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Abstract

In this paper, we present a subspace method for solving large scale nonlinear equality
constrained optimization problems. The proposed method is based on a SQP method
combined with the limited-memory BFGS update formula. Each subproblem is solved
in a theoretically suitable subspace. In the case of few constraints, we show that our
search direction in the subspace is equivalent to that of the SQP subproblem in the
full space. In the case of many constraints, we reduce the number of constraints in the
subproblem and we show that the solution of the subspace subproblem is a descent
direction of a particular exact penalty function. Global convergence properties of the
proposed method are given for both cases. Numerical results are given to illustrate the
soundness of the proposed model.
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1 Introduction

In this paper, we consider equality constrained optimization problems of the form

min f(x) (1a)

xeR?

subjectto ¢;(x) =0, j=1,...,m, (1b)
where f,c;j : R" — R (j =1, ..., m) are continuously differentiable.

One of the most popular algorithms for (1) is the Sequential Quadratic Programming
(SQP). At the k-th iteration of the SQP method, a search direction dy is computed by
solving the subproblem:

1

i d)=gld+ ~d" Bid 2
Cgrelﬁ@wk() 8k +2 I3 (2a)
subjectto Ald 4 ¢ =0, (2b)

where
gk = V), ek = (1), - em@)s Ax = [Verw), ... Vem ()],
and By, is an approximation to the Hessian of the Lagrangian of (1). Formally,
Bi ~ V2L (xx, ).

We refer to [2,6] for comprehensive understanding and further references on SQP
methods. SQP is a very successful algorithm for small or medium-size problems (1).
However, it may not be suitable for large scale problems, due to computational cost
and memory issue, for example.

Currently, solving large scale problems is one of the most important issues in non-
linear optimization. For such problems, a large number of variables, limited memory
storage, and massive computations at each iteration consist of major difficulties. A
recent review by Gould et al. [7] discusses the main approaches for handling large
scale problems, such as step computation, active set, gradient projection and interior
point methods.

To solve large scale problems, such as large scale nonlinear optimization, nonlinear
equations, and nonlinear least squares, Yuan [19,20] proposed a new approach using
subspace techniques. Also, a model algorithm using subspace was given for uncon-
strained and equality constrained optimization and possible choices for subspaces were
introduced. In the subspace methods, the main issue is how to construct subproblems
in a low dimension so that the computational cost in each iteration can be reduced,
compared to standard approaches.

Yuan [19,20] also showed that in many standard algorithms, such as conjugate gra-
dient method, limited-memory quasi-Newton method, projected gradient method, and
null space method, there are ideas or techniques which can be viewed as subspace
approaches. Based on these observations, several algorithms have been proposed. In
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particular, for unconstrained optimization, Wang and Yuan [18] and Wang et al. [17]
proposed subspace trust region methods using standard quasi-Newton and limited-
memory quasi-Newton approach, respectively. More detailed discussions on subspace
methods for unconstrained optimization can be found in [5,15-18,21]. For nonlinear
equality constrained optimization, Grapiglia et al. [9] investigated subspace proper-
ties for the Celis-Dennis-Tapia (CDT) problem [3] and proposed a subspace method.
In this method, as iteration increases, the dimension of subspace increases, and so
memory and computational cost increase. This is the main drawback of the method
proposed by Grapiglia et al. [9]. Recently, subspace choices for the CDT problem and
subspace properties of the quadratically constrained quadratic program (QCQP) were
investigated by Zhao and Fan [22,23], respectively.

By extending the method in [19], we propose a new subspace SQP method for large
scale nonlinear equality constrained optimization problems. Since our method controls
the dimension of subspace at each iteration, we avoid the rapid increase of dimension.
Furthermore, we adopt a line search. As far as we know, line search has not been
applied yet in the context of subspace methods for equality constrained optimization.

In the case of few constraints, our method is equivalent to the standard SQP method
in the full space. In the case of many constraints, we reduce the number of constraints in
the subproblem and we show that the solution of the subspace subproblem is a descent
direction of a particular exact penalty function. Global convergence properties of the
proposed method are given for both cases.

