ( - W) , Yy EYPS = [0, 7).

It follows from oy ; < ag, @ = 1,2,3, and T’“;”“ = T’“*12+T"‘ that

Pr2(Ys a2, Y?) < op(y, o, YF) Wy € YR2,
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Therefore, (3.16) holds for ¢ = 2. The following relation

Vo (ora (y, ar1, YU — on(y, ar, YF))

Tk—1 1+ Tk,1 Tk—1 + Tk
B U B U

>0Vy € yhkt = [Th—1, Tk, 1),

implies that ¢y 1(y, k1, Y1) — o (y, ax, Y*) is nondecreasing on Y*1. We only need
to prove that ¢g1(7k,1, k1, Y1) < 0k (7h1, ag, Y*). This is true since

k1 (Th1, ap1, Y1) = %(Tk —1p1)? < %(Tk —Tee1)? = or(Th1, g, Y.

Thus (3.16) holds for ¢ = 1. Similarly, we can prove that (3.16) holds for ¢ = 3.
This completes our proof. 0

Note that not all the refinement strategies can guarantee that the sequence
{F(a*,Ty)}ren is monotone. We will show by an example that the bisection re-
finement cannot obtain such a property.

Let g(x,y) = 2 + sin(y) and X x Y = [-10,0] x [0, 71]. The parameter for g(z,y)
on X x Y is a = 1 and the upper bound function g'(z,y) of g(x,y) on X x Y is

e =+ 5 o3 =1 o3
9 (@y) =g(@y)+ 5 (¥- 3 etsin(y)+5(y-35) -
Let Y'! = [0,%] and Y2 = [Z n]; it follows from direct calculations that oq,1 =

a12 =1 and

2
gz, y) = x + sin(y) + <y - g) L yevhl,

1
2
1 37\ 2
1,2 1,2
) _ o Y;'
( 2(3/ 4>,y€

g (z,y) =z +sin(y) +

Let T = {0,7}; we have

2
Fla,T)={z € X | ¢'(z,y) <O, VyeY} = [—10,—%] :

2
1) = L,j < Lj —|_10 - —
F(a,TU{Z}) {z g7 (z,y) <0VyeY j=12} [ 10, (1—1—32)].

Thus, it follows that
F (a,TU {g}) C F(a,T).

For designing feasible algorithms to solve semi-infinite optimization problems, two
issues are essential: how to maintain the feasibility of each iterate and how to solve
the approximate problems. In this paper, we mainly focus on the feasibility issue.
Each of the approximate problems is a standard optimization problem and can be
solved by existing software.

We present an adaptive subdivision algorithm (Algorithm 1) to solve the semi-
infinite optimization problem (P). In our algorithm, we solve the approximate prob-
lems and refine the current subdivision adaptively at each iteration. Note that only
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those subintervals which are related to the current active index set are selected to be
refined.

In Algorithm 1, the initial subdivision Tj is obtained by applying Algorithm 1
to the following semi-infinite problem (P) which is also suggested in the phase I
procedure in [10], where

P, in ¢ s.t. y)<tVyey.
(Po) o s g(z,y) <t Vy

To initialize Algorithm 1 to solve the problem (F), we choose the trisection subdivi-
sion {a,a+ b*T“, a+ 2(b—;a), b} and compute the corresponding parameter a° according
0 (3.2). The refinement procedure is implemented until Algorithm 1 finds a solution
(Z,t) with ¢ < 0. The current subdivision is selected as the initial subdivision Tj. It
is obvious that 7 is feasible for the approximate problem P(a,Ty). Thus, Z can be
chosen as an initial point in Algorithm 1. Since the semi-infinite problem (Py) might
not be convex, such a procedure is not necessarily successful all the time. However,
numerical experiments in section 5 show that this method is efficient and works well
to find a good initial subdivision. In the case that the method does not work, one may
choose different initial points or select successively smaller subdivisions to initialize
the semi-infinite problem (Py) by applying Algorithm 1 to solve it. For example, we
can subdivide the index set Y into N equal subintervals and increase IV if necessary.
Under the Slater condition, we can easily see that a consistent initial subdivision can
be achieved provided that N is large enough.

