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Abstract. Recently, we propose a nonlinear conjugate gradient method, which produces a descent search
direction at every iteration and converges globally provided that the line search satisfies the weak Wolfe
conditions. In this paper, we will study methods related to the new nonlinear conjugate gradient method.
Specifically, if the size of the scalar βk with respect to the one in the new method belongs to some interval,
then the corresponding methods are proved to be globally convergent; otherwise, we are able to construct a
convex quadratic example showing that the methods need not converge. Numerical experiments are made
for two combinations of the new method and the Hestenes–Stiefel conjugate gradient method. The initial
results show that, one of the hybrid methods is especially efficient for the given test problems.
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1. Introduction

In [6], we propose a nonlinear conjugate gradient method. An important property of the
method is that, it produces a descent search direction at every iteration and converges
globally provided that the line search satisfies the weak Wolfe conditions. The purpose
of this paper is to study some methods related to the new nonlinear conjugate gradient
method and find efficient algorithms among them.

Consider the following unconstrained optimization problem,

min f (x), x ∈ R
n, (1.1)

where f is smooth and its gradient g is available. Conjugate gradient methods are very
efficient for solving (1.1) especially when the dimension n is large, and have the follow-
ing form

xk+1 = xk + αkdk, (1.2)
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19801033.∗∗ Corresponding author.



34 DAI AND YUAN

dk =
{−gk for k = 1,

−gk + βkdk−1 for k � 2,
(1.3)

where gk = −∇f (xk), αk > 0 is a steplength obtained by a line search, and βk is a scalar.
The formula for βk should be so chosen that the method reduces to the linear conjugate
gradient method in the case when f is a strictly convex quadratic and the line search
is exact. Well-known formulae for βk are called the Fletcher–Reeves (FR), conjugate
descent (CD), Polak–Ribière–Polyak (PRP), and Hestenes–Stiefel (HS) formulae (see
[7,8,10,14,15]), and are given by

βFR
k = ‖gk‖2

‖gk−1‖2
, (1.4)

βPRP
k = gT

k yk−1

‖gk−1‖2
, (1.5)

βCD
k = − ‖gk‖2

dT
k−1gk−1

, (1.6)

βHS
k = gT

k yk−1

dT
k−1yk−1

, (1.7)

respectively, where yk−1 = gk − gk−1 and ‖ · ‖ means the Euclidean norm.
In the convergence analyses and implementations of conjugate gradient methods,

one often requires the line search to be exact or satisfy the strong Wolfe conditions,
namely,

f (xk) − f (xk + αkdk) � −δαkg
T
k dk, (1.8)∣∣g(xk + αkdk)

Tdk

∣∣ � −σgT
k dk, (1.9)

where 0 < δ < σ < 1 (for the latter, we call the line search as the strong Wolfe line
search). For example, the FR method is shown to be globally convergent under strong
Wolfe line searches with σ � 1/2 [1,3,12]. If σ > 1/2, the FR method may fail due to
producing an ascent search direction [3]. The PRP method with exact line searches may
cycle without approaching any stationary point, see Powell’s counter-example [17].

Recently, in [6], we propose a nonlinear conjugate gradient method, in which

βDY
k = ‖gk‖2

dT
k−1yk−1

. (1.10)

The method is proved to produce a descent search direction at every iteration and con-
verge globally provided that the line search satisfies the weak Wolfe conditions, namely,
(1.8) and

g(xk + αkdk)
Tdk � σgT

k dk, (1.11)

where also 0 < δ < σ < 1 (in this case, we call the line search as the weak Wolfe line
search). Other nice properties of the method can be found in [2,5]. In this paper, we call
the method defined by (1.2), (1.3) where βk is computed by (1.10) as the method (1.10).
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Although one would be satisfied with its global convergence properties, the FR
method sometimes performs much worse than the PRP method in real computations.
Powell [16] observed one major evidence for the inefficient behaviors of the FR method
with exact line searches; that is, if a very small step is generated away from the solution,
then the subsequent steps will be likely to be also very short. In contrast, the PRP method
with exact line searches could recover from this situation. Gilbert and Nocedal [9] ex-
tended Powell’s analyses to the case of inexact line searches.

