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This paper investigates the global convergence properties of the Fleicher—Reeves
(FR) method for unconstrained optimization. In a simple way, we prove that a
kind of inexact line search condition can ensure the convergence of the FR
method. Several examples are constructed to show that, if the search conditions
are relaxed, the FR method may produce an ascent search direction, which
implies that our result cannot be improved.

1. Introduction

Conjugate gradient methods are very useful for minimizing a smooth function of
# variables, '

min f(x), (1.1)

xeR"

especially if » is large. They are of the following form

Xpr1 =X + apdy, ' (12)
_ , ’ f k _ 1,

dk — { Sk '.OI (13)
—8x + Bidi-1, for k =2,

where g, = Vf(x:), B« Is a scalar and a, is a stepsize obtained by means of a
one-dimensional search. One well-known formula for B, is called the Fletcher~
Reeves (FR) formula (Fletcher & Reeves (1964)) and is given by

FR;..EL&E.E_ 1.4
gl (19

Many results about the FR method have been reported, including Al-Baali
(1985), Gilbert & Nocedal (1992), Liu et al (1993), Nemirovsky & Yudin (1983),
Powell (1984), Zoutendijk (1970), etc. We focus our study on its global
CONVEIgence properties.

Zoutendijk (1970) (see also Powell (1984)) showed that the FR method

converges in the sense that

liminf [|ge]l =0 (15)
kK—»zc
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if the line search is exact. Al-Baali (1985) extended this result to inexact line
searches satisfying the sttong Wolfe conditions:

flx) —fx +apdy )= -6 o gidy, (1.6)
g (xy + ardi ) di| < —ogids, (1.7)

where 0< 8 <o <} Recently, Liu e al (1993) proved that the FR method also
gives (1.5) if o =1 Can or cannot the condition o < } be relaxed? This question
motivated the present study. :

In this paper, we consider the FR method using the more general search
conditions of inequality (1.6) and

U]g{dk Sg(xk +akdk)7dk$—a'2g£dk, (18)

where 0< 8 <o, <1 and ¢,>0. If we let o, = 0, = 7, (1.8) reduces to (1.7). The
Wolfe line search conditions are (1.6) and the following inequality

glxe + opdy) d = ogid,. (1.9)

It is easy to see that (1.9) can be viewed as a special casé of (1.8) with o, = o and
o, = +% We prove that for the general line search conditions (1.6) and (1.8) the
FR method gives (1.5) if

It is also shown by example that the condition (1.10) cannot be relaxed. Our
examples in Section 3 show that the FR method with line searches (1.6) and (1.8)
may produce an ascent direction if (1.10) is violated.

2. Sufficient conditions
We make the following assumptions on the objective function.

AssumpTions 2.1 (1) f is bounded below in R" and is continuously differentiable
in a neighbourhood E of the level set L={x | f(x)=f(x1)} (2) The gradient
Vf(x) is Lipschitz continuous in E.

Under these assumptions, for any x, ¢ R” and dfg, <0 there exist stepsizes
a, >0 such that line search conditions (1.6)-(1.7) hold (see Fletcher (1987)). If
dlg, =0, we can let e, =0, which satisfies (1.6)-(1.7). We state a general
convergence Tesult as follows. This result was essentially proved by Zoutendijk
(1970) and Wolfe (1969, 1971).

LEmMA 2.2 Let x, be a starting point for which Assumptions 2.1 are satisfied.
Consider any iteration of the form (1.2), if dlg, <0 and e, = 0 satisfies the Wolfe
conditions (1.6) and (1.9). Then

> ‘(—géﬁ)-z<oc‘. | _ (2.1)

k=1, d 40 “ dk "2

For the FR method, if gid, =0 we take a, =0 which gives x;,, =x, Thus it
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follows that dy ., = —ge.1 + d; which implies
gZ#IdkH == ||8k+1ﬁz +SZ+1dk = |8+ ||2‘~ (2.2)

Therefore d, ., is a descent direction unless g, equals zero.
Now we can establish a global convergence result.

