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1. Introduction

We consider to solve the nonlinear program with general inequality and equality constraints

min f(x) (1.1)

s.t. gi(x) ≤ 0, i ∈ I, (1.2)

hj(x) = 0, j ∈ E , (1.3)

where x ∈ <n, I = {1, 2, . . . , mI} and E = {mI + 1,mI + 2, . . . , m} are two index sets, f ,
gi(i ∈ I) and hj(j ∈ E) are differentiable real functions defined on <n. Let mE = m−mI . By
introducing slack variables to the inequality constraints, problem (1.1)–(1.3) is reformulated as

min f(x) (1.4)

s.t. gi(x) + yi = 0, i ∈ I, (1.5)

yi ≥ 0, i ∈ I, (1.6)

hj(x) = 0, j ∈ E , (1.7)

where yi(i ∈ I) are slack variables.

A point (x, y) with y > 0 is called an interior point of problem (1.4)–(1.7), which is not
necessarily a feasible point of problem (1.1)–(1.3). Interior point methods for problem (1.1)–
(1.3) start from an interior point and relax the nonnegative slack variable constraints (1.6) to
the objective by introducing a parameter µ and using the logarithmic barrier terms. For given
µ > 0, interior point methods for problem (1.1)–(1.3) solve the logarithmic barrier problem
(approximately)

min f(x)− µ
∑

i∈I
ln yi (1.8)

s.t. gi(x) + yi = 0, i ∈ I, (1.9)

hj(x) = 0, j ∈ E . (1.10)

For every µ > 0, a Karush-Kuhn-Tucker (KKT) point of problem (1.8)–(1.10) should be an
interior point (i.e., yi > 0, i ∈ I) and be feasible for constraints (1.9) and (1.10) (in this case it
is strictly feasible for inequality constraints (1.2)), and satisfies the KKT conditions

∇f(x) +
∑

i∈I
ui∇gi(x) +

∑

j∈E
vj∇hj(x) = 0, (1.11)

−µy−1
i + ui = 0, i ∈ I, (1.12)

where (1.12) can be written equivalently as

Y Ue = µe, (1.13)

with Y = diag (y1, . . . , ymI ), U = diag (u1, . . . , umI ), and e = (1, 1, ..., 1)T . If ∇f , ∇gi(i ∈ I)
and ∇hj(j ∈ E) are continuous on <n, the limit point (if it exists) of the sequence of KKT points
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of problem (1.8)–(1.10) as µ → 0 is likely to be a KKT point of the original program (1.1)–(1.3).
Thus, it is important that the presented interior-point methods based on using slack variables
can solve the logarithmic barrier problem (1.8)–(1.10) or the system of primal-dual equations
comprising of (1.11), (1.13), (1.9) and (1.10) efficiently.

Many interior point methods for nonlinear programs generate their sequence of iterates by
solving the above mentioned barrier problem or system of primal-dual equations approximately
(for example, see [8, 9, 13, 25, 29, 33, 35]). Some of them are based on SQP techniques,
others apply Newton’s methods to the primal-dual equations. Both approaches generate search
directions satisfying the linearizations of constraints (1.9) and (1.10).

It has been noted by Wächter and Biegler [30] that, if the starting point is infeasible, the
algorithms that use the linearized constraints of (1.9) directly may fail in finding the solution
of a very simple problem, although its solution is very regular in sense that the regularity and
second-order necessary conditions hold.

There are three kinds of interior point methods which are proved to be robust and have
strong global convergence properties in that they will not suffer the failure and can always
converge to points with some strong or weak stationarity conditions. One is based on the
perturbed KKT conditions and inertia control of coefficient matrix of normal equations, such
as Chen and Goldfarb [7], Forsgren and Gill [12], Gertz and Gill [14], Gould, Orban and Toint
[16], Tits, Wächter, Bakhtiari, Urban and Lawrance [26], etc.. Another is to modify the right-
hand-side term in the linearized constraint equations so that the derived (scaled) directions are
always bounded, for example, see Byrd, Gilbert and Nocedal [3], Byrd, Hribar and Nocedal [4],
Tseng [27], Liu and Sun [20]. The third kind is to combine the interior point approach with
filter method proposed by Fletcher and Leyffer [11], such as Benson, Shanno and Vanderbei [1],
Ulbrich, Ulbrich and Vicente [28], Wächter and Biegler [31], and so on.

Based on an SQP decomposition scheme presented by [22] and using a line search procedure,
[20] presents a robust line search primal-dual interior-point method for nonlinear programming
problems with general nonlinear inequality constraints. The method adopts a similar technique
to the Byrd-Omojokun decomposition but using the approximate second-order information and
the current value of the penalty parameter to derive the normal range direction. Without
assuming any regularity of constraints, it is shown that the algorithm always converges to
some points with strong or weak stationarity. Furthermore, every limit point of the sequence
of iterates is a KKT point of the original problem if the sequence of penalty parameters is
bounded. An apparent restriction, however, is that it has no flexibility for using exact Hessian
(the second derivative information) or even any not positive definite matrices in the subproblems
for generating search directions.

The robust interior-point method is further extended to solve the mathematical program with
equilibrium constraints (MPEC) (see [21]), in which case some additional equality constraints
are incorporated. The global convergence results need assuming the linear independence of
gradients of equality constraints at all iterates.

Subspace techniques play an important role in developing efficient algorithms for nonlinearly
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constrained optimization (see [10, 24, 32, 36]). We present a more general framework and method
which attempts to improve the primal-dual interior-point algorithm in [20] and extend to solving
nonlinear programming problem with general inequality and equality constraints by using the
null space technique. The algorithm approximately solves a sequence of equality constrained
barrier subproblems by computing a range-space step and a null-space step in every iteration.
The `2 penalty function is taken as the merit function. Under very mild conditions on range-
space steps and approximate Hessians, without assuming any regularity, it is proved that every
limit point of the iterate sequence is a Karush-Kuhn-Tucker point of the barrier subproblem and
the penalty parameter remains bounded, or there exists a limit point that is either an infeasible
stationary point of minimizing the `2 norm of violations of constraints of the original problem,
or a Fritz-John point of the original problem.

In addition, we analyze the local convergence properties of the algorithm, and prove that
by suitably controlling the exactness of range-space steps and selecting the barrier parameter
and Hessian approximation, the algorithm generates a superlinearly or quadratically convergent
step. The conditions on guaranteeing the positiveness of slack variable vector for a full step are
presented.

Our algorithm solves different subproblems from those in [1, 7, 12, 14, 16, 26, 27, 28, 31], and
generates new iterates only by line search procedure (which is different from those using trust
region strategy in [3, 4, 27, 28]). Moreover, [3, 27] only consider the nonlinear programming with
inequality constraints, [31] solves the nonlinear programming with general equality constraints
and simple nonnegative constraints. Although [1, 7, 26, 31] also use line search procedure, [1, 31]
select the step-sizes for primal variables by filter techniques, and [7, 26] for primal variables by
different merit functions and for dual variables by different rules. It is because we use range-
space and null-space strategy, we can obtain the rapid convergence of the algorithm without
assuming linear independence of gradients of equality constraints.

