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A Nonlinear Stepsize Control (NSC) framework has been proposed by Toint [Nonlinear stepsize con-
trol, trust regions and regularizations for unconstrained optimization, Optim.Methods Softw. 28 (2013),
pp. 82–95] for unconstrained optimization, generalizing many trust-region and regularization algorithms.
More recently, worst-case complexity bounds for the generic NSC framework were proved by Grapiglia
et al. [On the convergence and worst-case complexity of trust-region and regularization methods for
unconstrained optimization, Math. Program. 152 (2015), pp. 491–520] in the context of non-convex
problems. In this paper, improved complexity bounds are obtained for convex and strongly convex
objectives.
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mization
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1. Introduction

We are interested in the unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : R
n → R is continuously differentiable and bounded below by f∗. Practical numerical

methods for problem (1) are iterative. Given an initial point x1 ∈ R
n, at the kth iteration a new

iterate point xk+1 is obtained by using the information at the current iterate point xk and, pos-
sibly, the information at the previous points. It is expected that at least one subsequence of the
sequence {xk} generated by the method will converge to a critical point of f. The goal of the
worst-case complexity analysis is the estimation of upper bounds on the number of iterations
(or function/gradient evaluations) required in the worst-case to generate an iterate xk such that
‖∇f (xk)‖ ≤ ε or f (xk)− f∗ ≤ ε, for a given ε > 0 (see [5]).

When the objective function f is possibly non-convex, it was shown by Nesterov [18] that the
steepest descent method takes at most O(ε−2) iterations to generate xk such that ‖∇f (xk)‖ ≤ ε,
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for ε ∈ (0, 1). Similar upper bounds of O(ε−2) have been proved by Gratton et al. [16] for
trust-region methods, by Cartis et al. [4] for the basic ARC algorithm, by Cartis et al. [8] for
a non-monotone lineasearch algorithm, and by Ueda and Yamashita [23] for the Levenberg–
Marquardt method when f (x) = ( 1

2 )‖F(x)‖2 with F : R
n → R

m continuously differentiable.
Improved complexity bounds of O(ε−3/2) have been proved by Nesterov and Polyak [20] for
the cubic regularization of the Newton’s method, by Cartis et al. [4] for second-order variants of
the ARC algorithm and, recently, by Curtis et al. [10] for a modified trust-region method. Fur-
thermore, Cartis et al. [2] have proved that the bound of O(ε−3/2) is sharp for the ARC algorithm,
and the bounds of O(ε−2) are sharp for the steepest descent method, the Newton’s method and
the classical trust-region method. In the derivative-free setting, Vicente [24] has proved a com-
plexity bound of O(n2ε−2) function evaluations for direct-search methods, while Cartis et al. [7]
have proved a bound of O((n2 + 5n)[1 + |log(ε)| + ε−3/2]) function evaluations for the ARC
algorithm with derivatives approximated by finite-differences.

When the objective function f is convex (or strongly convex), Nesterov [18] has shown that
the steepest descent method takes at most O(ε−1) (resp. O(log(ε−1)) iterations to generate xk

such that f (xk)− f∗ ≤ ε, where f∗ is the global minimum of f. Similar bounds of O(ε−1) and
O(log(ε−1)) have been proved by Cartis et al. [6] for the basic ARC when it is applied to the same
classes of objectives. Improved complexity bounds of O(ε−1/2) and O(C + log log(ε−1)) (for
convex and strongly convex objectives, respectively) have been proved by Nesterov and Polyak
[20] for the cubic regularization of Newton’s method and by Cartis et al. [6] for second-order
variants of the ARC algorithm.1 Furthermore, in the context of derivative-free optimization,
Dodangeh and Vicente [12] also have obtained an improved complexity bound of O(n2ε−1)

function evaluations for direct-search methods under the convexity assumption.
In this context, the focus of the current paper is the worst-case complexity analysis of the

Nonlinear Stepsize Control (NSC) framework when the objective f in (1) is convex. This frame-
work has been proposed by Toint [22] as a generalization of many trust-region and regularization
methods. As pointed in [22], the NSC covers the classical trust-region method [9,21], the basic
ARC algorithm of Cartis et al. [3,4], the quadratic regularization method for f (x) = ‖F(x)‖ pro-
posed by Nesterov [19] (as extended by Bellavia et al. [1]), the modified trust-region method of
Fan and Yuan [14], and the quadratic regularization methods for f (x) = (1/2)‖F(x)‖2 proposed
by Zhang and Wang [25] and by Fan [13].