This paper is organized as follows. In Sect. 2, we introduce the subspace method for
unconstrained optimization in [19]. In Sect. 3, we describe a new subspace technique.
Based on it, we propose a subspace method for equality constrained optimization by
extending the method in [19]. In Sect. 4, the convergence of the proposed method is
established. Numerical results are reported in Sect. 5. Finally, concluding remarks are
given in Sect. 6.

2 Subspace methods for unconstrained optimization

In this section, we review the subspace method proposed in [19]. Let us consider
unconstrained optimization problems of the form

min f(x). 3)

xeR”

The choice of a subspace can be motivated by limited-memory quasi-Newton methods
[11]. In general, to approximate the Hessian V2 f (xx), quasi-Newton methods for (3)
use the secant equation

Bisi—1 = yi—1,

where sx_1 = xx — xk—1 and yr—1 = gk — gk—1. A typical example is the famous
BFGS method [12]:
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T T
Bi—1Sk—185,_1Br—1  Yk—1Y4_;

T T :
Sp_1Br—15k—1 Sp_1Yk—1

By = By—1 —

Thus, By is updated by using Bx_1, sg—1, and yx_1. However, in large scale problems,
retaining Bj_1 may introduce a memory shortage as k increases.

As a variant of quasi-Newton methods, limited-memory quasi-Newton methods
[11] use only a few previous terms; given m, they periodically approximate the Hessian
using B,El_l), Sk—iii—14i> and yg_m—14; fori = 1, ..., m from the initial guess B,EO) =
811 with §; > 0. Byrd et al. [1] proposed a compact representation of limited-memory
BFGS update matrix

By = B =81 + Wi DyW[

where Dy, is a 2m x 2m matrix and

Wi =[Sk Ykl = [Sk—1s Sk—2s -+ s Skesits Ve1s Yk—2+ - - -+ Yksin | € R
If a line search type method is applied, we have sy = ardiy = —o B, ! gk, while for
trust region algorithms one has sy = — (B + vi/ )’lgk with v; > 0. In either case, it

can be shown that s; belongs to the subspace

Span {8k, Sk—1, - - - » Sk—siis Yk—1s - - - » Yk—rt} - 4)

Based on the subspace (4), Wang et al. [17] proposed a subspace trust region method
for large scale unconstrained optimization problems (3). Preliminary numerical results
show that their algorithm is encouraging. In their experiments, the scales of problem
range from 500 to 10,000, but the dimensions of subspace are low, between 6 and 16.
In the next section, we propose a new subspace method for the equality constrained
optimization problem, using a line search framework.

3 A new subspace method for equality constrained optimization

In this section, we describe a new subspace technique for solving the equality con-
strained optimization problem (1). Suppose that at the k-th iteration, we have the
current iterate point x; and the subspace 7. We denote the dimension of 7; by iy and

let O = [q fk ), qék) ey ql.(kk)] be a matrix of linearly independent vectors in 7. Since

any vector d € Ty can be written as d = Qyz for some z € R, the SQP subproblem
with respect to the subspace 7 is given as

L 1
min @(z) = (OF g)"z+ =z Of BxQkz (5a)
zeRik 2
subjectto AT Qrz 4 cx = 0. (5b)
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However, when m > iy, the linearized constraints (5b) may not be feasible because
the system is over-determined. In this case, to guarantee the non-emptiness of feasible
set, we consider the reduced constrained version of (5b):

L 1
min ¢ (z) = (Of g) 'z + =z" Of Bk Qkz (6a)
zeR% 2
subjectto P! (A} Qxz + cx) =0, (6b)

where Py is a projection matrix. The Karush—Kuhn—Tucker (KKT) system of (6) is as
follows:

OF (BtQxz + APt + gr) =0, ™)
Pl (Af Qkz + ) =0, ®)

where  is a vector of Lagrangian multipliers.
Now we present a subspace SQP method for equality constrained optimization. It

can be considered as a modification of the subspace method for equality constrained
optimization proposed by Yuan [19].