For the method (1.10) with strong Wolfe line searches, we can deduce the same
drawback as the FR method. In fact, by multiplying (1.3) with gk and using (1.10), we
have that

gT
k dk = gT

k−1dk−1

dT
k−1yk−1

‖gk‖2, (1.12)

which with (1.10) gives an equivalent formula to (1.10):

βDY
k = gT

k dk

gT
k−1dk−1

. (1.13)

On the other hand, writing (1.3) as dk + gk = βkdk−1 and squaring it, we get

‖dk‖2 = −‖gk‖2 − 2gT
k dk + β2

k ‖dk−1‖2. (1.14)

Dividing (1.14) by (gT
k dk)

2 and substituting (1.12) and (1.13), we can obtain

‖dk‖2

(gT
k dk)2

= ‖dk−1‖2

(gT
k−1dk−1)2

+ 1 − l2
k−1

‖gk‖2
, (1.15)

where lk−1 is given by

lk−1 = gT
k dk−1

gT
k−1dk−1

. (1.16)

Denote θk to be the angle between −gk and dk , namely,

cos θk = −gT
k dk

‖gk‖‖dk‖ . (1.17)

Then it follows from (1.15) that

cos−2 θk = ‖gk‖2

‖gk−1‖2
cos−2 θk−1 + (

1 − l2
k−1

)
. (1.18)

In case of strong Wolfe line searches, we have by (1.9) that |lk−1| � σ . Suppose that at
(k − 1)th iteration an unfortunate search direction is generated, such that cos θk−1 ≈ 0,
and that xk ≈ xk−1. Then ‖gk‖ ≈ ‖gk−1‖. It follows from this, (1.18) and |lk−1| � σ

that cos θk ≈ 0. The argument can therefore start all over again.
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To combine the good numerical performances of the PRP method and the nice
global convergence properties of the FR method, Touati-Ahmed and Storey [18] ex-
tended Al-Baali’s result [1] to any method (1.2), (1.3) with βk satisfying

βk ∈ [
0, βFR

k

]
. (1.19)

Gilbert and Nocedal [9] extended this result to the case that

βk ∈ [−βFR
k , βFR

k

]
. (1.20)

Their studies suggested, for example, the following hybrid conjugate gradient method

βk = max
{−βFR

k , min
{
βPRP

k , βFR
k

}}
. (1.21)

The hybrid method (1.21) has the same advantage of avoiding the propensity of short
steps as the PRP method. In real computations, however, the method (1.21) does not
perform better than the PRP method (see, for example, [9]). Therefore it is doubt-
ful whether the global convergence study will yield a better conjugate gradient algo-
rithm.

In this paper, methods related to the method (1.10) are carefully studied and some
encouraging numerical results are presented. Denote rk to be the size of βk with respect
to βDY

k , namely,

rk = βk

βDY
k

. (1.22)

We prove that any method (1.2), (1.3) with the weak Wolfe line search produces a descent
search direction at every iteration and converges globally if the scalar βk is such that

−c � rk � 1, (1.23)

where c = (1 − σ )/(1 + σ ) > 0. This result will be established in section 2. A convex
quadratic example is given in section 3, showing that the bounds of rk in (1.23) can
not be relaxed in some sense. Preliminary numerical results of two combinations of the
method (1.10) and the HS method are reported in section 4, where βk is given by

βk = max
{−cβDY

k , min
{
βHS

k , βDY
k

}}
(1.24)

and

βk = max
{
0, min

{
βHS

k , βDY
k

}}
, (1.25)

respectively. The results show that the two hybrid conjugate gradient methods, even the
hybrid method (1.25), perform better than the PRP method. Conclusions and discussions
are made in the last section.

2. Methods related to the method (1.10)

We give the following basic assumption on the objective function.
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Assumption 2.1.

