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In this paper we present a modified BFGS algorithm for unconstrained
optimization. The BFGS algorithm updates an approximate Hessian which
satisfies the most recent quasi-Newton equation. The quasi-Newton condition can
be interpreted as the interpolation condition that the gradient value of the local
quadratic model matches that of the objective function at the previous iterate.
Our modified algorithm requires that the function value is matched, instead of the
gradient value, at the previous iterate. The modified algorithm preserves the
global and local superlinear convergence properties of the BFGS algorithm
Numerical results are presented, which suggest that a slight improvement has
been achieved

1. Introdu.ction

VARIABLE metric algorithms for unconstrained optimization are a class of
numerical algorithms for solving the following problem:

min f(x). (1.1)
xeR”

They are iterative. On the kth iteration an approximation point x, and an n X n
matrix B, are available A search direction

de = =B Vi (x) (1.2)

is calculated, then a step-length a; >0 is calculated to satisfy certain line search
conditions, and the next iterate x,., is set to be x, + a,d,. One of the important
features of the method is the choice of matrices B,. Variable metric algorithms
require By positive definite and satisfying the quasi-Newton equation

By 10k = vis (1.3)

where
6k == afkdk, (14)
Ye = Vf(xc + 6,) — Vf(xi). (1.5)

The search direction d, in (1.2) is the solution of the following quadratic
subproblem:

min ¢, (d) = f(x) + d" Vf(x) + 3d"Bid, (L.6)
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which is an approximation to problem (1.1) near the current iterate x,, since
&x(d) = f(x, + d) for small d. In fact, the definition of ¢.(+) in (1.6) implies that

¢ (0) = f (x), 1.7
Vi (0) = Vf (x4, (1.8)

and condition (1.3) is equivalent to
V‘Pk(-’?k—l —x) = Vf(xg_1). (1.9)

Thus, ¢{x —x,) is a quadratic interpolation of f(x) at x, and x;_,, satisfying
conditions (1.7)-(1.9). Davidon (1980} introduced ‘conic models’ where a
nonquadratic function ¢,(d) is constructed and ¢,(d) satisfies conditions (1.7)-
(1.9) and the interpolation condition '

¢p (g1 — Xi) = f(xk—1). (1.10)

More details can be found in Schnabel (1983). Since we only consider the
quadratic model (1.6), we require ¢(d) to satisfy conditions (1.7)-(1.8) and
(1.10). One reason for motivating us to investigate the case when ¢« (d) satisfies
equation (1.10) is that we believe conditions (1.7)-(1.8) and (1.10) are very
natural interpolation conditions.

In Section 2, a variant of the secant method for one-dimensional optimization 1s
discussed, a modified BFGS algorithm for the multivariable case based on
interpolation condition (1.10) is given in Section 3, and finally in Section 4
numerical results are presented and we also give a brief discussion.

2. A variant of the secant method for one-dimensional problems
In a one-dimensional optimization problem, a nonlinear function of only one
variable is minimized:

min f(x). (2.1)

xeR!

The secant method for (2.1} chooses the new iterate x;,, as follows,

f(x) (e = Xe—1)
M =T )~ F () 22
Let d, = x,,,; — X;. By comparing equations (1.2) and (2.2), it can be easily seen
that the secant method has By, =[f"(xz) —f (Xx-1)}/(xx —x¢-1), which is the
unique solution of (1.3). The secant method (2.2) is Q-superlinearly convergent
with the Q-order 7= 4(/5+ 1) =1-618. More exactly, if x, converges {o a point
x* at which f'(x*) =0, f"(x*)#0, and f"(x*) #0, it can be shown that

x| 16 |
m *|T ek
k—sox ka — X | 2f (.x )

Details can be found in Ostrowski {1966).