Algorithm 1 (Subspace SQP algorithm)
Step 1 Given xq, set an initial subspace 7y, an initial penalty parameter oy > 0,
tolerancee > 0, iterationnumberk:=0.
Step 2 Solve the subspace subproblem (6):
.o 1

min @ (z) = (Q{ g)" z + =z O] BrOxz

zeR'% 2

subject to PkT (A,{ Orz+cr) =0,

to obtain z; and Lagrangian multipliers px, and set
dy = Qrzr and )L,j = Prpg. If ||di || < € then stop.
Step 3 Perform a line search to obtain the stepsize o which satisfies

¢ (X + ady, or) < ¢ (xk, o%)
and set
X1 = Xk + apdy
M1 = M+ k(A — 2

where ¢ (x, o) is a penalty function and o is a penalty parameter.
Step 4 Generate o1, subspace 7y, and @g11(z).
Step 5 Set k:=k 4 1 and go to Step 2.

The key issue for Algorithm 1 is how to choose a subspace and solve the corre-
sponding subspace subproblem quickly. We adapt the damped limited-memory BFGS
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update formula for equality constrained problems, which guarantees By, to be positive
definite [13]. With the relation Hy = B, ' we apply the following formulae:

Bo=1, Hy=1.

Fork > 1,

B T -1 T
Br = 68; 1 — [SkSk Yk] |:8kSk Sk Lx ] |:8kSk :| ,

T o1
LI —Dy Y,
_ R (D + Y YOR! =R\ ST
k k k k
Hi =yl + | Sk viYr [ k }
[ ] _R]:1 0 kakT
where
S [S(),...,Sk_l] if k<m
k= )
[sk_,;,, el sk_l] otherwise
_ [o.....3k—1] if k<m
k=1 _ .
[yk_,,-,, e, yk_l] otherwise
b diag (SOT)'JO, ...,Skal)_’k—l) if k<m
k =
diag (s7_- Vk—m, -, 5{_ Jk—1) otherwise
s{_lyk—l y 1
- ) k — < >
llsk—1113 8
(Lk)“_{giT_lyjl if i>j P 1,2,...,k if k<m
Y 0 otherwise ~ ’ 1,2,...,m otherwise

(R} = 5,'T_19j—1 if Q> . 1,2,...,k if k<m
& 0 otherwise =’ 1,2,...,m otherwise

5 =

Sk—m+i otherwise ~ Jk—mti otherwise

5; if k<m {yi if k<m
yi =

Si=Xi+1 — Xis  Yi = Val(Xit1, hiv1) — Vi L(xi, A),

1 if SiT)’i > O.ZSiTBl-s,-

(0.8s7 Bisi)/(sI Bis; —sI'yi) otherwise

yi = 0;yi + (1 —6;)Bsi,

6; =

’

and A; are Lagrangian multipliers. The modified differences of the gradients of
Lagrangian y; are used to guarantee By to be positive definite. See [13] for details.
There are a variety of methods for solving the subproblem (2) and the corresponding
subspace subproblem (6). In our numerical test, we use the range space method for
these subproblems since B, Uis explicitly given as Hj through the quasi-Newton
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update formula [12]. More specifically, the range space method solves the following
two systems

(AT B 'Ar = —AL B gk + 9)
d = —B; (g + Aeh), (10)

for the solution of the subproblem (2).
In Step 3, we use backtracking line search, which starts with & = 1. The stepsize
o = « is accepted if

& (xx + apdy, ok) < ¢ (xk, ok) + nag D, & (xg, o%),
where 1 € (0, %), and D;¢ (x, o) is the directional derivative of ¢ at x in the direction
d. Otherwise, we set ¢ «<— 1o, T € (0, 1) and repeat the line search. More details for
our numerical experiments are given in Sect. 5.