To describe the NSC in a compact way, we shall consider functions ω,φ,ψ ,χ : R
n → R

satisfying the following conditions:

A1 ω is a continuous, bounded and non-negative function, such that

ω(x) = 0 =⇒ ‖∇f (x)‖ = 0. (2)

A2 φ,ψ ,χ are continuous non-negative functions, such that

ω(x) > 0 and min{φ(x),ψ(x),χ(x)} = 0 =⇒ ‖∇f (x)‖ = 0. (3)

A3 There exists κχ > 0 such that

χ(x) ≤ κχ for all x. (4)

These functions act as stationarity measures. By convention, from here, we denote

φk = φ(xk), ψk = ψ(xk), χk = χ(xk) and ωk = ω(xk).

Now, the generic NSC framework can be summarized as follows.
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Algorithm 1 NSC Algorithm [23]

Step 0 Given x1 ∈ R
n, H1 ∈ R

n×n, δ1 > 0, 0 < γ1 < γ2 < γ3 < 1 < γ4 and 0 < η1 ≤ η2 < 1,
set k := 1.

Step 1 Choose a model mk(xk + s) : R
n → R such that

mk(xk) = f (xk) and f (xk + s)− mk(xk + s) ≤ κm‖s‖2 ∀s ∈ R
n, (5)

for some constant κm > 0. Then, compute a step sk ∈ R
n such that

‖sk‖ ≤ κs�(δk ,χk) whenever δk ≤ κδχk , (6)

for some constants κs ≥ 1 and κδ > 0, and

mk(xk)− mk(xk + sk) ≥ κcψk min

{
φk

1 + ‖Hk‖ ,�(δk ,χk)

}
, (7)

for some constant κc ∈ (0, 1), where �(δk ,χk) = δαk χ
β

k with powers α ∈ (0, 1] and
β ∈ [0, 1].

Step 2 Compute the ratio

ρk = f (xk)− f (xk + sk)

mk(xk)− mk(xk + sk)
, (8)

set the next iterate

xk+1 =
{

xk + sk , if ρk ≥ η1,

xk , otherwise,
(9)

and choose the stepsize parameter δk+1 satisfying

δk+1 ∈

⎧⎪⎨
⎪⎩

[γ1δk , γ2δk], if ρk < η1,

[γ2δk , γ3δk], if ρk ∈ [η1, η2),

[δk , γ4δk], if ρk ≥ η2,

(10)

Step 3 Compute Hk+1 ∈ R
n×n, set k := k + 1 and go to Step 1.

Remark 1 Usually, Hk is an n × n symmetric matrix approximating the second-order behaviour
of f in a neighbourhood of xk . Moreover, it is worth to mention that δk+1 can be chosen arbitrarily
from the intervals specified by (10).

Regarding the worst-case complexity of Algorithm 1, Grapiglia et al. [15] have proved upper
bounds on the number of iterations required to ensure Fk = min{ωk ,φk ,ψk ,χk} ≤ ε, for a given
ε ∈ (0, 1]. Before to recall the complexity bounds given in [15], consider the following additional
conditions:

A4 There exists a constant κH > 0 such that ‖Hk‖ ≤ κH for all k.
A5 The powers α and β satisfy the inequalities α + β ≤ 1 and 2α + β ≥ 1.
A6 For all k, φk ≥ χk and ψk ≥ χk .