This paper is organized as follows. In Section 2, we present some results on the range-space
step and the null-space step. Some definitions on the logarithmic barrier subproblem are also
given for simplicity of presentations. The conditions on the range-space step and the (inner)
algorithm for problem (1.8)–(1.10) are presented in Section 3. The global convergence results on
the inner algorithm are proved in Section 4. In Section 5, we describe the overall algorithm for
the original problem (1.1)–(1.3), and give its global convergence results. Some local convergence
properties are proved in Section 6. Lastly we conclude the paper in Section 7. The numerical
results presented in [20, 21] have illustrated the robustness and effectiveness of the algorithm in
special situations.

We use the following notations. The lower letters represent the vectors, the capital letters
the matrices, and the capital letters in calligraphic type the set of some indices. If not specified,
the capital letter corresponding to a lower letter is a diagonal matrix with all components of
the vector as its diagonal entries, for example, Y = diag (y), U = diag (u). The superscript of
a vector and the subscript of a matrix correspond to the current iterate. The subscript of a
vector stands for the corresponding component. Throughout the paper, I is the identity matrix
with appropriate size, I is the set of indices of inequality constraints and E the set of indices of
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equality constraints, the norm ‖ · ‖ is the Euclidean norm if not specified.

2. The null-space step

The algorithm in [20] generates the search direction by an auxiliary step and a modified
primal-dual step. The auxiliary step plays a role in balancing the Newton decrement of constraint
violations and the length of search direction, because the search direction is too “long” will result
in the step-size being too small and at last close to zero, which is the reason for failure of some
line search interior point methods. Such an auxiliary step can be thought as a range-space step.
The step is then used to modify the primal-dual equation so that a null-space step is derived for
generating a “better” new estimate of the solution.

2.1. The range-space step. For simplicity of statement, we surpass all subscripts and
consider the problem

min ψ(d) = (1/2)dT Qd + ρ‖RT d + r‖, (2.1)

where Q, R are matrices and r is a vector with appropriate sizes, ρ > 0 is a scalar. It is supposed
that Q is positive definite in the null space of RT , that is, there exists a small positive scalar β

such that dT Qd ≥ β‖d‖2, ∀d ∈ {d : RT d = 0}.
The global convergence results in [20] only need the approximate solution of problem (2.1)

in which the objective function is reduced sufficiently. If Q is positive definite in whole space
and R is of full column rank, then the Newton step and the Cauchy step in [20] can be derived
by solving problems

min (1/2)dT Qd (2.2)

s.t. RT d + r = 0, (2.3)

and
min (1/2)dT Qd + rT (RT d + r) (2.4)

respectively.

In fact, it is easy to prove that problem (2.2)–(2.3) has a unique solution if only R is of
full column rank and Q is positive definite in the null space of RT (see Gould [15]). But the
same conditions do not ensure problem (2.4) having any solution (an example is easy to find for
illustrating it). Thus, in order to establish our global and local convergence results under milder
and more desirable assumptions, we have to look for a novel type of approximate solutions of
problem (2.1) and try to give a basic measure on the approximate solutions.

The following result plays an important role in our global convergence analysis.

Lemma 2.1 Assume P 2Rr 6= 0, where P is a diagonal matrix with the same size as Q. Let
dc = −P 2Rr, αc = argminα∈[0,1]‖r + αRT dc‖. Then

‖r‖ − ‖r + αcRT dc‖ ≥ (1/2)min [1, η] ‖PRr‖2/‖r‖, (2.5)
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where η = ‖PRr‖2/‖RT P 2Rr‖2. Moreover, if there exists a constant ν > 0 such that ‖P T QP‖ ≤
ν, then

ψ(αcdc)− ψ(0) ≤ (1/2) {ν − ρ min [1/‖r‖, η/‖r‖]} ‖PRr‖2. (2.6)

Proof. We firstly prove the inequality (2.5). Since

‖r‖2 − ‖r + αRT dc‖2 = 2αrT RT P 2Rr − α2rT (RT P 2R)2r, (2.7)

we have

αc = min{1, η}, (2.8)

where η = ‖PRr‖2/‖RT P 2Rr‖2. Moreover, by (2.7) and (2.8), if η > 1, then αc = 1, and

‖r‖2 − ‖r + αcRT dc‖2 > ‖PRr‖2; (2.9)

otherwise, αc = η, and

‖r‖2 − ‖r + αcRT dc‖2 = η‖PRr‖2. (2.10)

Thus,

‖r‖2 − ‖r + αcRT dc‖2 ≥ min[1, η]‖PRr‖2. (2.11)

Since ‖r‖2 − ‖r + αcRT dc‖2 = (‖r‖ + ‖r + αcRT dc‖)(‖r‖ − ‖r + αcRT dc‖) and the inequality
‖r‖+ ‖r + αcRT dc‖ ≤ 2‖r‖, by (2.11),

‖r‖ − ‖r + αcRT dc‖ ≥min[1, η]‖PRr‖2/(‖r‖+ ‖r + αcRT dc‖)
≥ [1/(2‖r‖)]min[1, η]‖PRr‖2,

that is, (2.5) follows.

Now, (2.6) follows from (2.5) and the fact that

(1/2)(αc)2dcT Qdc ≤ (1/2)‖P T QP‖‖PRr‖2. (2.12)

This completes our proof.

2.2. The null-space step. Let dp be an approximate solution to (2.1). For any vector q with
the same number of rows as matrices Q and R, consider the system of equations

Qd + Rλ = −q, (2.13)

RT d = RT dp, (2.14)

which can be reformulated as
[

Q R

RT 0

] [
d− dp

λ

]
=

[
−q −Qdp

0

]
. (2.15)
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Correspondingly, by deleting the linearly dependent columns in R, we have the system
[

Q RL
RT
L 0

] [
d− dp

λL

]
=

[
−q −Qdp

0

]
, (2.16)

where RL consists of the largest number of linear independent columns of R, L is the set of
subscripts of columns of RL.

If Q is positive definite in the null space of RT , by applying the results in Gould [15], we
know that equation (2.16) always has a unique solution. Again by Gould [15], [d∗T λ∗T ]T solves
equation (2.15) if and only if [d∗T λ∗L

T ]T is a solution of equation (2.16), where λ∗L ∈ <|L| consists
of components of λ∗ with subscripts in L, |L| is the cardinality of L. Moreover, let λ̂∗j = λ∗i if

j ∈ L is the ith index in L, and otherwise λ̂∗j = 0, then [d∗T λ̂∗
T
]T is a solution of equation

(2.15).

The next lemma is useful in proving our global convergence results.