ALGORITHM 1. ADAPTIVE SUBDIVISION ALGORITHM.

1: Determine a consistent initial subdivision Ty = {7 | k¥ € {0,1,2,...,No}} and
compute the initial parameters ag, k=1,2,..., Ny, by (3.2). Set tolerances € and
6. Let 7 =0.

2: At jth iteration, solve P(a,T}) to obtain an (e, %) Karush-Kuhn—-Tucker point

a5, the Lagrangian multipliers {\;}j_;, k < n, and the active set index A(}, 2).
3: Terminate if z7 is an (¢,d) Karush-Kuhn-Tucker point of the original problem.
Otherwise, find out the index set I; as follows:

- ]
I = {k |y €A (@25) and g(xj, y) < —5}'

4: Take the refinement procedure on subsets Y];, k € I;, to obtain T} 11 and compute
ol where k is defined in (3.5).
5: Set j = 7+ 1 and go to step 2.

3.3. Convergence analysis. In this subsection, we will show that Algorithm 1
is well defined and terminates in finitely many iterations within arbitrarily given
tolerances.

LEMMA 3.12. Let T}, j € N, be generated by Algorithm 1. Assume that F(a?,Tj}),
J € N, are constructed by the refinement procedure. Denote by v; the optimal value
of the approzimate problem P(a”, T;). Then the following holds:

(1) Tj C Tj4q for all j € N. If the termination criterion in Algorithm 1 is not
satisfied, the inclusion is strict, i.e., I; # 0.

(ii) The sequence vy, j € N, is nonincreasing: v; > vi for all j € N. Further-
more, each v; provides an upper bound for the optimal value of the original problem.
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Proof. (i) Assume that T; = Tj41 for some j € N (or equivalently I; = ), then

we know that g(x;*-,yi) > =) for y,; € A(l’}f, %) and

Vf(zj) + Z AiVg(x;, yi)

i=1

<e, yZ€A<$;7g>

Since 7} is feasible for the original problem, g(z},y;) < 0 for all y; € Y. This result,

combined with the fact that g(z},y;) > —4, implies that y; € A(x7,d), which contra-

dicts the assumption that the termination criterion in Algorithm 1 is not satisfied.
(ii) By Lemma 3.11 and the result in (i), we have

F(ajaT]) Cc F(aj+17Tj+1) - Fa] € Na

which implies that v7 > v, for all j € N. Furthermore, the v}, j € N, provide upper
bounds for the optimal value of the original problem. |

The following theorem states the finite termination of Algorithm 1.

THEOREM 3.13. For any positive tolerance (e,d), Algorithm 1 terminates in
finitely many iterations.

Proof. Assume that Algorithm 1 does not terminate in finite iterations. Recall
that the subdivision of the index set Y at the jth iteration is

Tj:{’rk | kEKj:{0,1,2,...,Nj}}.

By (i) of Lemma 3.12, the index set I; # () for j € N, where
A * 6 *
Ii=3k|ycA T 5 and g(z},yk) < —0 ¢ .

It follows that for each j € N, k € I; with 1 < k < n, we have gk(x;,yk) € [%,0] and
9(x},yx) < —d. Therefore,

ok ]
(3.17) %|Yk|2>§,1§k§n,kelj,jeN,
where k is defined in (3.5) and
—k * * aE k|2
Without loss of generality, we set & = k, then (3.17) can be reformulated as
]
(3.18) %|Yk|2>§,1gkgn,kelj,jeN.

We show in the following that the % |Y*|2 k € I;,j € N, converge to zero if
Algorithm 1 does not terminate. Since all parameters ax, k € I;,j € N, are bounded
by & which is defined by (3.7), it is sufficient to prove that the lengths of Y* k €
I;,7 € N, tend to zero as j tends to infinity.