Theorem 1.1 (Theorem 7 in [15]) Suppose that A1–A4 hold, and let f be bounded below by
f∗. Then, to reduce the criticality measure Fk = min{ωk ,φk ,ψk ,χk} below ε ∈ (0, 1], Algorithm 1
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takes at most O(ε−(2+β)) iterations. If additionally, A5–A6 hold, then this worst-case complexity
bound is reduced to O(ε−2) iterations.

In this paper, a class of NSC algorithms is shown to have improved worst-case complexity
when applied to convex and strongly convex objectives. Specifically, by generalizing the analysis
of Cartis et al. [6] for the ARC algorithm, we prove that if α + β = 1, χk = ‖∇f (xk)‖ and
φk ,ψk ≥ χk , then Algorithm 1 can take at most O(ε−1) or O(log(ε−1)) iterations to generate xk

such that

Dk ≡ f (xk)− f∗ ≤ ε, (11)

where f∗ is the global minimum of a convex or strongly convex objective f, respectively.
As expected, these bounds match in order those obtained by Cartis et al. [6] for the basic
ARC algorithm, and by Nesterov [19] for the steepest descent method, on the same classes of
objectives.

The paper is organized as follows. In Section 2, worst-case complexity bounds for Algorithm 1
are proved in a general setting. In Section 3, the complexity results are specialized for problems
where the objective is a gradient dominated function, which includes convex and strongly convex
functions. Finally, in Section 4, the results obtained are summarized and some of its consequences
are discussed.

2. Worst-case complexity analysis: General case

Throughout this section, we say that iteration k is successful whenever ρk ≥ η1, very successful
whenever ρk ≥ η2 and unsuccessful whenever ρk < η1. From this naming, we shall consider the
following notation:

S = {k ≥ 1 | k successful}, (12)

Sj = {k ≤ j | k ∈ S}, for each j ≥ 1, (13)

Uj = {k ≤ j | k /∈ S} for each j ≥ 1, (14)

where Sj and Uj form a partition of {1, . . . , j}, and |Sj| and |Uj| denote the cardinality of these
sets.

We initiate our analysis by recalling the following useful property.

Lemma 2.1 Let Conditions A1–A4 hold. Also, assume that(
1

δk

)α
min{χαk ,χ−β

k φk ,χ−β
k ψk} > max

{
κmκ

2
s

(1 − η2)κc
,

1 + κH

καδ
, 1 + κH

}
≡ κHB. (15)

Then, iteration k is very successful and consequently

δk+1 ≥ δk . (16)

Proof See Lemma 6 in [15]. �

From here, we shall consider problems for which the following condition is satisfied:

H1 There exists κd > 0 and p ∈ [1, 2] such that Dk ≤ κd min{χαk ,χ−β
k φk ,χ−β

k ψk}p/α

for all k.
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The lemma below gives a lower bound on δk when Dk is bounded away from zero. Its proof is
a direct adaptation of the proof of Lemma 7 in [15].

Lemma 2.2 Let Conditions A1–A4 and H1 hold. Also, let ε ∈ (0, 1] such that Dk > ε for all
k = 1, . . . , j, where j ≤ +∞. Then, there exists τ > 0 independent of k and ε such that

δk ≥ τε1/p.

Proof First, by induction over k, we shall prove that

δk ≥ min

{
δ1,

γ1

κ
1/α
HB κ

1/p
d

ε1/p

}
(17)

for k = 1, . . . , j + 1. Clearly, (17) is true for k = 1. We assume that (17) is true for k ∈ {1, . . . , j}
and prove it is also true for k + 1. In fact, from H1 and the inequality Dk > ε, it follows that

ε < Dk ≤ κd min{χαk ,χ−β
k φk ,χ−β

k ψk}p/α

=⇒ min{χαk ,χ−β
k φk ,χ−β

k ψk} >
(

1

κd

)α/p
εα/p.