(1) f is bounded below in the level set L = {x ∈ R
n: f (x) � f (x1)};

(2) In a neighborhood N of L, f is differentiable and its gradient g is Lipschitz contin-
uous, namely, there exists a constant L > 0 such that∥∥∇f (x) − ∇f (y)

∥∥ � L‖x − y‖ for any x, y ∈ N . (2.1)

Under assumption 2.1 on f , we give a useful lemma, which was obtained by Zou-
tendijk [21] and Wolfe [19,20].

Lemma 2.2. Suppose that x1 is a starting point for which assumption 2.1 holds. Con-
sider any method in the form (1.2), where dk is a descent direction and αk satisfies the
weak Wolfe conditions (1.8) and (1.11). Then we have that∑

k�1

(gT
k dk)

2

‖dk‖2
< +∞. (2.2)

Proof. From (1.11) we have that

(gk+1 − gk)
Tdk � (σ − 1)gT

k dk. (2.3)

Besides it, the Lipschitz condition (2.1) gives

(gk+1 − gk)
Tdk � αkL‖dk‖2. (2.4)

Combing these two relations, we obtain

αk � σ − 1

L
· gT

k dk

‖dk‖2
, (2.5)

which with (1.8) implies that

fk − fk+1 � c1
(gT

k dk)
2

‖dk‖2
, (2.6)

where c1 = δ(1 − σ )/L. Thus

f1 − fk+1 � c1

k∑
i=1

(gT
i di)

2

‖di‖2
. (2.7)

Noting that f is bounded below, (2.2) holds. �

For methods related to the method (1.10). We have the following result, where rk

is given in (1.22) and c is a positive constant given by

c = 1 − σ

1 + σ
. (2.8)
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Theorem 2.3. Suppose that x1 is a starting point for which assumption 2.1 holds. Con-
sider the method (1.2), (1.3), where αk is computed by the weak Wolfe line search,
and βk is such that

rk ∈ [−c, 1]. (2.9)

Then if gk �= 0 for all k � 1, we have that

gT
k dk < 0 for all k � 1. (2.10)

Further, the method converges in the sense that

lim inf
k→∞ ‖gk‖ = 0. (2.11)

Proof. Multiplying (1.3) with gk and noting that βk = rkβ
DY
k , we have that

gT
k dk = gT

k−1dk−1 + (rk − 1)gT
k dk−1

dT
k−1yk−1

‖gk‖2. (2.12)

From this, (2.9) and the formula for βDY
k , we get

βk = rkβ
DY
k = rkg

T
k dk

gT
k−1dk−1 + (rk − 1)gT

k dk−1
= ξk

gT
k dk

gT
k−1dk−1

, (2.13)

where

ξk = rk

1 + (rk − 1)lk−1
, (2.14)

and lk−1 is given in (1.16). At the same time, if we define

ζk = 1 + (rk − 1)lk−1

lk−1 − 1
, (2.15)

it follows from (2.12) and (1.16) that

gT
k dk = ζk‖gk‖2. (2.16)

Since d1 = −g1, it is obvious that gT
1 d1 < 0. Assume that gT

k−1dk−1 < 0. Then we have
by (1.11) with k replaced by k − 1 that

lk−1 � σ. (2.17)

It follows from this and (2.9) that

1 + (rk − 1)lk−1 � 1 +
(

−1 − σ

1 + σ
− 1

)
σ = 1 − σ

1 + σ
. (2.18)

The above relation, (2.17), (2.16) and the fact that σ < 1 imply that gT
k dk < 0. Thus by

induction, (2.10) holds.
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We now prove (2.11) by contradiction and assume that there exists some constant
γ > 0 such that

‖gk‖ � γ for all k � 1. (2.19)

Since dk + gk = βkdk−1, we have that

‖dk‖2 = β2
k ‖dk−1‖2 − 2gT

k dk − ‖gk‖2. (2.20)