We know from Lemma 3.12 that at least one of the subinterval Y*, k € 1;, is
subdivided into three equal subsets Y*? i = 1,2, 3, with respect to the subdivision
T; at the jth iteration for j € N. The lengths of these subsets Yki o =1,2,3,

are bounded by % Thus, for each integer p, Algorithm 1 generates at least
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one point with the length of the corresponding subinterval bounded by 2=2. For
each k € I;,1 < k < n, all the YF* are different from each other. Since there are a
finite number of subdivision points with the lengths of the corresponding subintervals
greater than bg—p“ for each integer p € N, the lengths of Y* k € I;,j € N, converge to
zero as j tends to infinity.

This result contradicts (3.18), which implies that Algorithm 1 terminates in
finitely many iterations. a

THEOREM 3.14. Assume that EMFCQ is satisfied for all x € F. Also, assume
that x; is generated by Algorithm 1 with the given tolerance (ej,0;) for j € N. If
lim; o0 (€5,65) = (0,0), then any accumulation point of the sequence {x;}cn is a
Karush—Kuhn—Tucker point of the original problem.

Proof. Since EMFCQ holds for all x € F, the set of Lagrangian multipliers is
bounded for any Karush-Kuhn-Tucker point of the original problem [11]. Lemma 3.8
implies that MFCQ holds for all z € F(a?,T}), j € N, when §;, j € N, are small
enough. Theorem 3.13 indicates that x; is an (e;,0;) Karush-Kuhn-Tucker point
of the original problem for all j € N. Namely, there exist some indices y{, 1 =
1,2,....k,k <mn, 5 €N, and multipliers /\{ >0,i=1,2,...,k,k <n, j €N, such
that

k
Vi) + Y N Vag(es,y))

i=1

(3.20) —6; < glaj,yl) <0.

(319) < €5,

Since the sequence {(z;, y{, e ,yi)}jeN, k < n, is contained in the compact set X x

Y* k < n, and the set of the multipliers {()\{, e, )\i)}jeN is bounded, there exists
an accumulation point (z*,y7,...,y5, A, ..., AL) of the sequence

{(xjvyiv -7y']7€7)\{;~ "7)\‘11)}1'GN'

The result can be obtained immediately from (3.19), (3.20), and the assumption that
1imj4)00(€j’5j) = (0,0) 0

From Theorem 3.14, if the original problem is convex and the Slater condition
holds, then every accumulation point of the sequence {z;}en is an optimal solution
to the original problem.

4. Generalizations and remarks. In this section, we first discuss some pos-
sible generalizations of our method. Then we present some remarks about such a
method. Although our method can be improved in various ways, our motivation was
to explain the basic idea and an implementable method in its simplest form. The
exact improvements and generalizations are left for future works.

4.1. Generalizations. The method proposed in this paper can be directly ex-
tended to semi-infinite programs with finitely many semi-infinite constraints.

The extension of the index set Y from an interval to an m dimensional box
Y = [a,b] € R™ is straightforward. The upper bound function g of g on X x Y can
be set as

o) = g(o) + S (- 20
9\T,Yy) = g\x,y i\ Yi D) )

=1

where a;, 1 < ¢ < m, are nonnegative parameters which can be chosen in a manner
similar to this paper. The extension that the index set Y is an arbitrary compact set
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in R™ concerns two issues: the subdivisions of the index set Y and the computation of
the parameters in higher dimensions. The first one can be achieved by approximating
the index set with the boxes. More precisely, we can construct boxes B;, ¢ € I, such
that Y C U;crB;. Then the upper bound function on each subset X x B; is reduced to
the former box case. This kind of technique proposed in [31] can be used to extend the
convexification algorithm in [32] from the interval index set to the arbitrary compact
index set. The more general case that the index set Y is dependent on the decision
variable x is outside the scope of this paper.