4 Convergence analysis

In this section, we analyze convergence properties of the proposed method under the
following assumptions:

Assumption 1 The starting point and all succeeding iterates lie in some closed,
bounded and convex region C in R”.

Assumption 2 The columns of A(x) = [Vq x),...,Ven (x)] are linearly indepen-
dent for all x € C.

Assumption 3 For all d € R”, there are positive constants 8; and 8, such that
Billdl3 < d" Bid < p2lld|3

for all k.

These conditions are commonly chosen to prove global convergence of algorithms for

constrained optimization problems [2].

We consider two cases based on the number of constraints m, comparing with the
number of the variables n. For simplicity, we assume k > m.

4.1 Case l: Few constraints

First, we consider the case of relatively few constraints in the problem (1). Since
m < n, the subproblem (5) is used at each iteration. The following theorem shows
that subproblem (2) is equivalent to subproblem (5). Its proof is an adaptation of
Lemma 2.2 in [18].
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Theorem 1 Suppose By is the k-th updated matrix by the damped limited-memory
BFGS update formula. Let dy be a solution of problem (2), and sy = oydy with
stepsize o > 0. Let

T = span{ge, Sk—iis - -, Sk—1s Vhiits - - - » V1> VC1(XR), - - -, Ve (xp)} -
If Qk is an orthonormal basis matrix of ’Z;CF , then subproblem (2) is equivalent to (5).

Proof We denote the dimension of the subspace TkF by r. Let Uy € R™ ") be a
matrix such that [Qy, U]is ann x n orthogonal matrix. Then, for each d € R", there
exists one and only one pair z € R", u € R"™" such that d = Qyz + Uiu. Thus, it
follows that

1
or(d) = g[d + -d" Bid
1
= ¢l (Qrz + Upu) + 5Oz + Ur)" B (Qz + Ugu)
1
=0 e) 2+ WUl g u+ zzTQZ BiQwz +u Ul By Qiz

1
+§uTUkTBkUku. (11)

By the choice of Z(F, we have SkT U, =0, ?kTUk = 0, and ngUk = 0. Hence, it
follows that

_ToeSTse L 7' [aesTy,
BeUr = 8.Ux — [8kSk Y| [ kLkT ¢ _5k:| |: I;—,T]‘Ukk = 8k Uy,
k k

and Ul By Qx = 8:U] Qi = 0. By (11), we have

1 1
or(d) = (Q{ 80"z + 32" QL BiQxz + 8 lull3
Since A,{ Ui = 0, we have
0= Ade +ck = AkT(QkZ + Uru) + ¢ = A/{QkZ + ck.

Now the above relation indicates (2) is equivalent to
. T T [ 1 2
min (Qrg) z+ X O Bk Qkz + 551( lluellz

subject to A,{ Orz+cr=0.

Since §¢ > 0, it is easy to see that the above problem is equivalent to (5) with u = 0.
Therefore (2) is equivalent to (5) with dy = Qg z. O
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A subspace SQP method for equality constrained optimization 185

By Theorem 1, we ensure that the proposed method generates the same iterate as
the standard SQP method. Thus, we can obtain the global convergence of the proposed
method using Theorem 4.3 of Boggs and Tolle [2]. For completeness, we restate this
theorem for the L exact penalty function [10]

$1(x,0) = fx)+ollc@)l -
Theorem 2 (Boggs and Tolle [2]) Assume that o is chosen by
+ -
o=|xl.+5

for some constant p > 0. Then the proposed algorithm started at any point xo with
stepsize o« > a > 0 chosen to satisfy

@1 (x + ady, o) < ¢1(xk, ok) + naDg, ¢y (xk, ok)

converges to a KKT point of (1).

4.2 Case ll: Many constraints

Now, we consider the case of relatively many constraints, i.e. m & n in (1). In this case,
problem (6) is solved at each iteration. Since we reduce the number of constraints in
the subproblem, we cannot expect that the proposed method generates the same iterate
as the standard SQP method. Nevertheless, we can show that the search direction is a
descent direction for the L, exact penalty function [10]

boo(x,0) = f(x) + 0 flc(®) o - (12)

Using this property, the global convergence of the proposed method is obtained.
First of all, we state the following result of Yuan [20]. It is used to show that the
solution of the subproblem (6) is a descent direction of ¢oo (x, 7).