Lemma 2.2 Assume that Q is positive definite in the null space of RT . Let [d∗T λ∗T ]T be a
solution to the problem (2.15). Then

qT d∗ + (1/2)d∗T Qd∗ ≤ qT dp + (1/2)dp
T Qdp. (2.17)

Proof. If Q is positive definite in the null space of RT , equation (2.15) is equivalent to the
quadratic programming problem

min (1/2)dT Qd + qT d (2.18)

s.t. RT d = RT dp. (2.19)

Since [d∗T λ∗T ]T is a solution to the problem (2.15), d∗ also solves problem (2.18)–(2.19).
Because dp is feasible, we have (2.17) immediately.

The following lemma indicates, although λ∗ is dependent on the conditioning of R, under
suitable conditions on Q, Rλ∗ is independent on R in some sense.

Lemma 2.3 Assume that Q is positive definite in the null space of RT , P is a nonsingular
matrix with the same size as Q such that ‖P T QP‖ is bounded above and dT (P T QP )d ≥ β‖d‖2

for all d ∈ {d : (P T R)T d = 0} with a constant β > 0. If both ‖P−1dp‖ and ‖P T q‖ are
bounded, that is, there exits a constant ν independent of all variants such that ‖P−1dp‖ ≤ ν

and ‖P T q‖ ≤ ν, then ‖P−1d∗‖ and ‖P T Rλ∗‖ are bounded, where [d∗T λ∗T ]T is a solution of
equation (2.15).

Proof. Let d̂ = P−1(d− dp). Problem (2.18)–(2.19) can be rewritten as

min (1/2)(P d̂ + dp)T Q(P d̂ + dp) + qT (P d̂ + dp) (2.20)

s.t. (P T R)T d̂ = 0. (2.21)
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If d̂∗ = P−1(d∗ − dp), then d̂∗ is in the null space of (P T R)T and

(1/2)(P d̂∗ + dp)T Q(P d̂∗ + dp) + qT (P d̂∗ + dp) ≤ (1/2)dT
p Qdp + qT dp. (2.22)

That is,

(1/2)d̂∗
T
(P T QP )d̂∗ + (P−1dp)T (P T QP )d̂∗ + (P T q)T d̂∗ ≤ 0. (2.23)

If ‖P−1d∗‖ is large enough, since ‖P−1dp‖ is bounded, ‖d̂∗‖ will be sufficiently large. By
dividing ‖d̂∗‖2 on the two-sides of (2.23), and letting w∗ = d̂∗/‖d̂∗‖, we have that ‖w∗‖ = 1
and w∗T (P T QP )w∗ tends to be non-positive since ‖P T QP‖, ‖P−1dp‖, and ‖P T q‖ are bounded,
which contradicts that P T QP is positive definite in the null space of (P T R)T .

It follows from (2.15) that

Qd∗ + Rλ∗ = −q. (2.24)

Thus,

(P T QP )(P−1d∗) + P T Rλ∗ = −P T q, (2.25)

that is,

P T Rλ∗ = −P T q − (P T QP )(P−1d∗). (2.26)

Hence, ‖P T Rλ∗‖ is bounded since ‖P T q‖, ‖P−1d∗‖ and ‖P T QP‖ are bounded above.

Lemma 2.3 plays an important role in convergence analysis of our algorithm, and makes our
algorithm obviously different from some interior point methods based on penalty and inertia
control such as Chen and Goldfarb [7], Forsgren and Gill [12], Gertz and Gill [14], Gould,
Orban, and Toint [16]. We note that the algorithm has many similarities with the trust region
interior-point method proposed by Byrd, Gilbert and Nocedal [3] and Byrd, Hribar and Nocedal
[4].

2.3. On the logarithmic barrier problem. For problem (1.8)–(1.10), we set

Q =

[
B

Y −1U

]
, R =

[
∇g ∇h

I

]
, P =

[
I

Y

]
,

r =

[
g + y

h

]
, q =

[
∇f

−µY −1e

]
, d =

[
dx

dy

]
,

where B ∈ <n×n, Y = diag (y), U = diag (u), ∇g = ∇g(x), ∇h = ∇h(x), g = g(x), h = h(x),
∇f = ∇f(x), e is the all-one vector and I = diag (e). Then

RL =

[
∇g ∇hJ
I

]
,

where J is an index set which consists of subscripts of the largest number of linearly independent
column vectors in ∇h, ∇hJ and hJ respectively consist of ∇hj(x) and hj(x) with j ∈ J .

7



It is easy to note that RL has full column rank. If x ∈ <n is in a bounded set X ⊂ <n, and if
g and h are continuous on the set, ‖R‖, ‖RL‖, ‖r‖, ‖P T q‖ will be bounded on X. Furthermore,
if ‖B‖ is bounded, y ∈ <mI is componentwise bounded away from zero and u ∈ <mI is bounded,
‖Q‖ will be bounded on X. Otherwise, if some yi(i ∈ I) is very close to zero, then ‖Q‖, ‖q‖
may tend to infinity. Moreover,

P T QP =

[
B

Y U

]
.

Thus, ‖P T QP‖ is bounded if and only if ‖B‖ and ‖Y U‖ are bounded.

Let Zh be a matrix consisting of columns which are basis vectors of null space of ∇hT , that
is, ∇hT Zh = 0. We have the following result.

Lemma 2.4 Matrices Q and P T QP are positive definite respectively in the null space of RT

and (P T R)T if and only if

ZT
h (B +∇gY −1U∇gT )Zh Â 0.

Proof. Since [
∇g ∇h

I

]T [
Zh

−∇gT Zh

]
= 0,

d̄ ∈ {d : RT d = 0} and d̄ 6= 0 if and only if there exists a vector s̄ 6= 0 such that

d̄ =

[
Zh

−∇gT Zh

]
s̄.

Similarly, since [
∇g ∇h

Y

]T [
Zh

−Y −1∇gT Zh

]
= 0,

d̃ ∈ {d : (P T R)T d = 0} and d̃ 6= 0 imply that there is a nonzero s̃ such that

d̃ =

[
Zh

−Y −1∇gT Zh

]
s̃.

By the fact that

d̄T Qd̄ = s̄T ZT
h (B +∇gY −1U∇gT )Zhs̄, (2.27)

d̃T P T QPd̃ = s̃T ZT
h (B +∇gY −1U∇gT )Zhs̃, (2.28)

our lemma follows easily.

3. The inner algorithm

The inner algorithm is presented for solving problem (1.8)–(1.10) for some given µ > 0.
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Define the merit function as

φ(x, y; ρ) = f(x)− µ
∑

i∈I
ln yi + ρ‖(g(x) + y, h(x))‖,

which is a logarithmic barrier penalty function, where ρ > 0 is a penalty parameter and µ > 0
is a barrier parameter.