(2.3)



A MODIFIED BFGS ALGORITHM 327

We can derive a variant of (2.2) if we consider the approximation
Pi(d) = F(xi) +f'(xi)d + 3, d”. (249
¢.(+) satisfies conditions (1.7)—(1.8). Forcing ¢.(d) to satisfy (1.10) yields
o Z[f(xk—l) — f(xx) —f () (X1 — x)]
o (Fe-1— %) "

Assuming ¢, >0, because —f’(x;)/c, is the minimum of ¢.(), we let the next
iterate be

(2.5)

X1 = Xk — [ (xr)/ Cx
. f () e — Xx—1) (2.6)
2{f"(xe) — [f (x4) ~ f o)}/ (i — Xe—1)}

which is a variant of formula (2.2). It is always true that ¢, >0 if the objective
function f(x) is strictly convex. Both iteration formulae (2.2) and (2.6) can be
viewed as approximations to Newton’s iteration

X1 = Xpe = F (R (x)- 2.7)

In other words, (2.2) is a modified Newton’s method where the approximation

[ = ()

- ~'(x%) 28)
Xpe = Xp—1
is used, and in (2.6) one uses
2{f (xx) — [f (xe) '_f(kal)]/(xk ~ Xe_1)} g
e Xp = f"(xx). 29

The leading errors in (2.8) and (2.9) are —3f"(xx)(xx — Xx—1) and — 3" (e ) xk —
x._,) respectively. Hence (2.6) is a better approximation to (2.7) than (2.2). It
can be shown that the iterate scheme (2.6) also has local Q-superlinear
convergence properties. Assuming X, converges to x* at which f'(x*)=0,.
f"(x*y#0, and f”(x*) #0, from (2.6) we can prove that

_| £
()

which implies that

e — x| X — X7+ o(lxg = x*| lxe_1 — x*)), (2.10)

[Xear — 2™

1t

i [y — 0%/ — 6% = | 2o | 2.11)

PR 3f(x™)
where again 7 =3(/5+ 1). The convergence rates (2.11) and (2 3) indicate that
(2.6) is slightly faster than (2.2). We consider a simple example that minimizes
the function f(x) = —%e¢™*, which has the unique minimum x*=1 Initial points
x; =00 and x, = 0-1 are chosen, and the numerical results of both methods (2.2)
and (2.6) are presented in Table 1. Only the errors 1-0 — x, (k <10) are given to
compare the performances of both methods.




328 YA-XIANG YUAN

- TasLe 1 -
The methods (2.2) and (2.6) for f(x) = —xe™

Error (22) (2.6)

1-000000000 x 10° 1-000000000 x 10°
0-900000000 x 10° 0-900000000 x 10°
0-461341340 x 10° 0450000000 x 10°
0-244721116 % 10° 0-211038490 % 10°
0-832019761 X 10™" 0606665134 x 107}
0-174604885 X 10™*  0-881302355 x 1072
0-138265830 x 1072 0373191911 x 10™°
0230160474 x 10™*  0-223267244 x 10°°
0330444768 x 1077 0-557076149 x 10
0790284505 x 107> 0-111022302 x 10~ ™

[ T T
Ea T s B A B A B
woR W e

PR e b e e e
oo e R e W e W el s W e W e W e B
[
Mo oW o=
L =R - - B = 1}

|
»
5

The results in Table 1 show that in this simple example the numerical
performance of (2.6) is better than that of (2.2). This motivates us to investigate
updating formulae based on (1.10) for n-dimensional unconstrained optimization.

3. A modified BFGS algorithm

The BFGS algorithm for unconstrained optimization problem (1.1) uses the
search direction (1.2), and the matrices B, (k=1,2,.. ) are updated by the
BFGS formula

BkékalBk _ YkYI
6IBk5k 61'}’4& ’

which satisfies the quasi-Newton equation (1.3). The BFGS algorithm is one of
the most efficient algorithms for solving the unconstrained optimization problem
(1.1). More details can be found in Fletcher (1980). This algorithm is globally
convergent when the objective function f(x) is convex, if the inexact line search
conditions

By =B, — (3.1)

F Ot + oedy) < F(x2) + crandy VF (x), (3.2)
dT Vf (x, + ady) = c2d] Vi(xy) 33

are satisfied, where ¢, and ¢, are two constants such that 0 <c¢, = ¢, <land ¢, <03,
Assume the sequence x, (k=1,2, ..) generated by the BFGS algorithm
converges to a solution x* where Vif(x*) is positive definite. If the stepsize
a, = 1 is chosen whenever it satisfies the line search conditions (3.2)-(3.3), it can
be shown that x, converges to x* Q-superlinearly, that s

e =2/ 12 — 2| —0. (3.4)

More details can be found in Powell (1976) and Dennis & Moré (1977).

