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Abstract

It is well known that the minimization of a smooth function f(z) is equivalent
to minimizing its gradient norm ||g(z)||» in some sense. In this paper, we propose a
modified steepest descent method, whose stepsizes alternately minimize the func-
tion value and the gradient norm along the line of steepest descent. Hence the name
“alternate minimization (AM) gradient method”. For strictly convex quadratics,
the AM method is proved to be @-superlinearly convergent in two-dimensions, and
Q-linearly convergent in any dimension. Numerical experiments are presented for
symmetric and positive definite linear systems. They suggest that the AM method
is much better than the classical steepest descent (SD) method and comparable
with some existing gradient methods. They also show that the AM method is an
efficient alternative if a solution with a low precision is required. Two variants of
the AM method, named shortened SD step gradient methods, are also presented
and analysed in this paper. By designing a new kind of line search, the two variants
are extended to the field of unconstrained optimization.

Key words: linear system, unconstrained optimization, gradient method,
monotone and nonmonotone, convergence rate, line search.
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1. Introduction

It is well known that the solution of the linear system

Az =b, where Aec R™" be R" (1.1)

*This research was supported by the Chinese NSF grants 19731010, 19801033, 10171104, the CNPq
in Brazil and an Innovation Fund of Chinese Academy of Sciences. This work was once reported on the
International Workshop on “Numerical Linear Algebra, Numerical Method for PDE, and Mathematical
Programming” (Curitiba, Brazil, August 20-23, 2001).



also solves the minimization problem
1
ming(z) = E:JcTAx —blz, (1.2)

if the matrix A is symmetric and positive definite (SPD). It was because of this fact
that Fletcher and Reeves [7] extended the linear conjugate gradient method ([12]) to
the field of unconstrained optimization

min f(z), = € R". (1.3)

In this paper, we are interested in the gradient method for problem (1.1) or (1.2), and
we then try to extend the new gradient method to problem (1.3).
Letting g = Axy — b, the gradient method for problem (1.1) or (1.2) is of the form

Thi1 = Tk — QLG (1.4)

where z is a starting point and «y is a stepsize. The classical steepest descent (SD)
method, that can be dated back to [3], determines ay, by

T

SD 9r. 9k

asP = IkIk (1.5)
gt Agr,

The stepsize (1.5) minimizes the function value along the line, namely,
oy, = argmin{ f(z; — agy) : a € R'}. (1.6)

However, the SD method is very slow in practical computations and produces zigzags.
It is proved in [1, 8] that the directions in the SD method will tend to two different
directions; namely,

92k = . 92k+1 S . = 5
=d and Ilim =d (with d # d). 1.7
k=00 || gag | k=00 || gk 1] ( 74 (L.7)

In 1988, Barzilai and Borwein [2] proposed another choice for the stepsize:

BB _ Sh_15k-1 _ 9h_ 19k 1 1.8
app - Al et (19
Skp—1Yk-1 Jr—1419k—1

where s | =z — xp1 and yr_1 = gr — gr_1- The stepsize (1.8) is such that the
maftrix Dy = a—lkf has a certain quasi-Newton property:

Dy, = arg min {l|Dsg—1 — yk—1ll2}- (1.9)
D:EI

Although it cannot guarantee a descent in the function value at each iteration, the BB
method (1.4)~(1.8) converges to the solution of (1.2) (see [15]), and is much faster than
the SD method (for example, see [6]). Regarding the convergence rate, the BB method
is R-superlinearly convergent for two-dimensional strictly convex quadratics ([2]), and
R-linearly convergent in any dimension ([5]). This method has now received many
useful extensions and generalizations to unconstrained optimization, convex constrained



optimization, nonlinear systems, optimal control, etc. (see [16, 10, 4] and the references
therein).

Note that each zigzag generated by the SD method includes two steps. By replacing
one of the two steps with the BB step, Dai [4] proposed the so-called alternate stepsize
(AS) gradient method. More exactly, the stepsize in the AS method has the form

afs BB (1.10)

{ P, for odd k;
ap”, for even k.