Lemma 1 (Yuan [20]) Suppose we sort the violations in decreasing order:

len 0| = Jen )| = . = e, ()] (13)
and |Cljk 1l < lckllco- If the search direction dy satisfies
Pl (cx + Al d) =0,
where
P = |:el| €Ly e el.ik] € Rmxjk, (14)

then dy is a descent direction of ||c(x)| o at xk.
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186 J.H.Leeetal.

Using Lemma 1, we derive the following theorem for a descent property of the
search direction.

Theorem 3 Suppose {x;}, {di}, {ok}, {ck}, {Ok}, { Pk}, and { By} are sequences gen-
erated by the proposed subspace SQP algorithm under Assumptions 2 and 3. If
|c1jk+I (x| < llcklloos Pk is given by (14), and sufficiently large oy is chosen, then
the search direction di is a descent direction for ¢oo(x, o). That is, its directional
derivative at xy in the direction dy satisfies

Dy, oo (xi, 01) < 0.

Proof Using Lemma 1, we obtain that

Dy, poo (xk, 0%) = ngdk — okllcklloo

= gl Orzr — ovllcklloo
—z{ Of BuOxzx — i P AL Qrzk — oxllcklloo
= —z} Of Bk Orzk + i Pl ek — oxlicklloo
—z{ O BrQrzx — (o — Nkl ) ek lloo

IA

where the third equation is obtained by using (7), the fourth equation is from (8),
and we get the last inequality by using Holder’s inequality. Assumption 3 implies
that —sz QkTBk QOxzk 1s always negative. Thus, if oy, is sufficiently large, that is, o} >
Itk ll1, then Dy, ¢oo (X, 0%) < 0. Hence the search direction dy is a descent direction
for ¢poo(x, 0). O

Now we establish the global convergence of our algorithm by applying the idea of
Powell [14].

Theorem 4 Suppose {xi}, {di}, {0k}, {ck}, {Ok}, { Pk}, and { By} are sequences gener-
ated by the proposed subspace SQP algorithm under Assumptions 1-3. If| Cljy+1 (x| <
Icklloos Pk is given by (14), oy is chosen as

or = il + 7 (15)
for some constant p > 0, Qy is an orthonormal basis matrix of Z(M where
M = span {gk, Skiits « s Sk—1s Yk—iis -+ s Yk—1, Ve, (xe), ..., Ver, (Xk)} :
and the stepsize oy > 0 satisfies
Doo (X + ardy, 0k) < oo (X, 0%) + Nty Dy Poo (Xic, k) (16)

forn € (0, %), then any limit point of {xi} is a KKT point of (1).
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Proof First, we show that if dy = 0, then x; is a KKT point of original problem (1).
By using dr = Qg zk, )»,:r = Py, we can rewrite the Egs. (7) and (8) as follows:

OF (Bydy + Axhf + g1) =0, (17)
Pl(Aldi + c) = 0. (18)

With a matrix Uy which makes [Qy, U] an n x n orthogonal matrix, we have the
following relations:

ByUy = 8, Uy, Ul AxPr =0, Ul B Qx = 8 Ul O =0, U] gx =0,
UL (Bedi + Anf + gi) = U Qrzie + Ul Ak P + Ul'ge = 0. (19)

Using (17) and (19), we have

Bidi + Akh + gk =0,

Pl (A dy +cr) = 0. (20)
If dy = 0, then
Ahf + g =0,
PkTCk = 0.

From (13), PkT cx = 0implies ¢y = 0. Thus, xi is a KKT point of the original problem
(1) with a new Lagrangian multiplier )L,j'.