4.2. Weaker assumption. At the beginning of this paper, we assumed that the
constraint function g(z, y) is twice continuously differentiable. In fact, this assumption
can be replaced by a weaker one that g(z,y) is continuously differentiable with respect
to y on interval Y for all z € X. In this case, §(z,y) = g(z,y) + $(y — %2)? is convex
with respect to y on interval Y = [a, ] for any fixed = € X if and only if

Due to the fact that V,g(z,y) = Vyg(z,y) + aly — “T*b), the above condition is
equivalent to

0 if y1 = y2,

>
@ = Vyg(w,y2) — Vygla, yi) v

Y1 — Y2

y; € Y,i=1,2, otherwise.

In order to satisfy the above inequality for all z € X, we require

(41) a>max{0, max Vyg($7y2)_vyg($7yl)’z: 172}

z€X,Yi €Y, y17£y2 Y1 — Y2

If g € C?(R™ x R™), (4.1) is equivalent to (3.2). A simple observation is that
more computation effort is needed for calculating the parameter o using (4.1) than
(3.2).

4.3. Comparison with existing feasible methods. The adaptive convexi-
fication method proposed in [10] aims to solve the following approximate problem
(for index set Y = [0,1]) at each iteration for any given subdivision T' = {7, | k =
0,1,2,...,N}:

min _ flx)
YT, T
s.t. r e X,
9"(z,yx) <0,
(MPCO) (- ) =0
7, Wk — T—1) = 0,

Vygk(xvyk) +1k -7, =0,
lkaﬁkvyk — Tk—1,Tk — Yk > 0, k= 1,2,.. .,]\]7
where ¢*(z,y) = g(z,y) + % (y — %) (7% — y) is the concave upper bound function of

g(x,y) on X X |15, 7] and Vi Vi k=0,1,..., N, are auxiliary augmented Lagrangian
variables.
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We skip the box constraint x € X which is the same for our algorithm and the
adaptive convexification algorithm. Problem (MPCC) is a mathematical program
with 3N auxiliary variables. The total number of constraints in (MPCC) is 8N with
2N complementary constraints. The authors of [10] state that the standard numerical
software might not be expected to solve this approximate problem since MFCQ does
not hold at all feasible points due to the complementary constraints. They can only
obtain stationary points in the sense of Fritz John.

For the same subdivision T, our approximate problem (P(«,T)) contains N + 1
inequality constraints without any auxiliary variables or complementary constraints
compared with a convexification method. This contributes to fewer constraints and
less computational effort.

The recent work [23] for generalized semi-infinite programs is an extension of the
method proposed in [20]. Under the assumption that there exists a near optimal
generalized semi-infinite program—Slater point, the algorithm is shown to converge
finitely to a feasible point which is an approximate optimal solution of the original
problem. The algorithm is simple to implement. The potential disadvantage is that
the subproblems must be solved globally by existing global nonlinear optimization
solvers. In our algorithm, the feasibility is guaranteed if the iterates are feasible
for the subproblems. Furthermore, the subproblems can be solved by existing NLP
solvers.

5. Numerical experiments. We implement Algorithm 1 in MATLAB 8.1 and
use fmincon of Optimization Toolbox 6.3 with default tolerance to solve the sub-
problems in step 2. In fact, the tolerance on the constraint violation is 1076, All the
following experiments were run on 2.67 GHz Intel(R) Core(TM)2 processor.

For computing the parameters o/, j € N, at each iteration, if they can be figured
out analytically we use the closed form bounds. Otherwise, we use MATLAB toolbox
Intlab 6.0 [25] to obtain the upper bounds of the parameters o, j € N.

We consider the following examples for numerical experiments with Algorithm 1,
adaptive convexification algorithm (ACA for short) in [10] and MATLAB solver
fseminf. The code SIPSOLVER is used for the adaptive convexification algorithm
which is available at http://kop.ior.kit.edu/english/downloads.php. Note that this
solver was developed for the general case m > 1 and might become quicker if stream-
lined to the case m = 1.