The AS method is proved to be two-step Q-superlinearly convergent for two-dimensional
strictly convex quadratics and R-linearly convergent in any dimension. The numerical
results for both linear systems and unconstrained optimization in [4] showed that the
AS method is a promising alternative to the BB method. Noting that a‘Z“kS = ag‘k{l =
asP |, this method can be regarded as a particular member of the cyclic SD stepsize
method in [10].

In this paper, we will propose a new gradient method, whose stepsizes alternately
minimize the function value and the gradient norm along the line (see the next sec-
tion). Hence the name “alternate minimization (AM) gradient method”. For strictly
convex quadratics, the AM method is proved to be Q-superlinearly convergent in two-
dimensions, and Q-linearly convergent in any dimension (see §3). Numerical results for
SPD linear systems are made in §4, which suggest that the AM method is much better
than the SD method and comparable with the BB and AS methods. They also suggest
that the AM method is an efficient alternative if a solution with a low precision is re-
quired. Two variants of the AM method, namely, SS1 and SS2, are also presented and
analysed in this paper (see §§2-4 for some related statements). Both the SS1 and SS2
methods are extended to the field of unconstrained optimization by designing a new
kind of line search (see §5). Conclusions and discussions are made in the last section.

2. Motivation and the method

In the previous section, we have described several gradient methods. Notice that
the BB method is a nonmonotone method for it cannot guarantee a descent in the
objective function at each iteration. The AS method is also nonmonotone but is not
so nonmonotone because an SD step is used every other iteration. Specifically, when
we tested the AS method for unconstrained optimization ([4]) with the strategy of
requiring the function value at the BB step to be less than the maximal function value
during the previous M iterations, we found that any integer M > 2 provided the same
numerical results. In contrast, our numerical experience showed that the parameter
M influenced the performance of the BB method and that the difference when using
different values of M is sometimes significant when the problem is ill-conditioned (see
also [16] for the latter point). The SD method is indeed a monotone method, but it is
very slow in practice.

Suppose that the dimension of the problem is very large, so that each algorithm
can compute only a few iterations. Then one should prefer a monotone algorithm to a
nonmonotone one since the object is to minimize the function. Therefore the following
question would be very interesting: does there also exist a monotone gradient algorithm,
that is much faster than the SD method?



To give an answer to this question, our basic idea is alternately to minimize the
gradient norm ||g(x)||2 and the function value ¢(z) along the line. More exactly, for all
k > 1, we choose the stepsizes such that

g1 = argmin{||g(zop—1 — aga—1)|l2 : @ € R'} (2.1)

and
agr = argmin{q(zop — agor) : a € Rl}. (2.2)

Noting that the gradients of ||g(z)||2 and ¢(x) are Ag(x)/||g(x)||2 and g(x), respectively,
we have by (2.1) and (2.2) that

9o Agak—1 =0 (2.3)

and
9ok4192% = 0. (2.4)

The above relations imply that go is conjugate to gop—1, whereas gor+1 and gop are
orthogonal. It follows by (1.4) and gx, = Axj — b that

Gk+1 = gk — o Agy. (2.5)

Then we can solve from (2.3) and (2.4) to obtain

TA
I Ik for odd k;
a;;\M _ ) 9, A%gk (2.6)
= . )
I Ik for even k.
95 Agr

We call the method (1.4)~(2.6) the alternate minimization (AM) gradient method. To
be able to avoid zigzags and become a fast method like the BB and AS methods, the AM
method is expected to have some kind of superlinear convergence for two-dimensional
strictly convex quadratics. In the next section, we will show that, in this case, the
convergence rate of the AM method is QQ-superlinear.

By the Cauchy inequality and the assumption that A is a SPD matrix, we have

! Aw vy

vT A2y — 0T Av’
This shows that if the gradient does not vanish, the stepsize of the AM method at any
odd iteration is less than or equal to the corresponding SD stepsize, namely

for any v € R"\{0}. (2.7)

A
0‘21%1 < 0425121- (2.8)

For the stepsizes in even iterations, we clearly have that

a’24kM = OCQSkD. (2.9)

The relations (2.8) and (2.9) indicate that the AM method carries out a full SD step
after a shortened SD step. This property of the AM method can be illustrated by
Figure 2.1, that is based on:

q(z) = %IT (é 2) T, Top_1 = <_12> : (2.10)