Therefore, by Lemma 2.1 and the induction assumption, if

(
1

δk

)α (
1

κd

)α/p
εα/p > κHB, (18)

then

δk+1 ≥ δk ≥ min

{
δ1,

γ1

κ
1/α
HB κ

1/p
d

ε1/p

}

and so, (17) is true for k + 1.
Now, suppose that (18) is not true. Then

(
1

δk

)α (
1

κd

)α/p
εα/p ≤ κHB =⇒ 1

δk

(
1

κd

)1/p

ε1/p ≤ κ
1/α
HB =⇒ δk ≥ 1

κ
1/α
HB κ

1/p
d

ε1/p

and so, by rule (10) we see that

δk+1 ≥ γ1δk ≥ γ1

κ
1/α
HB κ

1/p
d

ε1/p ≥ min

{
δ1,

γ1

κ
1/α
HB κ

1/p
d

ε1/p

}
,

that is, (17) is true for k + 1. It completes the induction argument.
Finally, since ε1/p ≤ 1, by (17) we conclude that, for k = 1, . . . , j + 1,

δk ≥ min

{
δ1,

γ1

κ
1/α
HB κ

1/p
d

}
ε1/p = τε1/p,

where τ = min{δ1, γ1/κ
1/α
H , κ1/p

d }. �

The next lemma provides a lower bound for the reduction in mk(xk + s) produced by sk . Its
proof is based on the Proof of Lemma 2.3 in [6].



596 G.N. Grapiglia et al.

Lemma 2.3 Suppose that A1–A4 and H1 hold. Then, there exists a constant κu > 0 such that,
for each k ≥ 1,

mk(xk)− mk(xk + sk) ≥ κuD2(α+β)/p
k . (19)

Proof First, by induction, we shall prove that(
1

δk

)
D1/p

k ≤ max

{(
1

δ1

)
D1/p

1 , γ−1
1 κ

1/p
d κ

1/α
HB

}
≡ κG, (20)

for all k. Clearly, (20) is true for k = 1. We assume that (20) is true for k and prove it is also true
for k + 1. In fact, suppose that (

1

δk

)
D1/p

k > κ
1/p
d κ

1/α
HB . (21)

In this case, by H1 and Lemma 2.1 we have δk+1 ≥ δk . Note that, by (7)–(9) we have

Dk − Dk+1 = f (xk)− f (xk+1) ≥ 0, for all k.

Thus, the sequence {Dk} is monotonically non-increasing. Hence, it follows from the induction
assumption that (

1

δk+1

)
D1/p

k+1 ≤
(

1

δk

)
D

1
p

k ≤ max

{(
1

δ1

)
D1/p

1 , γ−1
1 κ

1/p
d κ

1/α
HB

}
,

and so (20) holds for k + 1.
On the other hand, suppose that (21) is not true. Then, from Dk+1 ≤ Dk and (10), we see that

(20) is true for k + 1: (
1

δk+1

)
D1/p

k+1 ≤ γ−1
1

(
1

δk

)
D1/p

k

≤ γ−1
1 κ

1/p
d κ

1/α
HB

≤ max

{(
1

δ1

)
D1/p

1 , γ−1
1 κ

1/p
d κ

1/α
HB

}
.

Now we deduce from H1 that

χk ≥ c1D1/p
k and, consequently, φk ,ψk ≥ c2D(α+β)/p

k , (22)

where c1 = κ
−1/p
d and c2 = κ

−(α+β)/p
d . Thus, combining (7), (22), A4 and (20), we conclude that

mk(xk)− mk(xk + sk) ≥ κcψk min

{
φk

1 + ‖Hk‖ , δαk χ
β

k

}

≥ κcc2D(α+β)/p
k min

{
c2D(α+β)/p

k

1 + κH
, δαk cβ1 Dβ/p

k

}

= κcc2D(α+β)/p
k min

⎧⎪⎨
⎪⎩

c2D(α+β)/p
k

1 + κH
,

cβ1 D(α+β)/p
k(

1
δk

)α
Dα/p

k

⎫⎪⎬
⎪⎭
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≥ κcc2D(α+β)/p
k min

{
c2D(α+β)/p

k

1 + κH
,

cβ1 D(α+β)/p
k

καG

}

= κuD2(α+β)/p
k , (23)

where κu = κcc2 min{c2/(1 + κH), cβ1 /κ
α
G}. �

The next theorem provides an upper bound of O(ε−1) iterations for Algorithm 1 when α, β
and p satisfy

α + β

p
= 1. (24)

The proof of this result is based on the Proof of Theorem 2.5 in [6].