Dividing both sides of (2.20) by (gT
k dk)

2 and using (2.13) and (2.16), we obtain

‖dk‖2

(gT
k dk)2

= ξ 2
k

‖dk−1‖2

(gT
k−1dk−1)2

− 1

‖gk‖2

(
2

ζk

+ 1

ζ 2
k

)
= ξ 2

k

‖dk−1‖2

(gT
k−1dk−1)

2
+ 1

‖gk‖2

[
1 −

(
1 + 1

ζk

)2]
. (2.21)

(2.9) and (2.18) clearly imply that

1 + (rk − 1)lk−1 � −rk. (2.22)

In addition, since lk−1 < 1 and rk � 1, we have that (1−rk)(1−lk−1) � 0, or equivalently

1 + (rk − 1)lk−1 � rk. (2.23)

Thus we have that ∣∣1 + (rk − 1)lk−1

∣∣ � |rk|, (2.24)

which with (2.14) yields

|ξk| � 1. (2.25)

By (2.25) and (2.21), we obtain

‖dk‖2

(gT
k dk)2

� ‖dk−1‖2

(gT
k−1dk−1)2

+ 1

‖gk‖2
. (2.26)

Using (2.26) recursively and noting that ‖d1‖2 = −gT
1 d1 = ‖g1‖2,

‖dk‖2

(gT
k dk)

2
�

k∑
i=1

1

‖gi‖2
. (2.27)

Then we get from this and (2.19) that

(gT
k dk)

2

‖dk‖2
� γ 2

k
, (2.28)

which indicates ∑
k�1

(gT
k dk)

2

‖dk‖2
= +∞. (2.29)
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This contradicts the Zoutendijk condition (2.2). Therefore (2.11) holds. �

By theorem 2.3, we can immediately give the following convergence result for the
CD method, which was first obtained in [4].

Corollary 2.4. Suppose that x1 is a starting point for which assumption 2.1 holds. Con-
sider the CD method (1.2), (1.3) and (1.6), where αk satisfies the line search conditions
(1.8) and

σgT
k dk � g(xk + αkdk)

Tdk � 0. (2.30)

Then we have either gk = 0 for some finite k or lim infk→∞ ‖gk‖ = 0.

Proof. It follows from (2.30) and the definitions of βCD
k and βDY

k that

0 � βCD
k � βDY

k . (2.31)

Therefore the statement follows theorem 2.3. �

3. Optimality of the bounds in (2.9)

In this section, we will consider whether the bounds in (2.9) of rk can be relaxed. For
any constant c > 1, Dai and Yuan [4] constructed an example showing that the method
(1.2), (1.3) where

βk = cβFR
k (3.1)

needs not converge even if the line search is exact. Since βDY
k = βFR

k in case of exact
line searches, we know that the example in [4] also applies to the method (1.10). Hence
the upper bound 1 of rk in (2.9) cannot be relaxed. In the following, we will show by
a convex quadratic example that the lower bound (σ − 1)/(1 + σ ) can not be relaxed,
either.

Consider the following quadratic function with the unit Hessian:

f (x) = 1

2
xTx, x ∈ R

n. (3.2)

We will prove that for any constant r satisfying

r < −1 − σ

1 + σ
, (3.3)

the method (1.2), (1.3) with strong Wolfe line searches and with

βk = rβDY
k (3.4)

may fail to reach the unique minimizer x∗ = 0 of the function in (3.2).
In fact, for any r satisfying (3.3), let σ̂ be the largest number in (0, σ ] such that

1 + r
σ̂

1 − σ̂
� 1

2
. (3.5)
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Our definition of σ̂ implies that

−1 − σ̂

2σ̂
� r < −1 − σ̂

1 + σ̂
. (3.6)

To satisfy

∇f (xk + αkdk)
Tdk = σ̂ gT

k dk, (3.7)

we choose the steplength αk as follows:

αk = (
σ̂ − 1

) gT
k dk

‖dk‖2
. (3.8)