Figure 2.1 Illustrating the AM, and SD methods

In Figure 2.1, :chkD and xg,ﬁl denote the iterations generated by the SD method
from xop_1, while :1:‘24kM and $§‘k]\4{1 stand for the iterations by the AM method. From
the figure, we see that f(xfk]‘_i/{l) < f(x4M) < f(wox_1), which implies that the AM is a
monotone method (this will be strictly established by Theorem 3.2). We can also see
from the figure that

flage') > f(25) but  fzdh) < fla3)- (2.11)

Although the second inequality in (2.11) is not always true for all strictly convex
quadratics, our random experiments show that it holds for most of the cases. In theory,
we can show that for any strictly convex quadratic, there must exist a stepsize a1 <
0”29121 such that a full SD step at the point xop_1 — &9k _192k_1 Will provide the minimizer
of the function in the two-dimensional subspace zoy 1 + Span{gor_1, Agar—1}. In other
words, a suitable reduction in the stepsize aglg , will lead to a better function value
f(xog+1). Since a simple way to reduce the stepsize is to multiply it by some positive

constant less than 1, we also propose the following two ways to shorten the SD step:
ool =y P (2.12)

and S
0552 _ {720% , for odd k;

SD

ap”, for even k, (2.13)

where 7y; and <y, are positive constants less than 1. For convenience, we call the methods
(1.4)~(2.12) and (1.4)~(2.13) shortened SD step gradient methods (I) and (II), and
abbreviate them as SS1 and SS2 methods.

As will be shown in Table 4.3, the performances of the SS1 and SS2 methods
are similar to those of the AM method. However, one advantage of the SS1 and
SS2 methods over the AM method is that they can easily be extended to the field
of unconstrained optimization (see §5). In addition, the SS1 method with 7y = 0.8
has successfully been applied by Professor Zhiming Chen (private communications) to
a real large-scale saddle-point problem. For his problem, the SS1 method only requires
220 iterations whereas his previous method based on [13] needs 290 iterations.



3. Convergence rate analysis

In this section, we analyse the convergence rate of the AM method for strictly convex
quadratics. These analyses can also be extended to the (not necessarily strictly) convex
case by reducing the case to the strictly convex one. More details can be found in [9],
where a proof of the convergence of the BB method in the convex case is presented.

At first, we have the following theorem for the AM method in the two-dimensional
case.

Theorem 3.1 Consider the minimization problem (1.2), where n = 2. Let {zy} be the
iterations generated by the AM method (1.4)~(2.6). If go # 0, the sequence of gradient
norms {||gx|l2} is Q-superlinearly convergent; namely, we have that

lim 19+1llz (3.1)
k=00 ||gkll2

Further, the Q-superlinear convergence order is only 1, namely, for any constant € > 0
we have that

- Nlgrall2
lim ——= = +o0. (3.2)
k=00 [|gp [l

Proof Noting that the method (1.4)~(2.6) is invariable under orthogonal transfor-
mations, we assume without loss of generality that

A:<(1) 2) (3.3)

where A > 1 is constant. Let g,(cl) and g,(f) be the two components of g;; namely,

gr = (), 97 (3.4)
Then we have by direct calculations that

) _ AA-DE?)?
T (@M)24A(g'P)2 !
_ )2 (@)

(92 +a(g(P)2 7t

)

(1
2 )
(2)

2

(1) _ 2 _ ) ; . . — (1) _

Thus g5 =0 (g5’ = 0) if and only if at least one of the relations A =1, g;7’ = 0 and

g§2) = 0 holds. As a result, if g5 # 0, we must have that A > 1, gél) # 0 and 952) £ 0.
By induction, we can then prove that

gV £0, ¢P £0, forall k. (3.6)
Now, let us define ¢; and 7 by
(1) (1)
. rE = ok (3.7)