THEOREM 2.3 Let x, be a starting point for which Assumptions 2.1 are satisfied.
Consider the FR method (1.2)-(1.4). If each search direction dj satisfies

gid, <0, (2.3)

if o, satisfies line search conditions (1.6) and (1.8) with o, <o, and if ||g,|| # 0 for
all k then we have that

_ liminf |jg . =0. (2.4)
Proof Because lig.|| # 0 for all k, it follows from (1.3) and (1.4) that
- 8z+1dk+;-1: 1 - ngd; ‘. (25)
fgr+1ll 18|
Define _
T
gtk
=S (2.6)
T T g

Condition (1.8), (2.3) and relation (2.5) imply that
l-ope<prni=<ltoipe (27)

The first part of expiession (2.7) is the condition 1< o,p,+ piey, SO the
Cauchy-Schwarz inequality provides the bound:

Pi+P%+12(1+U%)Wl:C1>O; (28)

for every k. Using the second inequality of (2.7) repeatedly and noting that p, =1
and p, =0, it is easy to deduce that

1

Pr <’1‘_ . (2.9)
1
for all k.
From (1.3), (1.4), (1.8) and (2.9), we have
+ [l all?
ot = gear |+ 180 g o p BBl oy
g il [ngll
ll?
< lgen i + ”ﬁ"‘ el + 20, g
k
N 1+ o |
TN a4 Y (2.10)
gl =00
Let 7, = ||dc||*/ lge]l* Thus we obtain
Ihe1Sh + troy 1 (211)

1- oy 18k+ ”
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We now proceed by contradiction and assume that
Hminf [jg. || #0. (212)
From (2.12), there exists a constant 8, >0 such that
AR (2.13)
for all k. It follows from (2.11) and (2.13) that

T +1 =f + C‘zk (2 14)
where
11+ 0
Cop = _"om—

8 1-oy
(2.14) implies that

1 1
e
IZk C‘Z(Zk - 1)+t]

(2.15)

1 1 1
> > .
Izk‘“'l C2(2k - 2) + r] C2(2k - 1) + []

(2.16)

Thus from Lemma 22 and relations (2.8) and (2.16),

L

2
i=1 ldell k=1 Ik

=

T & k-1 +

-3 (P%k—} +E§5) Prk-1+ P
k=1 Shw—-1 T

Cq _
k=1 C2(2k - 1) + 14 B

x, (217)

==

=

which gives a contradiction, The contradiction shows that liminf ||g.{ = 0. 0
From the above theorem, we can see that the sufficient descent condition
gidy < —c llgkll, (218)

where ¢>0, is not required on every line search. Instead, given that each
direction is not ascendent, (2.8) implies that (2.18) holds for at least one line
search of any two consecutive line searches and hence ensures (2.4).

Our theorem shows that, provided the search directions are not ascent, the FR
method can continue and a subsequence of |gx| converges to zero. In the
following we show that o, + o, =<1 is a sufficient condition for ensuring (2.3) for
all k.

LeEmMMA 2.4 Let x; be a starting point for which Assumptions 2.1 are satisfied. If

O'1+02--<-1, (219)
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~ the FR method (1.2)--(1.4) with the line search conditions (1.6) and (1.8) gives

(2.4).
Proof First we show that (2.3) is true for all k. (2.3) is true for k =1 because
gld, =~ lglz<0

Now we assume that (2.3) holds for all k =1, ., k&, which implies that (2.5)-(2.11)
hold for all k =1,..,k Thus we have

1 l1—0oy—0
_ 3 2.

0 (2.20)

pinzl—opr>1—0; =
1— o, 1-o0,

This shows that (2.3) holds for K +1 as well. By induction (2.3) is true for all k.
Therefore the lemma follows from Theorem 2.3. 0

Noting that the seaich conditions (1.6)—(1.7) correspond to (1.6) and (1.8) with
o, = o, = o, we clearly have the following corollary.

CorOLLARY 2.5 Let x, be a starting point for which Assumptions 21 are
satisfied. Consider the FR method (1.2)-(1.4), where ay satisfies the search
conditions (1.6)-(1.7). Then, if

(221)

M=

=
o =7,

the FR method gives (2.4).

The above corollary indicates that if o< 1 the FR method with search
conditions (1.6)—(1.7) is globally convergent in the sense of (1.5). In comparison
with the approach used in Liu et al (1993), ours is much simpler. '

3. Necessary conditions

We know from Lemma 2.4 that (2.19) is sufﬁéient for the FR method to give (15)
if the search conditions are (1.6) and (1.8). The following theorem shows that
(2.19) is also necessary.