Suppose the current iteration point is (xk, yk, uk, vk) with (yk, uk) > 0. We compute a
range-space step dk

p which satisfies the following conditions:

(1) ‖rk‖ − ‖rk + RT
k dk

p‖ ≥ κ1‖PkRkr
k‖2/‖rk‖; (3.1)

(2) ‖P−1
k dk

p‖ ≤ κ2‖Rkr
k‖, (3.2)

where κ1, κ2 are positive constants, Pk, Rk, r
k are values of P, R, r at (xk, yk). The existence of

dk
p is guaranteed by Lemma 2.1.

The search direction dk is obtained by solving equation (2.15). Let zk = (xk, yk). We then
need to determine a step-size αk such that

yk + αkd
k
y ≥ ξyk, (3.3)

and φ(zk + αkd
k; ρk+1) is sufficiently descent comparing with φ(zk; ρk+1), that is,

φ(zk + αkd
k; ρk+1)− φ(zk; ρk+1) ≤ σαkπk(dk; ρk+1), (3.4)

where ξ ∈ (0, 1), σ ∈ (0, 1/2) are constants,

πk(dk; ρk+1) = qkT
dk + ρk+1(‖rk + RT

k dk‖ − ‖rk‖). (3.5)

The selection on ρk+1 is such that ρk+1 ≥ ρk and

πk(dk; ρk+1) ≤ (1− τ)ρk+1(‖rk + RT
k dk‖ − ‖rk‖)− (1/2)(dk − dk

p)
T Qk(dk − dk

p), (3.6)

unless PkRkr
k = 0 and rk 6= 0 (where τ ∈ (0, 1)). One advisable scheme is to select

ρk+1 = max
{
(1/τ)(qkT

dk + (1/2)(dk − dk
p)

T Qk(dk − dk
p))/(‖rk‖ − ‖rk + RT

k dk‖), 2ρk

}

if PkRkr
k 6= 0 and (3.6) does not hold, otherwise set ρk+1 = ρk. Because Qk may be symmetric

indefinite, we have no freedom to use the same strategy as [20, 22] to update the penalty
parameter. Due to this and without assuming the full rank of ∇hk, our global analysis in next
section is not trivial and is different from those of [20, 22].

We are now ready to present the algorithmic framework, which shares many similarities with
those in [3, 4, 20, 22]. The main differences are in methods for deriving dk

p and updating ρk and
uk, and terminating conditions.

Algorithm 3.1 (The algorithmic framework for the barrier problem (1.8)-(1.10))
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Step 1 Given (x0, y0, u0, v0) ∈ <n × <mI
++ × <mI

++ × <mE , constants κ1, κ2, ξ, σ, τ, and γ1, γ2(0 <

γ1 < 1 < γ2), initial penalty parameter ρ0 > 0. Let k := 0;

Step 2 If PkRkrk = 0 but rk 6= 0, stop;

Step 3 Calculate dk
p satisfying (3.1)–(3.2), and obtain dk and λk by (2.15) (or (2.16));

Step 4 Update ρk to ρk+1 such that (3.6) holds;

Step 5 Compute the maximal step-size αk ∈ (0, 1] such that (3.3)–(3.4) hold. Set

xk+1 = xk + αkdk
x, yk+1 = max{yk + αkdk

y ,−g(xk + αkdk
x)}, (3.7)

where dk
x and dk

y consist of the first n and the remanent mI elements of dk respectively;

Step 6 Let
dk

u = λk
1 − uk, dk

v = λk
2 − vk

with λk
1 and λk

2 consisting of the first mI and the remanent (m − mI) elements of λk re-
spectively. For i = 1, . . . , mI , if yk+1

i uk
i ≥ γ2µ and (dk

u)i ≥ 0, set uk+1
i = γ2µ/yk+1

i ; else if
yk+1

i uk
i ≤ γ1µ and (dk

u)i ≤ 0, set uk+1
i = γ1µ/yk+1

i ; otherwise, select βki (if possible, select
βki being the maximum in (0, 1]) such that

yk+1
i (uk

i + βki(dk
u)i) ∈ [γ1µ, γ2µ], (3.8)

and set uk+1
i = uk

i + βki(dk
u)i. Set vk+1 = vk + dk

v ;

Step 7 Terminate the algorithm if (xk+1, yk+1) is a KKT point of problem (1.8)–(1.10); else update
the related data, let k := k + 1 and go to Step 2.

Fletcher and Johnson [10] have considered the numerical stability of solving the null space
equation (2.16).

It follows from (3.4) and (3.7) that

φ(zk+1; ρk+1)− φ(zk; ρk+1) ≤ φ(zk + αkd
k; ρk+1)− φ(zk; ρk+1)

≤ σαkπk(dk; ρk+1). (3.9)

Since yk
i (dk

u)i + uk
i (d

k
y)i = µ− yk

i uk
i , we have

(dk
u)i = [αkµ + (1− αk)yk

i uk
i − yk+1

i uk
i ]/(αky

k
i ).

It shows that, if yk
i uk

i ∈ [γ1µ, γ2µ], then (dk
u)i > 0 if yk+1

i uk
i < γ1µ and (dk

u)i < 0 if yk+1
i uk

i > γ2µ.
Thus, in Step 6, there always is a βki > 0 (which may not be in (0, 1]) such that (3.8) holds.
Accordingly, for every i = 1, . . . , mI ,

yk+1
i uk+1

i ∈ [γ1µ, γ2µ]. (3.10)

If the algorithm terminates at iterate k, then either (xk, yk) is a KKT point of problem
(1.8)–(1.10) by Step 7 (in which case xk is an approximate KKT point of the original problem
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(1.1)–(1.3) as µ is small enough), or PkRkr
k = 0 but rk 6= 0 by Step 2. In latter case, xk is

infeasible for the original problem, and by expressions in Section 2.3, we have
{
∇gk(gk + yk) +∇hkhk = 0,

Yk(gk + yk) = 0.

Since yk
i > 0 for every i ∈ I, we have that gk

i = −yk
i < 0 and

∑
j∈E ∇hk

j h
k
j = 0. Thus, xk is

a stationary point for minimizing violations of equality constraints under strict feasibility for
inequality constraints.

It is easy to notice that the algorithm with the current stopping conditions may not terminate
in a finite number of iterations. We study this situation in the next section.

4. The global convergence

We now suppose that Algorithm 3.1 does not terminate in a finite number of iterations.
An infinite sequence {(xk, yk, uk, vk)} is then generated. Comparing to that of [20], we use the
following milder assumptions for global convergence analysis.

Assumption 4.1

(1) Functions f , g and h are twice continuously differentiable on <n;

(2) {xk} is in an open bounded set;

(3) {Bk} is bounded. Moreover, for every k,

dT
x Bkdx +

∑

i∈I0
k

1/(γ2µ)(uk
i∇gk

i
T
dx)2 ≥ β‖dx‖2, ∀dx 6= 0 : ∇hk

j
T
dx = 0, j ∈ E , (4.1)

where I0
k = {i ∈ I : gk

i = 0}, uk is the k-th multiplier estimate corresponding to (1.9),
β > 0 is a constant;

(4) {dk
p} satisfies conditions (3.1)–(3.2).