(2)
92k—1 9ok




By the relations (3.7), (2.3) and (2.4), we can see that
rr ==t ! (3.8)

and
teyr = —1, (3.9)
Then it follows from (3.8) and (3.9) that

topr = A M = = ARy, (3.10)
which, with ¢; # 0, A > 1 and (3.8), yields

lim t, =0 and lim |rg| = +o0. (3.11)
k—o00 k—o00
On the other hand, we have by (2.5), (2.6), (3.7) and direct calculations that
1926113 (935 192k—1) (93, 1 A%gor—1) (1 + t2)()\2 + ti)
and 2 T T 42 2,2
A—1
“92k+1|2|2 _ 1 4 (o2920) (926 A702k) _ )2 "k (3.13)
19213 (95, Ag2k)? (A+7%)
Thus by (3.11), (3.12) and (3.13), we know that the relation (3.1) holds.
Further, substituting (3.8) into (3.13), we find that
2 N = 1)242
lgarlls (A + 1)
y (3.12), (3.14), (3.10) and X > 1, it is easy to show that
A1 1 gr-+1ll2
ti| < < (A=1)]|tg|, for all k. 3.15
By the second inequality in (3.15) and (3.10), we can show that
lgll < (A = 1) H [ti] = (A = DF Lty [ ia-ahED, (3.16)

Then we know from the first inequality in (3.15), (3.10) and (3.16) that the relation (3.2)
holds for any constant ¢ > 0. Consequently, the sequence {||gx||2} is @-superlinearly
convergent to zero with order of only 1. O

Theorem 3.1 indicates that for two-dimensional strictly convex quadratics, the con-
vergence rate of the AM method is @-superlinear. Consequently, the AM method can
avoid zigzags and improve the numerical behaviour of the SD method. It is known
that the SD method can produce zigzags and it is shown in [1, 8] that the search di-
rections generated by the SD method will tend to two different directions. The BB
and AS methods can avoid zigzags, as mentioned in §1. However, only R-superlinear
convergence and two-step @Q-superlinear convergence are established for the BB and AS
methods, respectively.

Now we consider the case of any dimension. Let z* = —A~'b be the unique mini-
mizer of the quadratic in (1.2) and define ||z||4 = V2T Az. Then we have the following
Q-linear result for the AM method.



Theorem 3.2 Consider the minimization problem (1.2). Let {zy} be the iterations
generated by the AM method (1.4)~(2.6). Denote

M — A
c:= ,
AL+ Ay

(3.17)

where A\ and A, are the mazimal and minimal eigenvalues of A, respectively. Then we
have that

|Zgr1 —2*||a <eV1+ 2 —ctzg —2|a, for all k. (3.18)
Thus the convergence rate of the AM method is Q-linear.
Proof If .
~ 9k 9k
A = 5 (3.19)
91, Ags,
the stepsize oy in (2.6) can be written as
ap = TR0, (320)
where (T Age)?
95 A9k .
Tk = { (9 91)(9f A%gx)” for odd k; (3.21)
1, for even k.
Define e, = z, — z* and E(z) = ||z — o*||4. Tt is easy to see that
gk = Aey, (3.22)
and
k1 = €k — Tk k- (3.23)

Then we have by the definition of E(x) and the relations (3.22) and (3.23) that

E(zy) — E(rp1) ci Ae, — ef 1 Aegia
E(:L‘k) e%Aek
. 27’]65%9]{1461c — T,?@zg,{Agk
N e{Aek
2 — 2 T 2
(9].; Agk)(gk A Qk)
By the Kantorovich inequality and the definition of ¢ in (3.17), we have that
(vT Av)? AN Ay, 9
> =1—-c". 2
(WT0) (0T A%0) = (g + An)? ¢ (3.25)
Applying this and (2.8) in (3.21), we get that
- <7m <1 (3.26)
It follows from (3.26) and ¢ € (0,1) that
2 —mE=1—(1—1)2>1-¢c (3.27)



Letting v = Afégk in (3.25), we also have that

(97 9x)°
(ngAgkf(ngA‘lgk) 1o (328
Hence, by (3.24), (3.27) and (3.28), we obtain
E(xk)E_(igxkﬂ) > (1-c)(1~¢, (3.29)
or equivalently,
E(zpy) <[1 - (1 =) = B(zg) = (1 + & = ') E(ay). (3.30)

The relation (3.30) and the definition of E(zj) implies the truth of (3.18). Noting that

c 1+02—c4<c\/1+02—c4+(1—02)220\/2—02<1, (3.31)

we know from (3.18) that the AM method is @-linearly convergent. O
Thus we have proved that the AM method is globally convergent for any-dimensional
strictly convex quadratic and its convergence rate is (Q-linear. Noting that

fla) — F(a*) = 5l — 271, (332

the relation (3.18) indicates that {f(zx); k= 1,2,...} is monotonically decreasing.
If we consider the iterations with odd and even indices, respectively, we can improve
(3.18) to