Tueorem 3.1  Assume that the search conditions are (1.6) and (1.8). Then, for
any numbers 8, o; and o3 such that 0< 6 <o, <1, 0 <o, <= and

o, to>1, (31)

there exists an objective function satisfying Assumptions 2.1 such that the FR
method (1.2)-(1.4) will produce an ascent direction.

We will show the validity of the above theorem by presenting three counter
examples which are given in Lemmas 3.2, 3.3 and 3.4. Our counter examples are
constructed by the following technique.

Condition (3.1) and o, € (0, 1) allow us to choose a positive integer N such that

1+ o0V <o+ 02 (32)
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In our counter examples, we let

gl de = oigid,, fork=1,.,N; .(3”3)
ghnidn =~ 0280y (3.4)
Let p, be defined by (2.6); it follows from (3.3)-(3.4) and (2.5) that
pre1 =1+ 01ps, fork=1,.,N—-1; (3.5)
pn+1=1— 02pN. (3.6)
Recalling that p; =1, we have from (3.5)-(3.6) that
P %—_ f, fork=1,2,.,N; (3.7)

py=1—0 (3.8)
It follows from (3.8) and (3.2) that py., <0, which means that dy., is an ascent
direction.

All our counter examples are one-dimensional functions. Because the number
of iterations is finite, we are able to construct several examples. They are seen in
the following lemmas.

LEmMa 3.2 Assume that the search conditions are (1.6) and (1.8), where
0<d<g,<1and 0<o,<x= If oy +0,>1 and § < o,/2 then for the quadratic
convex function

fx)=3x? x e R, (3.9)

the FR method may produce an ascent direction.

Proof Because reducing the value of o, makes the line search conditions more
strict, there is no loss of generality if we replace o, by the value min {os, 1 — 8 —
o,/2} Thus we can assume that o, + 0, >1 and

1— 0,28 +0,/2>28 (3.10)

Because o, + 05> 1, we can select N such that (3.2) holds. Given any x, <0,
d, = —g, = —x;, we select the stepsize a; such that

X, = o xy, for k=1,.,N; (3.11)

| Xne1 = =007 X1 (3.12)

Now we show that the above defined x, (k=1,.,N +1) satisfies the search
conditions (1.6) and (1.8). We claim that :

1"—0'1
1._...

dk = - gk; for k = 1, ' N. (313)

(3.13) is true for k =1 because d; = —g;. Now assume that (3.13) is true for some
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k < N; we prove it is also true for k + 1. It follows from (3.11), (1.3), (1.4) and
gk_=.xk that \
1- ok
div1= —grn1 t U%dkz “‘gk+1"0%1 lgk
-0y
N o |
xk+1 ™ 017 - Br+1
1 — o,k+l
=TT ke (3.14)

By induction, we have shown that (3.13) is true. From (3.11), the search direction
d, is descent for all k < N. Therefore, due to (3.11)-(3.12), (3.10) and g, = x,, we

have
‘ . 1x, T x5+
flxe) = fxesr) = _%(xk + X)X — X)) = "ikg%l adigx
k
_ {-—%(1 + o) acgidy, fork=1, ,N—-1;
_%(1 - 0'2)-akg£dk, fork=N
= —5(1 ~ oy)awgid, > —Saygid, (3.15)
fork=1,. ,N, and
gr+1dr = 018k, fork=1, ,N-1; (3.16)
gn+1dn = —a8ndnN. | (3.17)

(3.15)=(3.17) indicate that (1.6) and (1.8) hold for k =1, N.
It follows from (3.12), (1.3), (1.4) and g, = x; that

2 21— oy
Ay =—gnvr1 T 0%y = —gni1 — 0'2_1_—3N
_ -0
1 - 0'?’
= —gn+1 T O2 "i'""""""""gNH
g,
1_0'1 —0'2"“0'20’?[
- gt (3.18)
k 1- a1
The above relation and (3.2) imply that dy., is an ascent direction. -

By this lemma, we see that a very simple function satisfies (3.5)—(3.6) if the
stepsize «, is appropriately selected. However, it is usual to try the unit initial
stepsize while making line searches. The following example will allow o, =1 for
all k.

Lemma 3.3 For any numbers 8, o, and o, such that 0<éd <o, <1, 0<og, <=
and o, +0,>1, there exists an objective function satisfying Assumptions 2.1
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such that the FR method with unit stepsizes satisfies line search conditions (1.6)
and (1.8) and generates an ascent direction. .