Since for every d̄ 6= 0 in the null space of RT
k there holds

d̄T Qkd̄ = dT
x Bkdx +

∑

i∈I
(yk

i uk
i )
−1(uk

i∇gk
i

T
dx)2

≥ dT
x Bkdx +

∑

i∈I0
k

1/(γ2µ)(uk
i∇gk

i
T
dx)2, (4.2)

where dx 6= 0 is a vector in <n such that ∇hk
j
T
dx = 0,∀j ∈ E . By Lemma 2.4, (4.1) implies that

Qk and P T
k QkPk are positive definite respectively in the null space of RT

k and (P T
k Rk)T , and

{
d̄T Qkd̄ ≥ β‖d̄‖2, ∀d̄ ∈ {d : RT

k d = 0};
d̃T (P T

k QkPk)d̃ ≥ β‖d̃‖2, ∀d̃ ∈ {d : (P T
k Rk)T d = 0}. (4.3)

11



Locally, if there holds

dT
x Bkdx ≥ β‖dx‖2, ∀dx 6= 0 : ∇hk

j
T
dx = 0, j ∈ E ;uk

i∇gk
i

T
dx = 0, i ∈ I0

k ,

which is analogous to the second-order sufficient conditions of problem (1.1)–(1.3), we see that
(4.1) holds for all sufficiently small µ.

If {Bk} is bounded, then, by (3.10), there is a constant ν0 > 0 such that ‖P T
k QkPk‖ ≤ ν0

for all k.

Recently, Griva, Shanno and Vanderbei [17] proved the global convergence of their interior-
point method under some standard assumptions. Their assumptions are attractive since they
are only related to the problem itself and are independent of any iterations.

The following result can be obtained from Lemma 2.3.

Lemma 4.2 Suppose that Assumption 4.1 holds. Sequences {P−1
k dk} and {P T

k Rkλ
k} are bounded.

Proof. If Assumption 4.1 holds, then the conditions in Lemma 2.3 are satisfied. Then, by Lemma
2.3, {P−1

k dk} and {P T
k Rkλ

k} are bounded.

The next results depend only on the merit function and items (1) and (2) of Assumption
4.1.

Lemma 4.3 Suppose that Assumption 4.1 holds. Then {yk} is bounded, {uk} is componentwise
bounded away from zero. Furthermore, if ρk remains constant for all sufficiently large k, then
{yk} is componentwise bounded away from zero, and {uk} is bounded above.

Proof. The boundedness of {yk} follows from proofs in [3, 20].

Let ŷ0 = y0, ŷk+1 = yk + αkd
k
y , and ẑk = (xk, ŷk). If there exists a constant ρ̂ such that

ρk = ρ̂ for all sufficiently large k, then, by (3.4) and (3.9),

φ(zk+1; ρ̂) ≤ φ(ẑk+1; ρ̂) ≤ φ(zk; ρ̂). (4.4)

Thus, {φ(zk; ρ̂)} is monotonically decreasing. Therefore, by the boundedness of {yk}, (1) and
(2) of Assumption 4.1, we can deduce that {yk} is componentwise bounded away from zero.

By (3.10), {uk} is componentwise bounded away from zero if {yk} is bounded and is bounded
above if {yk} is componentwise bounded away from zero.

Since there are equality constraints, {ρk} may not be bounded even if {yk} is componentwise
bounded away from zero, which is different from the situation that there are only inequality
constraints (see Lemma 4.7 (ii) of [20]) or there exist equality constraints with full rank Jacobian
at all iterates (see Lemma 5 of [21]).

Lemma 4.4 Suppose that Assumption 4.1 holds. If there is a constant η0 > 0 such that

‖PkRkr
k‖/‖rk‖ ≥ η0, (4.5)

for all k, then {ρk} is bounded.

12



Proof. To prove that {ρk} is bounded, it is sufficient if we show that there exists a constant ρ̂

such that (3.6) holds with ρk+1 = ρ̂ for every k.

By (3.1) and (4.5),
‖rk‖ − ‖rk + RT

k dk
p‖ ≥ κ1η

2
0‖rk‖. (4.6)

It follows from equation (2.15) that

qkT
dk

p + dkT
Qkd

k
p = −λkT

RT
k dk

p. (4.7)

Hence,

(1/2)(dk − dk
p)

T Qk(dk − dk
p)

= (1/2)dkT
Qkd

k − dkT
Qkd

k
p + (1/2)dk

p
T
Qkd

k
p (4.8)

= (1/2)dkT
Qkd

k + qkT
dk

p + λkT
RT

k dk
p + (1/2)dk

p
T
Qkd

k
p.

Since

πk(dk; ρ̂)− (1− τ)ρ̂(‖rk + RT
k dk‖ − ‖rk‖) + (1/2)(dk − dk

p)
T Qk(dk − dk

p)

= qkT
dk + (1/2)dkT

Qkd
k + τ ρ̂(‖rk + RT

k dk‖ − ‖rk‖)
+qkT

dk
p + λkT

RT
k dk

p + (1/2)dk
p
T
Qkd

k
p

≤ qkT
dk

p + (1/2)dk
p
T
Qkd

k
p + τ ρ̂(‖rk + RT

k dk
p‖ − ‖rk‖) (4.9)

+qkT
dk

p + λkT
RT

k dk
p + (1/2)dk

p
T
Qkd

k
p

≤ 2(P T
k qk)T (P−1

k dk
p) + (P−1

k dk
p)

T (P T
k QkPk)(P−1

k dk
p) + (P T

k Rkλ
k)T (P−1

k dk
p)

+τ ρ̂(‖rk + RT
k dk

p‖ − ‖rk‖)
≤

{
κ2(2‖P T

k qk‖+ ‖P T
k Rkλ

k‖+ ‖P T
k QkPk‖‖P−1

k dk
p‖)‖Rk‖ − τ ρ̂κ1η

2
0

}
‖rk‖,

where the equality is obtained by (3.5) and (4.8), the first inequality is derived from (2.15) and
(2.17), and the third from (3.2) and (4.6). By Assumption 4.1, Lemma 4.2 and (3.2), ‖P T

k qk‖,
‖P T

k Rkλ
k‖, ‖P−1

k dk
p‖, and ‖Rk‖ are bounded. The boundedness of ‖P T

k QkPk‖ follows from
boundednesses of ‖Bk‖ and (3.10). Thus, we can have the desired result immediately.

The above lemma implies two corollaries:

Corollary 4.5 Suppose that Assumption 4.1 holds. If {yk} is componentwise bounded away
from zero, {∇hk

j , j ∈ E} are linearly independent for all k, then {ρk} is bounded.

Corollary 4.6 Suppose that Assumption 4.1 holds. If ρk tends to infinity as k →∞, then there
exists a subset K ∈ N = {1, 2, . . .} such that

lim
k∈K,k→∞

‖PkRkr
k‖/‖rk‖ = 0. (4.10)

The first corollary shows that, under suitable assumptions on slack variable vectors and
regularity of equality constraints, ρk will remain constant for all sufficiently large k.
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Lemma 4.7 Suppose that Assumption 4.1 holds. If (4.5) is satisfied for some constant η0 > 0,
then {dk} is bounded. Thereby, {αk} is bounded away from zero.