2 _ A e :
lzpis — 2% |4 < {C\/l + 2 =t ||xp — 2| 4, for odd &; (3.33)
cllzg — || A, for even k.
For the SD method, however, we can establish the relation
g — *lla < cllzx — 2 a. (3.34)

The convergence relation (3.34) is better than (3.18) and (3.33) for 1 +¢2 — ¢* > 1.
Nevertheless, our numerical experiments in §4 show that the AM method performs
much better than the SD method. Thus it still remains to study how to provide
theoretical evidences showing that the AM method is better than the SD method in
any dimension.

Now let us discuss the convergence properties of the SS1 and SS2 methods (see
(2.12) and (2.13) for their formulae of stepsize), as suggested by one of the referees.
Firstly, if we define

= {’)’2, for odd k; (3.35)

1, for even k,

the relation (3.20) still holds for the SS2 method. Further, denoting ¢ be the constant
v/1 — 72, which is less than 1, we can see that the proof of Theorem 3.2 still applies to the
SS2 method. Hence the SS2 method is also Q-linearly convergent for any dimensional



strictly convex quadratic. This analysis can be extended to the SS1 method by letting
T, =1 and ¢ = /1 — 1.

Secondly, we present here an analysis of the SS2 method for two-dimensional quadrat-
ics. In this case, we do not expect some kind of superlinear convergence result for the
SS2 method. However, in our preliminary numerical experiments, we did not find that
the SS2 method produces any zigzag, unlike the SD method. Noting that the SS2
method (1.4)~(2.13) is also invariable under orthogonal transformations, we assume
that the Hessian of the quadratic has the form (3.3). Assume also that the gradient
gk = (g,(cl),g,?))T has nonzero components for all k, and t; and r; are given by (3.7).
Noting that (2.5) is still available and the stepsize of the SS2 method at any even iter-
ation is identical to the SD stepsize, we can obtain, by calculating the components of
92k+1 and the definitions of ¢; and ry,

tper = —1; . (3.36)
If another SD step is carried out at the next iteration, then we will get
Tk+1 = _tl;il =Tk, (3.37)

which shows that the SD method can produce zigzags in the two-dimensional case, one
major disadvantage of the SD method. However, for the SS2 method, we have by (2.13)
and direct calculations, that

S A —72) + (1 —72)tiy,
U — )+ (1= )i,

tkt1 (3.38)

(if the denominator in (3.38) is zero, we will have ggc)_ﬂ = 0). Substituting (3.36) into
the above relation, we get

(L= )L+ A+ 1) + i
re[(1 = Ay2) + A1 —y2)rf]
which together with 7, < 1 indicates that r;41 # 7 for the SS2 method. Thus we
can see that one role of the shortened SD step is that, it prevents the occurrence of
zigzags. Further, in our preliminary numerical experiments, we did not find any cycle
in the sequences of {r;} and {t¢x}. This property of avoiding zigzags might explain
from a different angle why the SS2 method generally performs better than the SD

method, as will be shown in the next section. A similar property has been found in our
implementations of the SS1 method.

Tkl =Tk — (3.39)

4. Numerical experiments

We have implemented the AM method (1.4)~(2.6) with MATLAB 6.0 on a notebook
ASUS L8400-B. Our numerical experiments are divided into three parts. Firstly, to
check the @)-superlinear result stated in Theorem 3.1, we tested the AM method for
the following two-dimensional convex quadratic:

fz) = %$T (0(')2 g) r, z€R. (4.1)

Starting with the point z; = (1000, 1000)”, the function values and the stepsizes pro-
duced by the AM method are listed in Table 4.1.