We consider the case when the search direction d, is a solution of the quadratic
subproblem (1.6), but this subproblem satisfies the interpolation condition (1.10),
instead of (1.9). (We recall from Section 1 that (1.9) is equivalent to the
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quasi-Newton equation (1.3).) Using definition (1.6), the interpolation condition
(1.10) with k increased by one is ' L

5IBk+16k = z[f‘(xk) '"f(xk-!-i) + 51- Wl(xk-l-l)]" (3--5)
The positive definiteness of B, requires
Fx) = fQrarr) > — 0% Vf (xicrn). (3.6)

Inequality (3.6) is trivial if the objective function f(x) is strictly convex, and it is
also true if the step-length «, is chosen by an exact line search which requires
8T Vf (xx+1) =0. We update By, by the formula

Bkakasz YkYI
T oo
8BSy LYk

which is a slight modification of the BFGS formula. Now relation (3.5) implies

- 2
* (ﬁ}’k.

It is easily seen that ¢, € [0,2] if f(x) is convex. Furthermore, £, =1 if f(x) is
quadratic on the line segment between x, and x.,,. Since By, is positive definite
if and only if ¢, > 0, we require t, > 0 which is equivalent to condition (3.6). For a
general nonlinear objective function f(x), one can modify the line search
conditions so that (3.6) is satisfied. Assuming the line search conditions
(3.2)-(3.3) are used, we restrict £, to the interval

0-01 < ¢, < 100. (3.9)

B+ = Bi — (3.7)

f(xe) — f (e + 8k Vf (xe+0)] (3.8)

Now we can state a modified BFGS algorithm with inexact line searches as
follows. _

ALcoriTEM 3.1. (A modified BEGS algorithm)
Step 0: Given x; € R", B, positive definite, k= 1.
Step 1: Calculate Vf(x,),

di = =B Vf{xe).
Step 2: Calculate o, > 0 such that conditions (3.2)-(3.3) are satisfied,
Xpsr =Xz + apdy.
Step 3: Calculate ¢, by (3.8),
if ¢, <0-01 then set r, = 0-01,
if £, > 100 then set ¢, = 100,
update By, by (3.7), set k:=k +1, and go to Step 1.

Because ¢, is truncated so that inequality (3.9) is satisfied, by slightly modifying
the proof in Powell (1976), it can be shown that Algorithm 3.1 converges globally
for convex objective functions with inexact line searches. Assume x; converges to
a strict local minimum x* where Vf(x*)=0 and V?f(x*) is positive definite, and
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that f(x) is twice continuously differentiable. Then it can be proved that

lim £, = 1. (3.10)

k—ree

Thus it is reasonable to hope that local Q-superlinear convergence of the BFGS
algorithm can be extended to the modified algorithm where updating formula
(3.7) is used. Details of local analyses of the BFGS algorithm can be found in
Dennis & Moré (1977).

4, Numerical results and discussions

A FORTRAN subroutine was progiammed to test the modified BFGS
algorithm presented in the previous section The following test problems are
used.

Problem 1. (Rosenbrook’s function)
f(xy, x2) = 100(x; — x7)* + (1 — xy)? (4.1)

starting point: (—1-2, 1-0)7,
solution: (1, 1)T.
Problem 2. (Powell’s function of four variables)

flxy, x2, X3, xa) = (X, + 10x,)% + 5(x3 — x4)* + (x2— 2x3)* +10(x, — x5)%,  (4.2)

starting point: (3, —1,0,1)7,
solution: (0,0,0,0)T.
Problem 3. {Wood’s function)

f(xy, x2, x3, x4) = 100(x —x)P+ (- x1) +90(x, — x3)° + (1 ~ x3)*
+10-1(x, — 1)? + (x5, — 1)) - 19-8(x2 ~ 1)(x,— 1), (4.3)
starting point: (—3, —1, =3, —1)7,

solution: (1,1,1, )"
Problem 4. (A quartic function)

4
Fxy, X2, X3, x) = 2 (107 % +x7 + 10 x}), (4.4)
i=1
starting point: (1,1, 1, 1)7,
sohation: (0,0,0,0)".
Problem 5. (A sine-valley function)

F(x1, x2) = 100[x; — sin (x,)]* + 0-25x3, (4.5)

starting point: (3w, —1)7,

solution: (0,0)".