Proof. By Lemma 4.4, (4.5) implies that ρk remains constant for all sufficiently large k. Then
by Lemma 4.3 {yk} is componentwise bounded away from zero. Therefore, by Lemma 4.2, {dk}
is bounded.

The boundedness of {dk} and that {yk} is componentwise bounded away from zero imply
that there exists a constant α̃ ∈ (0, 1] such that (3.3) holds for every αk ∈ (0, α̃].

Suppose that ρk = ρ̂ for all sufficiently large k. Since {dk} is bounded and {yk} is compo-
nentwise bounded away from zero, similar to the proof of Lemma 4.3 of [20], we have

φ(zk + αdk; ρ̂)− φ(zk; ρ̂)− πk(αdk; ρ̂)

≤ c1α
2‖P−1

k dk‖2

≤ c1α
2‖P−1

k (dk − dk
p) + P−1

k dk
p‖2

≤ c1α
2‖P−1

k (dk − dk
p)‖2 + c2α

2‖Rkr
k‖ (4.11)

for all sufficiently small α > 0, where c2 > c1 > 0 are constants. The last inequality follows from
(3.2) and the boundednesses of ‖P−1

k dk
p‖ and ‖P−1

k dk‖. On the other hand, if (4.5) holds, then

πk(αdk; ρ̂)− σαπk(dk; ρ̂)

≤ (1− σ)απk(dk; ρ̂)

≤ (1− σ)α[(1− τ)ρ̂(‖rk + RT
k dk‖ − ‖rk‖)− (1/2)(dk − dk

p)
T Qk(dk − dk

p)]

≤ −c3α‖Rkr
k‖ − c4α‖P−1

k (dk − dk
p)‖2, (4.12)

where c3 > 0 and c4 > 0 are constants, the second inequality is obtained by the update rule
of penalty parameter, and the third by (3.1), (4.5) and that ‖PkRkr

k‖ ≥ c5‖Rkr
k‖ for some

constant c5 > 0 since yk is componentwise bounded away from zero, (dk − dk
p)

T Qk(dk − dk
p) ≥

β‖P−1
k (dk − dk

p)‖2 by (4.3) (where β is coming from Assumption 4.1 (3)).

It follows from (4.11) and (4.12) that there exists a ᾱ ∈ (0, α̃] such that

φ(zk + αdk; ρ̂)− φ(zk; ρ̂) ≤ σαπk(dk; ρ̂)

for all α ∈ (0, ᾱ] and all k. Thus, by Step 5 of Algorithm 3.1, αk ≥ ᾱ for all k.

Lemma 4.8 Suppose that Assumption 4.1 holds. If we have (4.5) for some constant η0 > 0,
then as k →∞

Rkr
k → 0, (4.13)

and thereby

rk → 0, dk → 0, YkUke− µe → 0, ∇fk +∇gkuk +∇hkvk → 0. (4.14)
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Proof. By Lemma 4.4 and (4.5), we can assume ρk = ρ̂ for all sufficiently large k. Since φ(zk; ρ̂)
is monotonically decreasing, (3.4) and Lemma 4.7 imply that

lim
k→∞

πk(dk, ρ̂) = 0. (4.15)

By (3.6) and (3.1),

πk(dk, ρ̂) ≤ −(1− τ)ρ̂(‖rk‖ − ‖rk + RT
k dk

p‖)
≤ −(1− τ)ρ̂κ1‖PkRkr

k‖2/‖rk‖. (4.16)

It follows from (4.15), (4.16) and (4.5) that

lim
k→∞

‖PkRkr
k‖ = 0, (4.17)

which by Lemma 4.3 implies Rkr
k → 0 as k → ∞. Hence, rk → 0 by (4.5). In this case,

‖dk
p‖ → 0 as k →∞ by (3.2).

By equation (2.15) that

qkT
dk + dkT

Qkd
k = −λkT

RT
k dk

p. (4.18)

Hence, by (2.17),

−(1/2)dkT
Qkd

k ≤ λkT
RT

k dk
p + qkT

dk
p + (1/2)dk

p
T
Qkd

k
p. (4.19)

Since
πk(dk, ρ̂) ≤ qkT

dk ≤ qkT
dk

p + (1/2)dk
p
T
Qkd

k
p − (1/2)dkT

Qkd
k,

it follows from (4.19) and (4.15) that

lim
k→∞

qkT
dk = 0 . (4.20)

Thus, (4.18) implies that (−λkT
RT

k dk
p − dkT

Qkd
k) → 0 for k →∞. Therefore,

lim
k→∞

dkT
Qkd

k = 0. (4.21)

Because ‖dk
p‖ → 0, and, by (4.3), (dk − dk

p)
T Qk(dk − dk

p) ≥ β‖dk − dk
p‖2, we have that

lim
k→∞

‖dk‖ = 0 . (4.22)

By (2.15), we have

Bkd
k
x +∇gk(uk + dk

u) +∇hk(vk + dk
v) = −∇fk, (4.23)

Ukd
k
y + Yk(uk + dk

u) = µe. (4.24)
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Hence, by (4.22), as k →∞,

∇fk +∇gk(uk + dk
u) +∇hk(vk + dk

v)→ 0, (4.25)

Yk(uk + dk
u)− µe→ 0. (4.26)

By (4.26) and ‖dk
y‖ → 0, we have βki = 1 for all i ∈ I and all sufficiently large k. Consequently,

uk+1 = uk + dk
u for all sufficiently large k. Then, by (4.22), (4.25)–(4.26), we have (4.14).

We present our global convergence results on Algorithm 3.1 in the following theorem.

Theorem 4.9 Suppose that Assumption 4.1 holds, for any given µ > 0, {xk} is an infinite
sequence generated by Algorithm 3.1. Then we have one of the following results:

(1) The penalty parameter ρk remains constant for all sufficiently large k, every limit point
of {xk} is a KKT point of problem (1.8)–(1.10);

(2) There exists a limit point x∗ of sequence {xk} which is either an infeasible stationary
point of minimizing the `2 norm of violations of constraints, or a Fritz-John point of
problem (1.1)–(1.3).

Proof. For an infinite sequence {xk} generated by Algorithm 3.1, we have either that (i) (4.5)
holds for some constant η0 > 0 and for all k or (ii) there exists a subset K ∈ N such that (4.10)
holds.