10



Table 4.1 Numerical results of AM for (4.1)

f(zx)

a;fl

1.10000000e+-06

1.99820180e4-00

8.09846123e+-04

2.00179982e-01

6.55313486e+01

1.99998200e+-00

9.30272643e-02

2.00001800e-01

4.29516502e-07

1.99999982e-01

3.47904890e-12

2.00000018e-01

N | S| O | W N

2.81802933e-19

From Table 4.1, we can see that the AM method is indeed @-superlinearly con-
vergent for the two-dimensional convex quadratic, which demonstrates the result in
Theorem 3.1. In addition, we also tested the SD, BB, and AS methods for this prob-
lem. To get f(z) < 107!, the numbers of iterations required by the three methods
are 20, 9, and 8, respectively. Thus this example shows that the SD method is clearly
the slowest, whereas the BB, AS, and AM methods are comparable.

Secondly, we tested a real problem ([10]). Consider the linear system Az = b with
the coefficient matrix A = (a;;) given by

e, ifi=g;
aij = —&, ifi=j£1; (4.2)
0, otherwise,

where h = 11/n and n = 1000. Linear systems of this kind appear frequently in
the numerical solution of two-point boundary-value problems. For the choice of b, we
adopted the same as in [10]. That is to say, we generated a random solution z* with
components between —10 and 10 and computed b = Ax*. We used thirty initial points

1. The stopping condition in this example is

Az, — bll2 < 0| Azt — bll2 (4.3)

with different values of 6. Listed in Table 4.2 are the numbers of average iterations
required by the conjugate gradient (CG), SD, BB, AS, and AM methods. For the
tested 8, we see from the table that the BB, AS, and AM methods are much better
than the SD method and competitive with the CG method. For this real problem, the
AM method gave the least average number of iterations for all tested values of 6.

Table 4.2. Numerical comparisons for a real problem

0 [101]102]103]10°%
CG | 4 10 27 95
SD 4 16 71 | 528
BB | 4 10 29 73
AS 4 11 26 78
AM | 4 10 22 68

11



Thirdly, we compared the CG, BB, AS, and AM methods for random problems
([10]). Consider the linear system Az = b, where A = QDQT,

Q = (I — 2w3wl)(1 = 2wowd )(I — 2wy wT), (4.4)
and wi, we, and w3 are unitary random vectors. D = diag(o1,...,0,) is a diagonal
matrix, in which oy = 1, 05, = cond, and o is randomly generated between 1 and

cond for j = 2,...,n — 1. The entries of the right-hand-side b are randomly generated
between —10 and 10. The initial point is the null vector of R™ and, in these tests, we
used n = 5000. Again, the stopping condition (4.3) is used here. For the tested 6, the
numbers of iterations required by each method are listed in Table 4.3.

From Table 4.3, we see that if @ < 1072 (namely, § = 1072, 1073 and 10~%), then CG
is clearly the winner. In this case, if the condition number is small (cond = 10',102),
the AM method is better than the BB and AS methods; if the condition number
becomes large (cond = 103,10*), then the BB and AS methods require less numbers
of iterations than the AM method. Thus, this example shows that the AM method is
more influenced by the problem condition than the BB and AS methods.

If = 10~", namely if only a solution with a low precision is required, we see that
the BB, AS, and AM methods are competitive with the CG method even when the
problem condition is large. In this case, we can see that the AM method always requires
fewer number of iterations than the BB and AS methods. This behaviour favours the
application of gradient methods, even the AM method, in the context where a high
precision is neither necessary nor recommended, for example in an inexact-Newton
context (see [10]).

Table 4.3 Numerical comparisons for random problems

cond| 60 |CG|BB]| AS]| AM | SS1] SS2
ot (107 | 5 7 7 5 7 5
1072 9 16 | 14 | 10 10 11
1073 12 | 22 | 17 | 15 13 15
1074| 16 | 23 | 20 | 21 19 | 20
102 1071 ] 11 | 18 | 15 11 10 10
10721 23 | 30 | 30 | 25 33 | 34
1073 | 34 | 47 | 47 | 44 60 56
1074 | 46 | 61 | 63 | 63 85 | 78
103 [ 107" | 24 | 23 | 18 | 14 13 14
102 63 | 68 | 82 | 80 90 | 80
1073 | 98 | 150 | 143 | 173 | 175 | 173
1074 | 132 | 205 | 197 | 272 | 261 | 272
100 1001|5121 ] 19] 16 14 | 13
1072 | 154 | 171 | 182 | 273 | 217 | 210
1073 | 213 | 434 | 447 | 791 | 577 | 522
1074 | 267 | 628 | 667 | 1281 | 883 | 811