Theorem 2.4 Let Conditions A1–A4, H1 and (24) hold. Also, given ε ∈ (0, e−p), assume that
D1 > ε and let j1 ≤ +∞ be the first iteration such that Dj1+1 ≤ ε. Then, Algorithm 1 takes at
most O(ε−1) iterations to achieve Dk ≤ ε.

Proof By (8) we have

f (xk)− f (xk+1) ≥ η1(mk(xk)− mk(xk + sk)), k ∈ S. (25)

Then, from Lemma 2.3 and (24) it follows that

f (xk)− f (xk+1) ≥ η1κuD2
k , k ∈ S. (26)

Thus, by the definition of Dk in (11), we have

Dk − Dk+1 ≥ η1κuD2
k , k ∈ S, (27)

and consequently

1

Dk+1
− 1

Dk
= Dk − Dk+1

DkDk+1
≥ η1κu

Dk

Dk+1
≥ η1κu, k ∈ S, (28)

where in the last inequality we used Dk ≥ Dk+1. Since Dk = Dk+1 for any k /∈ S, summing up
the above inequalities up to j1 gives

1

Dj1

≥ 1

D1
+ |Sj1 |η1κu ≥ |Sj1 |η1κu.

As Dj1 > ε, it follows that

|Sj1 | ≤ (κuη1)
−1ε−1. (29)

On the other hand, by rule (10) and Lemma 2.2,

δk+1 ≤ γ4δk , if k ∈ Sj1 ,

δk+1 ≤ γ2δk , if k ∈ Uj1 ,

δk ≥ τε1/p, for k = 1, . . . , j1 + 1.
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Thus, considering νk ≡ 1/δk , we have

α4νk ≤ νk+1, if k ∈ Sj1 , (30)

α2νk ≤ νk+1, if k ∈ Uj1 , (31)

νk ≤ ν̄ε−(1/p), for k = 1, . . . , j1 + 1, (32)

where α4 = γ−1
4 ∈ (0, 1), α2 = γ−1

2 > 1 and ν̄ = τ−1. From (30) and (31) we deduce inductively

ν1α
|Sj1 |
4 α

|Uj1 |
2 ≤ νj1+1.

Hence, from (32) it follows that

ν1α
|Sj1 |
4 α

|Uj1 |
2 ≤ ν̄ε−(1/p)

=⇒ α
|Sj1 |
4 α

|Uj1 |
2 ≤ ν̄ε−(1/p)

ν1

=⇒ log(α
|Sj1 |
4 α

|Uj1 |
2 ) ≤ log

(
ν̄ε−(1/p)

ν1

)
= log

(
ν̄

ν1

)
+ log(ε−(1/p))

=⇒ |Sj1 | log(α4)+ |Uj1 | log(α2) ≤ C + log(ε−(1/p))

=⇒ |Uj1 | ≤
[
− log(α4)

log(α2)
|Sj1 | + C

log(α2)
+ 1

log(α2)
log(ε−(1/p))

]
.

=⇒ |Uj1 | ≤
[
− log(α4)

log(α2)
|Sj1 | + C + 1

log(α2)
log(ε−(1/p))

]
, (33)

where C = log(ν̄/ν1) and the last implication is due to the assumption ε ≤ e−p (which gives
log(ε−(1/p)) ≥ 1). Finally, as j1 = |Sj1 | + |Uj1 | and ε−1 ≥ log(ε−(1/p)) (due to p ∈ [1, 2]), it
follows from (29) and (33) that j1 ≤ O(ε−1). �

Below we show that the complexity bound given above can be reduced to O(log(ε−1))

iterations when α, β and p satisfy
α + β

p
= 1

2
. (34)

The proof of this result is based on the Proof of Theorem 2.7 in [6].