Problems 1-3 are well-known test problems for unconstrained optimization (for
example, see Fletcher & Freeman, 1977; Fletcher, 1980). Problem 4 is so
constructed that the Hessian of the objective function at the starting point is very
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different from that at the solution, namely
v2f(1, 1, 1, 1) = DIAG [20, 126-2, 1206-02, 12006-002], (4.6)

but
V3£(0, 0,0, 0) = DIAG [2,02,0:02, 0-002]. 4.7)

Problem 5 is a sine-valley function having a valley along the curve x, = sin (x,).
The calculations were carried out on an IBM 4341 machine with double-
precision arithmetic. The convergence criterion is

I VF(x)ll<e (4.8)

For each problem we run for both € = 107® and £ = 10~"? and the initial matrix B,
is chosen to be the unit matrix /. The step-length &, >0 satisfying conditions
(3.2)-(3.3), with ¢, = 0-01 and ¢, =0-9, is calculated by quadratic approximation
with bracketing techniques. More details can be found in Fletcher (1980). All
problems are solved successfully, and the numbers of iterations and function
evaluations are given in Table 2. We also solved these problems by the BFGS
algorithm, and the numerical results of the BFGS algorithm are also given in
Table 2. : ' .

In Table 2, NI and NF are the numbers of iterations and function evaluations
respectively. The numerical results show that the modified algorithm is slightly
better than the original BFGS algorithm on this collection of test problems.

One possible disadvantage of the modified algorithm is that the calculation of ¢
in formula (3.8) may lose accuracy due to rounding errors. That is, when x;
converges to a solution x* superlinearly, it follows that

flxe) — f(Xeer) = O(lx; — xk+1Hz)-‘ (4.9)

But, if the Hessian at the solution V?f(x*) is positive definite, the gradient
difference y, used in the BFGS algorithm is of the order of |lxg = xi4+1]l in
magnitude since it can be verified that

Vf (i) = VI (i) ~ e = Xl (4.10)

_ TaBLE 2
Comparison of the modified algorithm with BFGS

Problem BFGS algorithm Modified BEGS

number € NI/NF NI/NF
1 107% 33/45 34/45
1 1072 34/46 o 35/46
2 107® 59/65 45/51
2 . 108 79/85 68/74
3 10°° 57/711 54/66
3 1074 59/73 55/67
4 1078 59/65 55/61
4 1071 63/69 57/63
5 1078 40/57 39/54
5 107" 41/58 40/55
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The BFGS update formula (3.1) only requires Vf(x,.1)— Vf(x:) and xz4q — i,
but the modified foimula (3.7) computes the number f, which requires the
evaluation of f(x;) — f(xz+1)- Hence, when ||x,,, — x|l is very small, it can be
seen from (4.9) and (4.10) that the modified algorithm may have numerical
underflow more easily than the BFGS algorithm.

There are other updating formulae that satisfy condition (1.10). The main
reason that we take the simple form (3.7) is that it is easy to see that the updating
formula (3.7) possesses the global convergence property of the BFGS algorithm if
t, is bounded above and bounded below from zero. Another way of constructing
other quadratic subproblems is to require the function ¢,(d) to satisfy the
weighted least square condition

min . || Ve (xp—y — X)) = Vf (ea— I3 + vie H Prloi—y — %) — f(xk-—l)H%J (4.11)

where u, and v, are nonnegative weight parameters. Though normally a solution
of (4.11) does not satisfy the quasi-Newton equation, it can be viewed as a
quadratic approximation function trying to satisfy interpolation conditions (1.7)-
(1.10).
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