12



Listed in Table 4.3 are also the numerical results of the SS1 method (2.12) and the
SS2 method (2.13). We found that both methods can give good numerical results while
71,7v2 € [0.7, 0.9], whereas the best choices for y; and 7, seem to be

~vi = 0.8, v5 = 0.75. (4.5)

The fact that 7] is slightly greater than ~; is largely in agreement with our intuition
since the SS1 method never takes a full SD step but SS2 does every other iteration.
These values of 7] and 75 are used in generating the results of the SS1 and SS2 methods
in Table 4.3. From the table, we can see that both the SS1 and SS2 methods with the
above choices perform as well as the AM method. If the condition number of the matrix
is 10*, the SS1 and SS2 methods are much better than the AM method. This might
hint that the SS1 and SS2 methods are less affected by the problem condition than the
AM method.

5. Generalizations to unconstrained optimization

In this section, we consider how to extend the AM method or its variants to the
field of unconstrained optimization. In this part, we will only compare these mono-
tone gradient methods for we believe where there are indeed some cases where only a
very limited iterations are required, and the user is only interested in some monotone
method. For example, in the context of global optimization, where a few inexpensive
line searches are preferred around most of the sample points (for instance, see [11] and
some references therein). Generally, if we are allowed to compute many numbers of
iterations, then we still prefer the nonmonotone methods. It has been demonstrated
by a large number of numerical experiments that the BB method is very efficient with
some kind of nonmonotone line search (see [16]).

Following its basic idea for linear system, a natural extension of the AM method
to unconstrained optimization is alternately to minimize the function value and the
gradient norm along the line. However, the step of minimizing the gradient norm is
more expensive than the one of minimizing the function value. This is because, for a
general function, the gradient of ||g(x)||2 at xj is unknown, and hence one quadratic
interpolation of the gradient norm requires at least three points along the line. Since
the SS1 and SS2 methods perform as well as the AM method, as shown in Table 4.3,
we consider in the following their extensions to unconstrained optimization.

To do so, we first see that in case of convex quadratics, it follows from (1.4) and
(2.12) that

gh1de = (1 —y)gfdi <0, (5.1)

where dp = —gi. For a general function, assume that dj is a descent search direction
at the current point zj; and ¢ («) is some quadratic or cubic interpolation function.
In this case, for the exact line search or the strong Wolfe line search etc., a new trial
stepsize o is calculated such that the derivative ¢} (a*) = 0. Based on its property
(5.1) in the case of convex quadratics, for the SS1 method we require the new trial
stepsize o* to satisfy ¢} (a*) = (1 — v1)g{ di. Further, letting o = 1 — 71, we require
the final value of the stepsize ay to satisfy the line search conditions:

f(zy + ady) < f(xp) + dagl dy (5.2)
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and
(0 + 1)gldy < gz, + ady) dy, < (o — 7)gF dy, (5.3)

where ¢ > 0 and 7 > 0 are parameters. If o = 0, (5.2)~(5.3) reduce to the strong Wolfe
conditions exactly. This kind of line search can also be used in the shortened SD step
of the SS2 method.

Using the above idea, we tested the SD method, the SS1 method, and the SS2
method with the line search (5.2)~(5.3). For the SD method, the parameters are o = 0
and 7 = 0.1. In other words, the strong line search is used for the SD method. For the
SS1 method, based on (4.5) and 0 = 1 — 7y, we choose o = 0.2. The value of 7 is set
to 0.15 such that the corresponding line search strictly excludes the one-dimensional
exact minimizer. In a similar way, for the SS2 method, we used ¢ =0, 7 = 0.1 at odd
iterations and o = 0.25, 7 = 0.2 at even iterations. In addition, the value of § was
always set to 1074,

We tested the above three methods on an SGI indigo workstation in double pre-
cision. Since the BB and AS methods are nonmonotone, they are not tested in this
kind of numerical experiment. All algorithms were written in FORTRAN 77. The test
problems were taken from Moré et al. [14], except “Strictly Convex 1”7 and “Strictly
Convex 2”7 that are provided in [16]. The test problems from [14] are numbered in
the following way: “MGH:” means the i-th problem in [14]. The total number of test
problems is 26. For all the algorithms, the stopping condition is

lgell2/ (1 +1fel) < ellgallz/ (1 + [f1])- (5.4)

The value of ¢ is set to 1073, except for 1072 for problem 22 and 10~' for problems
7 and 8. The maximum number of function evaluations is set to 9999. During each
line search, we compute at most 20 trial points. We mark it with “Failed” if either of
these limits is exceeded. The numerical results are listed in the form I-F-G in Table
5.1, where I, F', G denote the number of iterations, the number of function evaluations,
and the number of gradient evaluations, respectively.