Theorem 2.5 Let conditions A1–A4, H1 and (34) hold. Also, given ε ∈ (0, e−p), assume that
D1 > ε and let j1 ≤ +∞ be the first iteration such that Dj1+1 ≤ ε. Then, Algorithm 1 (with
η1 < κ−1

u ) takes at most O(log(ε−1)) iterations to achieve Dk ≤ ε.

Proof By (8) we have

f (xk)− f (xk+1) ≥ η1(mk(xk)− mk(xk + sk)), k ∈ S. (35)

Then, from Lemma 2.3 and (34) it follows that

f (xk)− f (xk+1) ≥ η1κuDk . (36)

Thus, by the definition of Dk in (11), we have

Dk − Dk+1 ≥ η1κuDk , k ∈ S. (37)
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Since Dk = Dk+1 for any k /∈ S, (37) implies the inequality

Dj = f (xj)− f (x∗) ≤ (1 − η1κu)
|Sj|D1, j ≥ 1. (38)

As Dj1 > ε and η1κu < 1, it follows from (38) that

ε < (1 − η1κu)
|Sj1 |D1

=⇒ log(ε) < |Sj1 | log(1 − η1κu)+ log(D1)

=⇒ −|Sj1 | log(1 − η1κu) < log

(
D1

ε

)

=⇒ |Sj1 | <
1

− log(1 − η1κu)

[
log(ε−1)+ log(D1)

]

=⇒ |Sj1 | <
[

1

| log(1 − η1κu)| (1 + log(D1))

]
log(ε−1), (39)

where the last implication is due to the assumption ε ≤ e−p (which gives log(ε−1) ≥
log(ε−(1/p)) ≥ 1). As we saw in the Proof of Theorem 2.4,

|Uj1 | ≤
[
− log(α4)

log(α2)
|Sj1 | + C + 1

log(α2)
log(ε−(1/p))

]
. (40)

Since j1 = |Sj| + |Uj| and log(ε−1) ≥ log(ε−1/p) for p ∈ [1, 2], it follows from (39) and (40) that
j1 ≤ O(log(ε−1)). �

3. Worst-case complexity analysis: Particular cases

In this section we shall specialize the complexity results above for a class of NSC algorithms.
Specifically, we consider the class of NSC algorithms determined by conditions:

A7 The powers α and β satisfy the equality α + β = 1.
A8 For all k, χk = ‖∇f (xk)‖, φk ≥ χk and ψk ≥ χk .

Note that this class of algorithms is included in the class specified by A5–A6. Our analysis
will focus on functions with the following property.

Definition 1 (Nesterov and Polyak [20]) A function f : R
n → R is called gradient dominated

of degree p ∈ [1, 2] if it attains a global minimum f∗ at some x∗ and for any x ∈ � ⊂ R
n we have

f (x)− f∗ ≤ κg‖∇f (x)‖p,

where κg is a positive constant.

Remark 2 Examples of gradient dominated functions are convex functions (with p = 1), and
strongly convex functions and sum of squares (with p = 2). For details, see Section 4.2 in [20]
and Lemmas 2.4 e 2.6 in [6].

For NSC algorithms satisfying A7–A8, it is easy to see that Condition H1 holds if the objective
f is a gradient dominated function of degree p. Thus, as a consequence of Theorems 2.4 and 2.5,
we have the following complexity result.
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Theorem 3.1 Suppose that A1–A4 and A7–A8 hold and let ε ∈ (0, e−p). If f is a gradient dom-
inated function of degree p = 1 (e.g. convex), then Algorithm 1 takes at most O(ε−1) iterations
to achieve

f (xk)− f∗ ≤ ε.

Additionally if f is a gradient dominated function of degree p = 2 (e.g. strongly convex) and
η1 < κ−1

u , then this worst-case complexity bound is reduced to O(log(ε−1)) iterations.

Remark 3 Theorem 3.1 generalizes to the NSC framework the complexity results presented by
Cartis et al. [6] for the basic ARC framework (which is a particular case of NSC with φk = ψk =
χk = ‖∇f (xk)‖ and α = β = 1

2 ).