Now suppose d # 0 for all k. We define the following two functions L and ¢ of
d:

_ 1
LG+ d) = fi +g{ (Qk2) + E(QkZ)TBk(QkZ) + ui PL(AL Qrz + )
1
= fi+eld+ EdTBkd + 2T AT d + ),
_ 1
Bl +d) = fio+ 8 (Qk2) + 5 Q)T Br(Quo) + o | T (A] Qkz )|

1
= fe+eld+5d"Bid + o | Pl (Ald +ao)| . e

withd = Qgz, )»,:r = Py . These functions are convex and achieve their minimum
values at d = dj.. Because of (20), we have

_ _ 1 _
Li(xx) = LG + di) + EdkT Brdy > Li(xk + dy). (22)
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188 J.H.Leeetal.

The difference between these functions is bounded below by the estimate below.

fi(x+d) — LiCu+d) = o | Pl (Ald + )| —uf Pl (Ald +c)
> (o = Il | P (Afd + )|
> 5| Plafd+eo) - (23)
If any of the equalities (6b) are violated, then we have
d(xk +d) > Li(xg + d).

In this case, if x is infeasible with respect to the given nonlinear constraints (1b), we
have the bound

G (xx) > Li (k) > Lok + di)) = Gk + di). (24)
While, if x; is feasible, we have the condition
b (xx) = Li (k) > Li (e + di) = (i + di), (25)

where the strict inequality comes from that the term dkT Bydy in (22) is positive. Hence
the number

te = i () — i (xx + di)
is positive. In addition, we have

lleCek + adi) lloo = llcklloo + @Dy llc(xi) oo + 0(e)

= [leklloo — allcklloo + 0(a)
and
_ 1
Pr O+ ad) = fic + g di + Sedi Brdg + 0o (1 = @) ekl -
Owing to the above two relations and the convexity of the function (21), we have

Poo (Xie, 0) — Poo (i + adi, 0) = P (xx) — i (xxc + ady) + o(et)
> ol (xx) — i (xk + di)] + o(a)
=aty +o(a), 0<a<1. (26)

Therefore the reduction of the penalty function
Poo (X + otkdy, 0k) < oo (X, OF)

@ Springer



A subspace SQP method for equality constrained optimization 189

can be achieved by a sufficiently small and positive ox . From the choice of oy satisfying
(16), we can replace the above condition on the stepsize by the inequality

Do (K41, 0) < Poo(Xk, 0) — oty 27

since Dy, Poo (X, 0k) < ¢ (X + di) — Pre(xp) = =t < 0.

Let £ be a small positive constant, and consider iterations with #; > &. Because
the continuity of the first order derivatives in a compact domain introduces uniform
continuity, and the vector dj in (26) is bounded, there is a positive constant 8(£) such
that the inequality (27) holds for any ax € [0, (£)]. Thus, by the line search process,
we can deduce that

[Poo (X, 0) — Poo (X1, 0)] = néa,

where o € (0, (&)]. However, the reduction in the line search tends to zero, because
{po(xk,0) : kK = 1,2,3,...} is a monotonically decreasing sequence which is
bounded below. Therefore f; tends to zero, that is,

Jim. [k (xk) — r (xic + di)] = 0. (28)

Because either (24) or (25) is satisfied for each k, the limit (28) gives

Jim. [ (xx) — L (xx)] = 0 (29)
and
Jim [Li(xx) — Li(xx + di)] = 0. (30)

By letting d = 0 in the estimate (23), and using the condition (15), we deduce from
(29) that all limit points of the sequence {x; : k = 1,2, 3, ...} satisfy the nonlinear
constraints (1b).

Without loss of generality, we assume that {x; : k = 1, 2, 3, ...} has only one limit
point, say x,. By the above arguments, c;(xx) = O forall j =1, ..., m. From (20),
we have that

lim | Bedy + Axhf + g| = 0. 31
k— 00

Since (22) and (30) imply B,’’dy — 0, and the matrices {By : k = 1,2,3, ...} are
uniformly bounded, the limit (31) still holds after eliminating the term Bjdj. Because
the Lagrange multipliers are bounded, by passing to a subsequence if necessary, we
deduce that A1 +g, = 0, where A is any cluster points of {k,j}, limg o0 Ax = Ay,
and limy_, o0 gk = g+«- Hence x, is a KKT point of (1). m|
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190 J.H.Leeetal.