In this case, it is easy to show that

f (xk) − f (xk + αkdk) = 1 − σ̂ 2

2

(gT
k dk)

2

‖dk‖2
. (3.9)

Relations (3.8) and (3.9) imply that

f (xk) − f (xk + αkdk) = −1 + σ̂

2
αkg

T
k dk. (3.10)

Thus if δ < 1/2, the steplength αk in (3.8) satisfies the strong Wolfe conditions (1.8) and
(1.9). In addition, we have from (3.2) that

f (xk) = 1

2
‖gk‖2, (3.11)

which with (3.9) gives

‖gk+1‖2 = ‖gk‖2 − (
1 − σ̂ 2) (gT

k dk)
2

‖dk‖2
. (3.12)

Summing this expression, we obtain

‖gk+1‖2 = ‖g1‖2 − (
1 − σ̂ 2

) k∑
i=1

(gT
i di)

2

‖di‖2
. (3.13)

Again, we define lk, ξk, ζk by (1.16), (2.14) and (2.15), respectively. It follows from (3.7)
that for all k � 1,

lk = σ̂ , (3.14)

ξk = r

1 + (r − 1)σ̂
, (3.15)

ζk = 1 + (r − 1)σ̂

σ̂ − 1
. (3.16)
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Since the values of lk, ξk and ζk are independent of k, we now remove their subscripts
and only use l, ξ and ζ to denote them. Using (3.6), it is easy to show that

− 1

σ̂
� ξ < −1 (3.17)

and (
1 + 1

ζ

)2

� 1. (3.18)

Applying (3.18) in (2.21), we get that

‖dk‖2

(gT
k dk)2

� ξ 2 ‖dk−1‖2

(gT
k−1dk−1)2

, (3.19)

from which we can obtain

(gT
k dk)

2

‖dk‖2
� ξ−2(k−1) (g

T
1 d1)

2

‖d1‖2
. (3.20)

This and (3.13) imply that

‖gk+1‖2 � ‖g1‖2 − (
1 − σ̂ 2

) (gT
1 d1)

2

‖d1‖2

k∑
i=1

ξ−2(i−1)

= ‖g1‖2 − (
1 − σ̂ 2

) (gT
1 d1)

2

‖d1‖2

1 − ξ−2k

1 − ξ−2

� ‖g1‖2 − 1 − σ̂ 2

1 − ξ−2

(gT
1 d1)

2

‖d1‖2
. (3.21)

Therefore for any x1 �= 0, if d1 is so chosen that

−gT
1 d1

‖g1‖‖d1‖ � 1

2

√
1 − ξ−2

1 − σ̂ 2
, (3.22)

and if αk is computed by (3.8), we have from (3.21) that

‖gk+1‖ �
√

2

2

√
1 − σ̂ 2

1 − ξ−2
‖g1‖. (3.23)

The above relation implies that the method (3.4) with r satisfying (3.3) may fail to min-
imize (3.2) under strong Wolfe line searches.

Thus neither the upper bound nor the lower bound of rk in (2.9) can be relaxed in
some sense even if the line search satisfies the strong Wolfe conditions. We write this
result as the following theorem.

Theorem 3.1. Consider the method (1.2), (1.3) with βk = rβDY
k . Assume that the line

search conditions are (1.8), (1.9) with the parameters satisfying 0 < δ < 1/2 and



EFFICIENT HYBRID CONJUGATE 43

δ < σ < 1. Then for any constant r /∈ [(σ − 1)/(1 + σ ), 1], there exists a twice con-
tinuously differentiable objective function and a starting point such that the sequence of
gradient norms {‖gk‖} is bounded away from zero.

We see that the lower bound (σ − 1)/(1 + σ ) of rk in (2.9) depends on the scalar σ

in the line search condition. If σ is close to 1, the lower bound tends to 0, whereas if σ is
close to 0, the lower bound tends to −1. In addition, it is obvious that[

σ − 1

1 + σ
, 1

]
⊂ [−1, 1], (3.24)

which indicates that the convergent interval of the size of βk with respect to βDY
k is

narrower than that of the size of βk with respect to βFR
k provided that σ �= 0.