In order to evaluate the implications of the above result on the complexity of Algorithm 1 for
achieving ‖∇f (xk)‖ ≤ ε, let us consider first the following property.

Lemma 3.2 Let f be continuously differentiable and assume that its gradient ∇f is Lipschitz
continuous with Lipschitz constant κL ≥ 1. Also, suppose that f is bounded below by f∗. Then,
when Algorithm 1 is applied to minimizing f, we have

f (xk)− f∗ ≥ 1

2κL
‖∇f (xk)‖2, ∀k.

Then, for any ε > 0, ‖∇f (xk)‖ ≤ ε holds whenever

f (xk)− f∗ ≤ ε2

2κL
.

Proof See Lemma 2.8 in [6]. �

Now, from Theorem 3.1 and Lemma 3.2 we have the following result.

Theorem 3.3 Suppose that A1–A4, A7–A8 and the assumptions of Lemma 3.2 hold. Then, if f
is a gradient dominated function of degree p = 1, Algorithm 1 will take at most O(ε−2) iterations
to ensure ‖∇f (xk)‖ ≤ ε. Additionally, if f is a gradient dominated function of degree p = 2 and
η1 < κ−1

u , then this worst-case complexity bound is reduced to O(log(ε−1)) iterations.

Table 1 summarizes the complexity results described in Theorems 1.1 and 3.3 according to the
choice of the powers α ∈ (0, 1] and β ∈ [0, 1].

Finally, to justify our analysis, we shall see important examples of Algorithm 1 for which con-
ditions A7–A8 are satisfied. As pointed out by Toint [22], under mild conditions,2 Algorithm 1
covers the following algorithms:

• the classical trust-region algorithm [9, 21], specified by:

mk(xk + s) ≡ f (xk)+ ∇f (xk)
Ts + 1

2 sTHks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇f (x)‖,

δk = �k , α = 1, β = 0;

Table 1. Complexity of NSC on gradient dominated objectives of degree p.

p 2α + β ≥ 1 and α + β < 1 α + β = 1 Otherwise

1 O(ε−2) O(ε−2) O(ε−(2+β))
2 O(ε−2) O(log(ε−1)) O(ε−(2+β))
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• the basic ARC algorithm of Cartis et al. [4], specified by:

mk(xk + s) ≡ f (xk)+ ∇f (xk)
Ts + 1

2
sTHks + 1

3
σk‖s‖3,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇f (x)‖,

δk = 1

σk
, α = 1

2
, β = 1

2
;

• the nonlinear trust region method suggested by Toint [22], specified by:

mk(xk + s) ≡ f (xk)+ ∇f (xk)
Ts + 1

2 sTHks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇f (x)‖,

α = 1
2 , β = 1

2 .

Clearly, all these algorithms satisfy A7–A8. Furthermore, we claim that the conic trust-region
method in [17] can also be viewed as particular cases of Algorithm 1 satisfying A7 and A8 with
the choices:

mk(xk + s) ≡ f (xk)+ ∇f (xk)
Ts

1 − hT
k s

+ sTHks

2(1 − hT
k s)2

, (41)

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇f (x)‖, (42)

δk = �k , α = 1, β = 0, (43)

where the horizontal vector hk ∈ R
n is chosen such that mk and ∇mk satisfy suitable interpolation

conditions (see, e.g. [11] and references therein). In fact, regarding the conic trust-region method
specified by (41)–(42), consider the following assumptions:

C1 The objective function f : R
n → R is twice continuously differentiable.

C2 There exists a compact and convex set � ⊂ R
n such that xk and xk + sk belong to � for

all k.
C3 There exists a constant κH > 0 such that, ‖Hk‖ ≤ κH for all k.
C4 There exists a constant κh > 0 such that ‖hk‖ ≤ κh for all k.