5 Numerical results

In this section, we illustrate the implementation of the proposed algorithm SubSQP and
report numerical results on some of CUTEst problems [8]. To show the effectiveness
of SubSQP in large scale nonlinear equality constrained problems, we test it on 11
CUTEst problems. In most of these problems, the number of variables is greater than
or equal to 5000, and the number of constraints is greater than half of the number
of variables, consisting of only nonlinear equality constraints. The experiment also
includes 5 problems with few constraints. To show the soundness and efficiency of
SubSQP, we compare it with the standard SQP method. All tests are performed on an
Intel Core i5 3.50 GHz CPU with 8 GB memory, running on Ubuntu 16.04 LTS and
MATLAB R2016b.

For numerical tests, parameters are chosenas n = 1073, 7 = 0.5, oy = || ll1 + 2,
p = 1073, ¢ = 1073 and the maximum number of iterations is 100. Since we are
mostly interested in large scale problems, we use the L, exact penalty function

Poo(x,0) = f(x) + 0 llc) oo »

to measure progress towards a solution.

In order to prevent a rapid increase of the dimension of subspace in the case of many
constraints, we limit the number of constraint gradients Vg, (xx) in the subspace to
m, for all k unless specified otherwise. To effectively decrease constraint violations,
we select the m largest gradients in magnitude after sorting:

en ()| = e )| = oo = e, ()] -

By including those constraint gradients in the subspace 7™, the step sy = oxdy
generated by the proposed method moves in the direction of reducing severe constraint
violations. Consequently, we choose Py in (14) as follows:

P, = [ell, e, ..., elrh] S Rmxrh’
and set the subspace ’Z;M :

M = SPAN { gk, Sk—sis - - -+ Sk—1» Yk—iis - - - » Vo1, V€1, (X0), - .., Vg, (xi) } -

In the case of few constraints, all m constraint gradients are used to construct the
subspace TkF .

To compute the orthonormal basis matrix Qy, the reorthogonalization procedure in
[4] is applied. If Ay is nearly rank deficient, SubSQP may eliminate some constraint
gradients in the orthogonalization process. We use the conjugate gradient method to
solve (9), and the relative residual norm is chosen for its stopping condition with
tolerance 1074,
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To improve the performance of the proposed method, we skip the update (sx, yx)
if

107850 5 = 5 s,
and reset the subspace 7y, if
| fie = fir1l < 10741 fil
and
llieklloo = llerrillool < 107 [lcklloo-
The stopping criterion consists of
gk + Arrilloo = €, llcklloo <€ or |ldil|l2 < €.

We also terminate each algorithm when it generates a tiny stepsize oy < 107°,

The numerical results on a few CUTEst test problems are reported in Tables 1-2.
In Table 1, n represents the number of variables, m represents the number of con-
straints, m is a parameter for constructing the subspace. Since SQP and SubSQP give

Table 1 Numerical results on CUTEst problems

Problem n m m SQP SubSQP
itr time (s) itr time (s)

PORTFL1? 12 1 1 4 0.02 4 0.06
DECONV(C? 63 1 2 19 0.03 19 0.10
HIMMELBI? 100 12 5 4 0.02 4 0.04
PRIMAL4? 1489 75 10 3 0.03 9 0.26
LUKVLE9 10,000 6 15 28 0.25 8 0.41
MSS2 756 703 5 8 0.25 13 0.50
MSS3 2070 1981 5 6 2.05 14 0.98
ORTHRGDS 5003 2500 5 5 6.43 16 2.29
DTOC2 5998 3996 10 9 25.74 43 10.07
DTOCIND 5998 3996 10 5 14.60 81 18.48
LUKVLE14 9998 6664 10 4 42.19 32 18.59
LUKVLEI1 9998 6664 10 5 59.98 100 62.40
LUKVLEI6 9997 7497 15 5 72.11 45 31.05
LUKVLE17 9997 7497 15 14 156.65 100 67.01
LUKVLE2 10,000 4999 15 1 6.58 9 4.87
LUKVLEI1 10,000 9998 10 6 116.58 14 13.28