Proof Select N such that (3.2) holds as before. Given x;, f; and g, <0, we define
a (2N + 1)-order polynomial ¢(x), x € R, such that

e(x) = fi, Vo(x,) = g, fork=1,.,N+1, (3.19)
where
X1 = Xk +dk’ fDI'k=1, ..,N, (320)
018k, fork=1,.,N—-1;
= 321
i1 {’_(ngk, fOI’kT-N, ( )
.fjl’c-o-] = fk + 6gkdk5 for k = 1: "‘)NJ (322)
1- k
—a"{“]l il g1, _ fork=1,.,N;
d = . o " (323)
o_za_?f__lw 0y~ 02T 020, g, fork=N+1. e

1 - U]
Noting that d, >0 for k =1,.,N, we have
X4 <.X‘2 < e L b VI (3 24)

which means that ¢(x) is well defined. We see that the following function &(x)
satisfies Assumptions 2.1

fi tg.lx —x), for x <uxy;
o(x) =13 e(x), for x € [xy, Xxy+1]; (3.25)
_ﬁ'VH +gN+](-x "<xN+1), for x > Xy,

Now we use the FR method with the given line search and the starting point x;
to minimize @(x). The choices (3.20)-(3.22) imply that, for all k, e, =1 satisfies
the search conditions (1.6) and (1.8). Further, as in Lemma 3.2, d, is just given as
(3.23). Therefore the FR method will calculate the point xy., However, from
(3.2), (3.21), (3.23) and g; <0, we have

gni1>0 and dys1>0, (3.26)
which implies dy,, is an ascent direction. So @(x) is the required function. O

It is easy to generalize the stepsize of the above example. Specifically, it is
sufficient to replace (3.20) by
Xps1= X + Ekdk, (327)

if the number &, is used as the initial stepsize on the kth line search.
Note that g, in (3.21) is monotonically increasing with k. We make use of this
and obtain a convex counter-example for unit initial stepsize as follows.

ILemma 3.4 For any numbers 6, o, and o, such that (<8 <g, <1, 0<o, <>
and o, + 0, > 1, there exists a convex objective function satisfying Assumptions
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9.1 such that the FR method with unit stepsizes satisfies line search conditions
(1.6) and (1.8) and generates an ascent direction.

Proof We assume, without loss of generality, that o, <1. Because o + 0,>1,
we select N such that (32) holds. Since o, <1, there exists an iteger M > 2 such
that

| M(l—a)>(1+02) (3.28)

The above inequality implies that the numbers u and v that are defined by
wtv=1+o, (3.29)
JTRY

are positive. Pick any x,, f; ‘and g, <0. We now define a gradient function:

(g1, _ for x e (—=, x1);
X — X
+— w17 &1 ) forx e(x, xee1), k=1, ,N—1;
g0 ={*  x —x, (811~ 80) € [ i) (331)
gv(l—tu =M y). for x e [xn, Xns1):
\EN+1 forx e [XN+1, x),

where = (x —xx)/(xy.1 — X)), and where x,, g, and d, are given by (3.‘20.),
(3.21) and (3.23) respectively. The function '

for= [ s (332)

~ is well defined. Because g(x) is increasing, f(x) is convex. In addition, f(x) clearly
satisfies Assumptions 2.1. To complete the proof, we need to establish (1.6). In
fact, from (3.31), (3.21) and (3.30) we have

Fe)~feued == g@a

k

) —3(8k + 8r+1)dk 1 fork=1,. ,N-1 (333)
mgNdN(l — - W v) fork=N
._{_;1__)(1‘1'(71)8';{61;{, fOIkzl,,N_' 1;
'_UlgICdN; fork=N .
The above inequality and 0< 8 <, <1 imply that (1.6} holds for all k. Hence
this lemma is true. a

Thus we have proved Theorem 3.1 by three examples.

Theorem 3.1 indicates that, if the search conditions are (1.6) and (1.8), the
condition (2.19) is also necessary for the FR method to give (1.5). Consequently,
if we use the strong Wolfe conditions (1.6) and (1.7) as the search conditions,
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- (2.21) is a requitement. In addition, the Wolfe conditions (1.6).and (1.9) cannot
guarantee convergence tesult (2.4), since they correspond to (1.6) and (1.8) with

o =0 and oy =%, (3.34)

which implies that (2.19) is not satisfied.
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