4. An efficient hybrid conjugate gradient method

Since formula (1.7) has the same denominator as formula (1.10), we consider the fol-
lowing hybrid method:

βk = max
{−cβDY

k , min
{
βHS

k , βDY
k

}}
, (4.1)

where c is the constant in (2.8). The above method is still a conjugate gradient method,
since (4.1) reduces the FR formula for βk if f is a strictly convex quadratic and the
line search is exact. By theorem 2.3, we know that the hybrid method (4.1) with weak
Wolfe line searches produces a descent direction at every iteration and converges glob-
ally. Since it is easier to compute a steplength satisfying the weak Wolfe conditions than
to compute a steplength satisfying the strong Wolfe conditions, we will test the hybrid
method (4.1) with weak Wolfe line searches. It turns out that this algorithm performs
slightly better than the PRP metod with strong Wolfe line searches.

In addition to (4.1), we are also interesting in the following hybrid conjugate gra-
dient method:

βk = max
{
0, min

{
βHS

k , βDY
k

}}
. (4.2)

We suggest the hybrid method (4.2) for two reasons. The first is related to the restart
strategy proposed in [17]. While dealing with the Beale three-term method, Powell [17]
introduced a restart if the following condition holds:∣∣gT

k gk−1

∣∣ > 0.2‖gk‖2, (4.3)

and obtained satisfactory numerical results. If βHS
k � 0, we have that gT

k−1gk > ‖gk‖2

and hence (4.3) holds. Thus in this case, it is suitable to set βk = 0, which implies that
a restart along −gk will be done. Another reason is that, we know from (1.3) that dk

may tend to almost opposite to dk−1 if βk < 0 and ‖dk‖ � ‖gk‖. Thus the restriction
that βk � 0 will prevent two consecutive search directions from tending to be almost
opposite. Our numerical results showed that the hybrid method (4.2) really performs
better than the hybrid method (4.1).
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Both the hybrid methods (4.1) and (4.2) can avoid the propensity of short steps.
For example, for the hybrid method (4.2), we define

ξk = max

{
0, min

{
gT

k yk−1

‖gk‖2
, 1

}}
. (4.4)

Then similarly to the second relation in (2.21), we can establish

‖dk‖2

(gT
k dk)2

� ξ 2
k

‖dk−1‖2

(gT
k−1dk−1)2

+ 1

‖gk‖2
. (4.5)

Recalling the definition of θk, we have by (4.5) that

cos−2 θk � ξ 2
k

‖gk‖2

‖gk−1‖2
cos−2 θk−1 + 1. (4.6)

Suppose that at (k − 1)th iteration an unfortunate search direction is generated, such
that cos θk−1 ≈ 0, and that gk ≈ gk−1. Thus ξk ≈ 0. Therefore by (4.6), we have that
cos θk � cos θk−1, which indicates that the hybrid method (4.2) would avoid the propen-
sity of short steps.

We tested the hybrid methods (4.1) and (4.2) on an SGI Indigo workstation. The
used line search conditions are (1.8) and (1.11) with δ = 0.01 and σ = 0.1. The initial
value of αk is always set to 1. By theorem 2.3, we know that the line search conditions
ensure the descent property and global convergence of the two hybrid methods. Since
the PRP method is generally believed to be one of the most efficient conjugate gradi-
ent algorithms, we compared the hybrid methods with the PRP method. For the PRP
method, our line search subroutine computes αk such that the strong Wolfe conditions
(1.8), (1.9) hold with δ = 0.01 and σ = 0.1. Although the strong Wolfe conditions
can not ensure the descent property of dk for the PRP method, uphill search directions
seldom occur in our numerical experiments. In the case when an uphill search direction
is produced, we restart the algorithm with dk = −gk.