Let us now check all the conditions that define Algorithm 1. Conditions A1 and A2 follow
directly from (42). Condition A3 follows from C1 and C2. Clearly, by (41) we have mk(xk) =
f (xk). Moreover, it follows from C1–C4 and Lemma 3.4 in [26] that

f (xk + s)− mk(xk + s) ≤ κm‖s‖2 ∀s ∈ R
n,

for some constant κm > 0. Thus, the conic model mk(xk + s) given in (41) satisfies (5). As in
the conic trust-region method, sk is computed by minimizing mk(xk + s) restricted to the set
{s ∈ R

n | ‖s‖ ≤ �k , |1 − hT
k s| ≥ ε0}, for some ε0 ∈ (0, 1), it follows that (6) is automatically

satisfied with κs = 1 and κδ = +∞. If we impose�k ≤ �̄ for all k, it follows from Theorem 2.5
in [17] that, for all k,

mk(xk)− mk(xk + sk) ≥ κc‖∇f (xk)‖ min

{‖∇f (xk)‖
1 + ‖Hk‖ ,�k

}
,

for some constant κc > 0, that is, (7) is satisfied. Therefore, the conic trust-region method
specified by (41)–(42) is a particular case of Algorithm 1 satisfying A7 and A8.
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Thus, in the light of Theorem 3.1, all the algorithms mentioned above (seen as particular cases
of Algorithm 1) take at most O(ε−1) and O(log(ε−1)) iterations to generate xk such that f (xk)−
f∗ ≤ ε, when applied to a convex and strongly convex objective f, respectively. Furthermore, if
the gradient function ∇f is Lipschitz continuous, Theorem 3.3 provides upper bounds of O(ε−2)

and O(log(ε−1)) iterations for achieving ‖∇f (xk)‖ ≤ ε, when f is convex and strongly convex,
respectively.

4. Conclusion

In this paper, we investigate the worst-case complexity of the NSC framework on convex
and strongly convex objectives. By generalizing the analysis of Cartis et al. [6] for the basic
ARC algorithm, we proved that if α + β = 1, χk = ‖∇f (xk)‖ and φk ,ψk ≥ χk , then the NSC
algorithm can take at most O(ε−1) or O(log(ε−1)) iterations to achieve f (xk)− f∗ ≤ ε, where f∗
is the global minimum of a convex or strongly convex objective f, respectively. Unsurprinsingly,
these bounds match in order those obtained by Cartis et al. [6] for the basic ARC algorithm,
and by Nesterov [19] for the steepest descent method, on the same classes of objectives. A natu-
ral topic for future research is to investigate whether these improved complexity bounds can be
established for NSC algorithms in which α + β �= 1.

In [15], we have extended the NSC framework to some algorithms for composite non-smooth
optimization (NSO) problems of the form

min
x∈Rn

f (x) ≡ g(x)+ h(c(x)),

where h : R
m → R is convex but may be non-smooth, and g : R

n → R and c : R
n → R

m are
continuously differentiable. We also have generalized the NSC framework to include algorithms
for unconstrained multiobjective optimization (MOO) problems of the form

min
x∈Rn

f (x) ≡ (f1(x), . . . , fm(x))
T,

where each fi : R
n → R is continuously differentiable. It is worth to mention that all the results

in Section 2 (namely, Lemmas 2.1–2.3 and Theorems 2.4–2.5) remain true if we consider these
extensions of the NSC algorithm.3 Thus, as another topic for future research, it would be interest-
ing to search examples of NSC algorithms for these problems and identify classes of objectives
for which Condition H1 is satisfied. Note that, this would allow us to obtain improved complexity
bounds for composite NSO problems and unconstrained MOO problems.
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Notes

1. In the bound for strongly convex functions, C is a problem-dependent constant. For details, see [[6, p. 214], [20,
pp. 203–204]].

2. For example, if f is twice continuously differentiable, the norms of Hk and ∇2f (x) are bounded from above, and
the sequence {xk} is contained in a compact set � ⊂ R

n

3. For NSO and MOO problems, ‖∇f (x)‖ in A1 and A2 must be replaced by the appropriated criticality measures.
Furthermore, in the case of MOO problems, f (x) must be replaced by �(x) = maxi=1,...,m{fi(x)}. For details, see
Section 4 in [15].
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