Ezxample 1.

min T4
rER4

s.t. % (sin(my) — w3y — 22y — 1) < w4 Vy € [0, 1],
—1§$1S1,3§$2§5,—5§3}3§—3,—1§ZE4§3.
Example 1 is taken from [10]. It is a reformulation of the Chebyshev approxi-
mation problem with extra box constraint. Clearly, it is a convex semi-infinite opti-

mization problem and the parameters az, ay, for each constraint on the subinterval
[1x — 1,7k] C [0, 1] are given by

o = max(0, —7* min(sin(77_1), sin(77y)) + 10),

o, = max(0, 720(7_1, ) — 6)
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with

sin(77y), 7 < 0.5,
O(Th—1,7k) = { 1, Tr—1 < 0.5 < T,

sin(m7g—1), 0.5 < 7Tk_1.

We choose (1,1,1,1) as the initial point of Algorithm 1.
Ezxample 2.
: 2, .2 2
fé%%" r] + x5+ 23
st x1 + zaexp(xgy) + exp(2y) — 2sin(4dy) <0 Yy € [0,1],
_4<z;<2i=1,2,3

Example 3.
: Lo 1 2
;Ié]anz §x1 + 53:1 + x5
st (1—a23y®)? —a1y? — 23 + 22 <0 Vy €[0,1],
—2<x;<2,i=1,2.

Examples 2 and 3 are taken from [35]. We add extra box constraints to these
examples to put them in the form of problem (P). For Example 2, the initial point is
set as (1,1,1) while the initial point for Example 3 is chosen as (—1, —1).

Ezxample 4.

: 2 2
-3
iy i (o3

s.t. xo— 24 z1sin <xi — 0.5) <0 Vy € [0,10],
2

— 1000 < 2; < 1000,7 = 1, 2.

Example 4 is taken from [34] and also tested in [8] with a modified region. We
set the box constraint for variables x;,7 = 1,2, as —1000 < z; < 1000,7 = 1,2. The
initial point is set as (1,—1).

Ezxample 5.

1
min  —27x
z€R1O
10
st 3+45sin(4.7r(y — 1.23)/8) = Y iy’ <0Vy €[0,1],
i=1
— 1000 < z; <10,1 <7< 10.

Example 5 is taken from [37] and also tested in [8] with different dimensions.
We set the box constraint for variables x;,7 = 1,2,...,10, as —1000 < z; < 10,7 =
1,2,...,10, and initial point as ones(1, 10).

Example 6.

min oo
rcR2

st. —(z1—y)? —29 <0 Vy€[0,1],
0< 2z <1,-1000 < 25 < 1000.
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TABLE 1
Numerical results for Example 1-6 by using Algorithm 1 and adaptive convezification algorithm.

Example Algorithm fval Iter | Itime(s) | CPU(s) | Tol.nodes G(z*)
1 Algorithm 1 0.028 15 0.04 0.54 63 —6.5628e-08
ACA 0.028 7 0.4368 7.3476 - —2.9354e-13
5 Algorithm 1 5.3347 10 0.0723 0.4324 28 —1.3404¢-06
ACA 5.3347 6 0.4836 163.32 - 9.7581e-05
3 Algorithm 1 0.1945 17 0.0512 0.6084 42 —1.8814¢-06
ACA 0.1945 34 0.7644 205.97 - —3.3307e-16
4 Algorithm 1 1.0000 1 0.0752 0.1658 10 2.1817e-11
ACA - - - . _ _
Algorithm 1 0.0657 11 0.2367 0.7919 38 —6.3701e-06
5
ACA - - - - - -
Algorithm 1 | 4.7042e-07 5 0.0407 0.1721 16 —4.7042e-07
6
ACA - - - . _ _
TABLE 2

Numerical results for Example 1-6 by using Algorithm 1 and MATLAB Toobox fseminf.