In case (i), by Lemma 4.4, ρk remains constant for all sufficiently large k. Again by Lemma
4.8, we have (4.14), that is, for every limit point x∗,





g∗ + y∗ = 0,

h∗ = 0,

y∗i u
∗
i = µ, i ∈ I,

∇f∗ +∇g∗u∗ +∇h∗v∗ = 0,

(4.27)

where g∗ = g(x∗), h∗ = h(x∗), ∇f∗ = ∇f(x∗), ∇g∗ = ∇g(x∗), ∇h∗ = ∇h(x∗). The system
(4.27) shows that x∗ is precisely the KKT point of problem (1.8)–(1.10). Thus, the result (1)
follows.

Next, we consider the case (ii). By (4.10), there exists a subsequence {xk : k ∈ K} such that

lim
k∈K,k→∞

PkRkr
k/‖rk‖ = 0. (4.28)

Since {rk} is bounded, there exists a subsequence {xk : k ∈ K̂ ⊆ K} such that xk → x∗ and
rk → r∗ as k ∈ K̂ and k → ∞. If x∗ is infeasible for the original problem (1.1)–(1.3), then
‖r∗‖ 6= 0, in this case (4.28) implies that

lim
k∈K̂,k→∞

PkRkr
k = 0, (4.29)
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or equivalently,

∇g∗(g∗ + y∗) +∇h∗h∗ = 0, (4.30)

Y ∗(g∗ + y∗) = 0. (4.31)

Since x∗ is infeasible for the original problem (1.1)–(1.3), then g∗ + y∗ = max{g∗, 0}, thus x∗

satisfies
∇g∗g∗+ +∇h∗h∗ = 0 (4.32)

where g∗+ = max{g∗, 0}, which shows that x∗ is a stationary point for minimizing the `2 norm
of violations of equality and inequality constraints.

If x∗ is feasible for the original problem (1.1)–(1.3). Then g∗ + y∗ = 0. Let wk = rk/‖rk‖.
Since ‖wk‖ = 1 and gk + yk ≥ 0,∀k, there exists a subsequence {wk : k ∈ K̃ ⊆ K̂} such that
wk → w∗ with two parts w∗1 ∈ <|I|+ and w∗2 ∈ <|E| as k ∈ K̃ and k →∞, and, by (4.28),

lim
k∈K̃,k→∞

PkRkw
k = 0. (4.33)

In other words, there exists u∗ = w∗1 ∈ <|I|+ and v∗ = w∗2 ∈ <|E| such that

∇g∗u∗ +∇h∗v∗ = 0, and g∗i u
∗
i = 0, u∗i ≥ 0, i ∈ I.

Thus, x∗ is a Fritz-John point of the original problem. Thereby, result (2) is proved.

The global convergence results suggest us how to define the stopping conditions such that the
inner algorithm can always terminate at some approximate points with strong or weak stationary
properties in a finite number of iterations. For any given sufficiently small εµ > 0 (which may
depend on µ), the algorithm can be terminated if we have either

‖(rd, r
µ
c , rg, rh)‖∞ < εµ, (4.34)

where

rd =∇fk +∇gkuk +∇hkvk,

rµ
c = rc − µe (rc = Yku

k),

rg = gk + yk,

rh = hk,

or

‖PkRkr
k‖/‖rk‖ < ε, (4.35)

where

Pk =

[
I

Yk

]
, Rk =

[
∇gk ∇hk

I

]
, rk =

[
gk + yk

hk

]
,

ε < εµ is a sufficiently small positive scalar.
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5. The overall algorithm and its global convergence

We present the outer algorithm for the original problem (1.1)-(1.3), which together with the
inner algorithm (Algorithm 3.1) forms the overall algorithm for solving nonlinear optimization
with general equality and inequality constraints.

Algorithm 5.1 (The outer algorithm for problem (1.1)-(1.3))

Given initial point (x0, y0, u0, v0) with y0 > 0 and u0 > 0, initial barrier parameter µ0 > 0,
initial penalty parameter ρ0 > 0, constants κ1, κ2, ξ, σ, τ, γ1, γ2 in Step 1 of Algorithm 3.1,
χ ∈ (0, 1), ε > 0. Let j := 0;

While µj ≥ ε;

Apply Algorithm 3.1 to solve the barrier problem (1.8)–(1.10) (using µj instead of µ) and
terminate the inner algorithm if either (4.34) for εµ = θ(µj) or (4.35) is met, where θ :
<++ → <++ is a real function such that θ(µ) is monotonic and limµ→+0 θ(µ) = 0.

Set (xj+1, yj+1, uj+1, vj+1) = (xk, yk, uk, vk), ρ0 = ρk+1.

If (4.35) is met, break and stop.

Set µj+1 = χµj, j := j + 1;

end

It can be seen that (4.35) holds if Algorithm 3.1 terminates at Step 2. In this case, Algorithm
5.1 will stop. By the remarks on the inner algorithm, the termination point is strictly feasible
for inequality constraints of the original problem and stationary for minimizing the `2 norm
of violations of equality constraints, that is an infeasible Fritz-John point of the inequality
constrained feasibility problem (FNP) defined in Chen and Goldfarb [7]. However, if Algorithm
3.1 terminates at Step 7, then (4.34) is satisfied and the overall algorithm proceeds to a smaller
µj .

If, for every µj , Algorithm 3.1 terminates in satisfying (4.34), Algorithm 5.1 will generate
a sequence {(xj , yj , uj , vj)} and will terminate in a finite number of iterations. Otherwise, the
outer algorithm will terminate for some µj , in which case the inner algorithm will terminate in
satisfying (4.35).

Theorem 5.2 Suppose that Assumption 4.1 holds for every µj. Then we have the following
results.

(a) For every µj, the inner algorithm (Algorithm 3.1) terminates in satisfying (4.34), the
outer algorithm (Algorithm 5.1) terminates at an approximate KKT point of the original
problem (1.1)–(1.3) after a finite number of iterations;

(b) For some µj, the inner algorithm (Algorithm 3.1) terminates in satisfying (4.35), the
outer algorithm (Algorithm 5.1) terminates at a point strictly feasible for inequality con-
straints (1.2) of the original problem and which is a stationary point for minimizing the
`2 norm of violations of equality constraints (1.3) (an infeasible Fritz-John point of the
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inequality constrained feasibility problem (FNP)), or an approximately infeasible station-
ary point of minimizing the `2 norm of violations of constraints, or an approximately
Fritz-John point of problem (1.1)–(1.3).

Proof. (a) Suppose that Algorithm 5.1 terminates in j0 iterations. Then µj0 < ε/τ . It follows
from (4.34) that

‖(rd, rc, rg, rh)‖∞ ≤ θ(µj0) + µj0 ≤ θ(ε/τ) + ε/τ. (5.1)

Let ε
′
= θ(ε/τ)+ ε/τ . Then ε

′
can be sufficiently small if we select a very small ε, in which case,

xj0 together with multipliers uj0 and vj0 satisfies approximately the KKT conditions of problem
(1.1)–(1.3) with maximal tolerance ε

′
.

(b) The results can be derived by the remarks on Algorithm 3.1 and the item (2) of Theorem
4.9.

An infeasible Fritz-John point of the inequality constrained feasibility problem (FNP) is also
an infeasible stationary point of problem (1.1)–(1.3), but not vice versa.