The test problems are drawn from Moré et al. [13]. The first column “P” in table 1
denotes the problem number in [13], whereas the second gives the name of the prob-
lem. We tested each problem with two different values of n ranging from n = 20 to
n = 10000. The numerical results are given in the form of I/F/G, where I, F, G denote
numbers of iterations, function evaluations, and gradient evaluations, respectively. The
stopping condition is

‖gk‖ � 10−6. (4.7)

From table 1, we see that the hybrid method (4.1) requires fewer function evalu-
ations and gradient evaluations than the PRP method for 9 problems, whereas the PRP
method outperforms the hybrid method (4.1) only for 6 problems. For the other 3 test
problems, the PRP method requires fewer function evaluations but the hybrid method
(4.1) does require fewer gradient evaluations. In addition, for some problems such as
Penalty 2 and Extended Powell, the advantage of the hybrid method (4.1) over the PRP
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Table 1
Comparing different conjugate gradient methods.

P Name n PRP (4.1) (4.2)

24 Penalty 2 20 530/1641/912 290/821/370 135/419/228
40 1312/3650/1590 487/1492/539 122/366/177

25 Variably 20 6/33/12 5/30/10 5/30/10
dimensioned 50 5/25/11 9/53/18 9/51/17

35 Chebyquad 20 104/340/132 145/453/162 100/321/119
50 365/1203/432 359/1205/426 350/1156/406

30 Broyden 50 32/102/37 50/158/58 50/158/58
tridiagonal 500 32/103/39 58/183/67 58/183/67

31 Broyden 50 37/142/64 31/115/49 30/113/49
banded 500 34/128/58 23/74/27 23/74/27

22 Extended 100 118/358/163 110/317/117 66/203/87
Powell 1000 396/1176/545 128/365/135 66/203/87

26 Trigonome- 100 55/98/97 58/97/95 58/97/95
tric 1000 54/97/97 52/87/87 52/87/87

21 Extended 1000 23/107/60 34/125/57 28/87/39
Rosenbrock 10000 23/107/60 37/133/60 28/87/39

23 Penalty 1 1000 21/66/49 51/130/92 54/154/110
10000 30/113/82 37/118/72 35/111/66

method is impressive. On average, the hybrid method (4.1) performs slightly better than
the PRP method for the given test problems.

From table 1, we also see that the hybrid method (4.2) clearly dominates the PRP
method and the hybrid method (4.1). The numerical performances of the three methods
can also be reflected by their CPU time. To solve all the 18 problems, the CPU time (in
seconds) required by the PRP method, the hybrid method (4.1), and the hybrid method
(4.2) are 18.80, 16.56 and 14.04, respectively. To sum up, our numerical results suggest
two promising hybrid conjugate gradient methods, even the hybrid method (4.2).

5. Conclusions and discussions

In this paper, we have carefully studied methods related to a new nonlinear conjugate
gradient method proposed by the authors – the method (1.10). Denote rk to be the size
of βk with respect to βDY

k . If rk belongs to some interval, the corresponding methods
are shown to produce a descent search direction at every iteration and converge globally
provided that the line search satisfies the weak Wolfe conditions. Otherwise, a convex
quadratic counter-example can be constructed, showing that the corresponding methods
need not converge.
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Although it was doubtful whether the global convergence study would yield a bet-
ter conjugate gradient algorithm, we tested two variants of the method (1.10), namely,
the hybrid methods (4.1) and (4.2). The two hybrid methods are combinations of the
method (1.10) and the HS method, and do not show any propensity for short steps.
Initial numerical experiments were done for the hybrid methods with weak Wolfe line
searches. These experiments show that both hybrid methods are competitive with re-
spect to the PRP conjugate gradient method. Morever, the hybrid method (4.2) appears
to outperform the two others, even though it only uses the weak Wolfe conditions in
its line search. This shows that efficient conjugate gradient algorithms can be designed
that use these weak conditions. More numerical experiments are of course needed to
assess the true potential of the methods discussed here, but the preliminary results are
encouraging.
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