Example Algorithm fval Iter | Itime(s) | CPU(s) | Tol.nodes G(z*)

1 Algorithm 1 0.028 15 0.04 0.54 63 —6.5628¢-08
fseminf 0.028 6 - 0.07 - 3.4461e-11

9 Algorithm 1 5.3347 10 0.0723 0.4324 28 —1.3404e-06
fseminf 5.3128 44 - 0.2065 - 0.0535

3 Algorithm 1 0.1945 17 0.0512 0.6084 42 —1.8814e-06
fseminf 0.1945 4 - 0.0289 - —1.0264e-06

4 Algorithm 1 1.0000 1 0.0752 0.1658 10 2.1817e-11
fseminf 1.0000 23 - 0.1914 - 6.1561e-08

5 Algorithm 1 0.0657 11 0.2367 0.7919 38 —6.3701e-06
fseminf 0.0656 2 - 0.1198 - 9.1898e-04

6 Algorithm 1 | 4.7042e-07 5 0.0407 0.1721 16 —4.7042e-07
fseminf 0 2 - 0.0435 - 0

Example 6 is taken from [12] and also tested in [7]. The initial point for this
problem is (1,1).

We summarize in Table 1 the numerical results of Algorithm 1 and the adaptive
convexification algorithm. The numerical results of Algorithm 1 and fseminf are
presented in Table 2. In both tables, Iter represents the total number of iterations,
fval is the objective function value when the algorithms terminate, I.time is the
CPU time cost in finding an initial consistent subdivision while CPU is the total CPU
time, T'ol.nodes is the number of nodes in the final subdivision when the algorithms
terminate, G(z*) = max,cy g(z*,y) measures the feasibility of 2* where Y = a :
1075 : 5. In MATLAB toolbox fseminf, we set the initial sampling interval as
a:0.001:b.

Table 1 shows a comparison of the numerical results between Algorithm 1 and
the adaptive convexification algorithm. For the first three examples, we can see that
both algorithms obtain the same objective function values. For finding an initial
subdivision, our algorithm use less time compared with the adaptive convexification
algorithm. C'PU in the 6th column shows that our algorithm is much faster than the
adaptive convexification algorithm. SIPSOLVER, solver of the adaptive convexifica-
tion algorithm, fails to solve the last three examples.

Consider the numerical performance of Algorithm 1 and fseminf in Table 2.
We can see that the objective function values for all the examples are almost the
same. The last column in Table 2 shows that our algorithm computes a feasible
Karush—Kuhn—Tucker point for each problem which coincides with the theoretical

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/15 to 124.16.148.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

FEASIBLE METHOD FOR SEMI-INFINITE PROGRAMS 2559

results. The feasibility of Example 4 violates because of the numerical accuracy. On
the other hand, fseminf is faster than Algorithm 1 in most cases. However, it cannot
guarantee the feasibility of the iterates when it terminates.

We can see from Tables 1 and 2 that the total number of nodes in column 7 is
not too large which indicates that our adaptive refinement procedure works well. It
follows that a small number of the subdivision nodes are needed to obtain an Karush—
Kuhn—Tucker point within the given tolerance.

6. Conclusions and future work. A novel numerical method to solve semi-
infinite programs with interval index set is presented. Based on the concave relax-
ations of the lower level problem, the inner approximate regions consisted of finitely
many constraints constructed to approximate the original feasible region. The ap-
proximation guarantees that each iterate is feasible for the original problem. An
adaptive subdivision algorithm is proposed to solve the semi-infinite optimization
problems. The trisection refinement procedure is taken adaptively to guarantee that
the sequence of the approximate regions is monotone.

Various methods might be considered for the acceleration of the method proposed
in this paper. On of them is to drop some subdivision points when the subdivisions
are updated using the idea of exchange method. The main issue of such a method is
that the resulting iterates obtained by solving the approximate problems might not
be feasible for the original problem. Another way to accelerate the algorithm is to
compute tighter parameters on the subsets of the domain X x Y. This requires the
additional computation effort. We leave these questions for future research.
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