4For numerical test, inequality constraints are considered as equalities, and the bounds on the variables are
ignored
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Table 2 Function values and constraints violation on CUTEst problems

Problem SQP SubSQP
S [lexll S+ [lesl]

PORTFLI 2.1548 x 1072 5.5511 x 10~17 2.1548 x 1072 0.0000 x 10°
DECONVC 1.3600 x 107! 4.2301 x 1072 1.3600 x 107! 42301 x 1072
HIMMELBI —1.6815 x 103 3.4617 x 1072 —1.6815 x 10° 3.4253 x 1072
PRIMAL4 —7.4255 x 107! 5.1518 x 1074 —7.4255 x 107! 1.6748 x 104
LUKVLE9 2.1311 x 103 2.1381 x 1072 5.0533 x 103 9.7771 x 107!
MSS2 —3.7622 x 102 4.6892 x 1073 —3.7909 x 102 2.9689 x 1073
MSS3 —2.6856 x 10° 1.5948 x 100 —1.0379 x 10 27987 x 1073
ORTHRGDS 8.0722 x 102 3.1541 x 10° 47501 x 10! 1.1691 x 102
DTOC2 5.0866 x 1077 3.7468 x 10~4 9.9092 x 10~8 1.5166 x 10~%
DTOCIND 47728 x 10! 3.0867 x 1073 4.0664 x 1072 6.7570 x 10!
LUKVLE14 7.2702 x 10° 1.2247 x 10! 42148 x 10* 1.5268 x 10!
LUKVLEI1 8.1023 x 10% 2.1530 x 10° 3.8694 x 1072 23749 x 107!
LUKVLE16 2.0930 x 10% 4.5928 x 100 2.4740 x 10! 1.1493 x 100
LUKVLE17 1.6189 x 10% 1.0026 x 10° 8.7603 x 102 5.1676 x 10°
LUKVLE2 1.4279 x 10'8 3.6759 x 10% —1.4065 x 100 1.9098 x 10!
LUKVLEI 1.1701 x 10* 7.1104 x 10° 1.0375 x 10 8.0343 x 10°

different solutions due to the adoption of subspace in SubSQP, we report the number
of iterations, CPU time, the final objective value f, and the infinity norm of the final
constraint violation ||c,|| in Tables 1 and 2.

In the case of many constraints, the computational cost of SubSQP per iteration
is less than that of SQP, especially on large scale problems since it performs in the
proposed subspace. However, SubSQP may require more iterations, depending on the
choice of subspace. SubSQP overall outperforms SQP in terms of final objective value,
given in Table 2. Especially, for the problems DTOC2, LUKVLE16, and LUKVLE2,
SubSQP is faster than SQP with a less constraint violation. In the case of few con-
straints, the results of SubSQP are similar to those of SQP. Since SubSQP requires an
orthogonalization process, SubSQP is slower than SQP.

6 Conclusion

In this paper, we present a subspace SQP method to solve large scale nonlinear equality
constrained optimization problems. The subspace technique is a promising approach
for solving large scale optimization problems [21], since it can reduce both computa-
tional cost and memory requirements. To efficiently apply the technique to equality
constrained problems, we propose a subspace generated by the gradient of the objective
function, previous steps, the modified differences of the gradients of Lagrangian, and
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gradients of constraints with substantial violation, based on damped limited-memory
BFGS update.

With this subspace, we prove that our method has a global convergence property.
Numerical results on some of CUTEst problems show that our proposed algorithm
works better for large scale problems when compared with the standard SQP method.
Future work concerns a different choice of subspace and accompanied analyses of
such space, including implementation.
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