From Table 5.1, we can see that both the SS1 and SS2 methods clearly perform
much better than the SD method.

6. Conclusions and discussions

In this paper, we have proposed an alternate minimization gradient (AM) method,
namely, (1.4)~(2.6) . The stepsize in the method alternately minimizes the function
value and the gradient norm along the line. The AM method is a monotone method like
the SD method, but is faster than the latter. Specifically, we have proved that the AM
method is @)-superlinearly convergent for two-dimensional strictly convex quadratics.
Hence the AM method can avoid zigzags, that are very likely to occur in the SD method.

We have also exposed the fact that the AM method carries out a full SD step after
a shortened SD step. Following this, we proposed two shortened SD step gradient
methods, namely, the SS1 method (1.4)~(2.12) and the SS2 method (1.4)~(2.13). Our
numerical experiments for linear systems show that the two methods perform as well as
the AM method. Further, by designing a new kind of inexact line search, we extended
the SS1 and SS2 methods to unconstrained optimization. It was found that their
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Table 5.1. Numerical Comparisons of gradient algorithms

Problem n SD SS1 SS2
MGH11 3 337-1011-393 Failed 436-1268-529
MGH14 4 || 2227-6723-2265 41-147-60 1827-6007-2376
MGH18 6 || 3200-6491-4546 | 2876-6074-3892 | 2272-4879-3047
MGH22 16 || 2460-7388-2468 264-760-300 226-668-260
MGH24 20 322-975-362 123-355-153 14-59-29
40 || 2254-6760-2321 | 439-1290-504 503-1507-575
MGH28 20 10-125-118 10-129-123 6-49-43
50 9-99-91 6-42-36 6-50-44
MGH30 50 45-140-50 24-76-30 23-72-72
500 53-163-57 28-88-34 27-86-33
MGH31 50 30-114-53 15-52-21 27-115-62
500 23-79-32 20-64-23 16-54-26
MGH22 100 Failed 427-1228-482 682-1983-746
500 Failed 1285-3685-1458 | 1130-3269-1248
MGH25 100 6-48-18 23-147-52 7-51-18
1000 8-77-26 31-257-81 15-126-37
MGH21 1000 161-243-243 71-140-127 77-155-142
10000 105-211-165 81-162-150 86-179-169
MGH23 1000 Failed 350-1098-423 587-1795-651
10000 Failed 331-1018-416 559-1720-635
MGH26 1000 || 2522-5084-5069 510-878-821 455-935-906
10000 || 1573-3128-3076 257-589-514 432-918-861
Strictly 1000 3-5-5 5-11-11 3-6-6
Convex 1 | 10000 3-5-5 5-11-11 3-6-6
Strictly 1000 20-69-30 21-66-27 19-61-24
Convex 2 | 10000 20-93-39 22-83-32 18-69-26

numerical performance is much better than that of the SD method. The new kind of
line search includes the strong Wolfe line search as a special case. However, ifoc > 7 > 0,
the line search tries to find a stepsize that is shorter than the exact one-dimensional
minimizer.

We have also proved that, for any-dimensional strictly convex quadratic, the con-
vergence rate of the AM method is @-linear. However, either the convergence relation
(3.18) or (3.33) for the AM method is not so good as the relation (3.34) for the SD
method. Although it is easy to show that a suitable reduction in the k-th SD stepsize
will yield a lower function value at the (k + 2)-th iteration, it still remains to study
how to provide theoretical evidence showing that the AM method, or the SS1 and SS2
methods, are better than the SD method. We believe that an answer to this question
will also be very helpful in understanding why the BB and AS methods are faster than
the SD method in practical computations.
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