Theorem 5.3 Suppose that Algorithm 5.1 breaks and stops for some µj, Assumption 4.1 holds
for µj. Then we have the alternative results:

(a) A point strictly feasible for inequality constraints (1.2) of the original problem and which
is a stationary point for minimizing the `2 norm of violations of equality constraints (1.3)
is derived;

(b) Either an approximately infeasible stationary point of minimizing the `2 norm of vi-
olations of constraints, or an approximate Fritz-John point of problem (1.1)–(1.3) is
derived.

Proof. The results are obtained directly from the remarks on Algorithm 3.1 and Theorem 4.9(2).

6. Local convergence

Under suitable assumptions, we prove that, by controlling the exactness of range-space steps,
the algorithm generates a superlinear step. Moreover, we present the conditions on guaranteeing
the positiveness of slack variable vector for a full step. Thus, locally superlinear convergence
can be obtained if αk = 1 can be accepted by the merit function. Our analysis in this section
is similar to that in Byrd, Liu and Nocedal [5]. We also need to use some results presented by
Yamashita and Yabe [34]. For simplicity, we rearrange the over-all sequence as {(xk, yk, uk, vk)}.
Let zk = (xk, yk), wk = (zk, uk, vk), dw = (dx, dy, du, dv).

Assumption 6.1
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(1) f(x), g(x) and h(x) are twice differentiable, and their second derivatives are Lipschitz
continuous at x∗;

(2) xk → x∗ as k → ∞, where x∗ is a KKT point of problem (1.1)–(1.3), u∗ ∈ <mI
+ and

v∗ ∈ <mE are respectively the Lagrangian multiplier vectors of constraints (1.2) and
(1.3);

(3) Let I∗ = {i ∈ I : gi(x∗) = 0}, J ∗ ⊆ E. ∇gi(x∗), i ∈ I∗ are linearly independent, and
set {∇gi(x∗) : i ∈ I∗} ∪ {∇hj(x∗) : j ∈ J ∗} consists of the largest number of linearly
independent column vectors of {∇gi(x∗) : i ∈ I∗} ∪ {∇hj(x∗) : j ∈ E}. Moreover,
Jk = J ∗, where Jk ⊆ E is an index set consisting of the largest number of linearly
independent column vectors of {∇hj(xk) : j ∈ E};

(4) v∗j = 0,∀j 6∈ J ∗ and j ∈ E; y∗i + u∗i > 0,∀i ∈ I;
(5) dT∇2L(x∗, u∗, v∗)d > 0, ∀d ∈ {d 6= 0 : ∇hj(x∗)T d = 0, j ∈ J ∗; ∇gi(x∗)T d = 0, i ∈

I∗}, where L(x, u, v) = f(x) + uT g(x) + vT h(x);

Since gi(x∗) + y∗i = 0,∀i ∈ I, we have I∗ = {i ∈ I : y∗i = 0}. Consider our algorithm in
this paper, we do not assume that all vectors in set {∇gi(x∗) : i ∈ I∗} ∪ {∇hj(x∗) : j ∈ E} are
linearly independent. Instead, we assume that {∇gi(x∗) : i ∈ I∗} ∪ {∇hj(x∗) : j ∈ J ∗ ⊆ E} are
linearly independent and Jk = J ∗ for all sufficiently large k.

Let r(z) =

[
g(x) + y

h(x)

]
, rJ (z) =

[
g(x) + y

hJ (x)

]
, LJ (x, u, v) = f(x) + uT g(x) + vT

J hJ (x),

Fµ(w) =



∇LJ (x, u, v)
Y Ue− µe

rJ (z)


 ,

and F (w) = F0(w). Then

F
′
µ(wk) = F

′
(wk) =




∇2LJk
(xk, uk, vk) 0 ∇gk ∇hk

Jk

0 Uk Yk 0
∇gkT

I 0 0
∇hk

Jk

T 0 0 0




.

Define

Gk =




Bk 0 ∇gk ∇hk
Jk

0 Uk Yk 0
∇gkT

I 0 0
∇hk

Jk

T 0 0 0




.

Then dk
w is computed by

Gkdw = −Fµk
(wk) +




0
0

rk
Jk

+ RT
Jk

dk
p


 . (6.1)
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The following results are presented in Lemma 2.1 of [5] and Lemmas 1 and 7 of [34].

Lemma 6.2 Suppose that Assumption 6.1 holds. There is a scalar ε > 0 such that for all
w : ‖w − w∗‖ ≤ ε,

‖r(z)− r(z∗)‖ ≤ L0‖z − z∗‖, ‖F ′
(w)− F

′
(w∗)‖ ≤ M0‖w − w∗‖,

F
′
(w) is invertible and

‖F ′
(w)

−1‖ ≤ M (6.2)

for some constant M > 0. Moreover, for all w, w
′
: ‖w − w∗‖ ≤ ε, ‖w′ − w∗‖ ≤ ε, we have that

‖F ′
(w)(w − w

′
)− F (w) + F (w

′
)‖ ≤ L‖w − w

′‖2, (6.3)

for some constant L > 0. Furthermore, there exists a δ > 0 such that, if ‖wk − w∗‖ ≥ ε,
‖Bk −∇2L(x∗, u∗, v∗)‖ ≤ δ, then

‖Gk − F
′
(w∗)‖ ≤ M1, ‖G−1

k ‖ ≤ M2 (6.4)

for some constants M1,M2 > 0.

Assumption 6.1 implies that, for all sufficiently small µ, there exists a neighborhood of w∗

such that the barrier problem (1.8)–(1.10) has a unique solution which we denote by w∗(µ) if it
has a solution. The next results follow from Lemma 2.2 and Lemma 2.3 of [5].

Lemma 6.3 Suppose that Assumption 6.1 holds. Then there is µ̄ > 0 such that for all µ ≤ µ̄,
the system Fµ(w) = 0 has a solution satisfying

‖w∗(µ)− w∗‖ ≤ M̄µ < ε, (6.5)

where M̄ is a constant independent of µ. For all w sufficiently close to w∗(µ) and µ < µ̄,

‖w − w∗(µ)‖ ≤ 2M‖Fµ(w)‖, ‖Fµ(w)‖ ≤ 2M̂‖w − w∗(µ)‖, (6.6)

where M̂ = sup‖w−w∗‖<ε ‖F
′
(w)‖.

Using Lemma 6.2 and Lemma 6.3, we can prove the following results:

Theorem 6.4 Suppose that Assumption 6.1 holds, ‖rk‖ − ‖rk + RT
k dk

p‖ ≥ ηk‖rk‖(0 < ηk ≤ 1)
for all sufficiently large k, and wk is sufficiently close to w∗.

(1) If µk = o(‖F (wk)‖), ‖(Bk −∇2L(x∗, u∗, v∗))dk
x‖ = o(‖dk

x‖), and 1− ηk = o(1), then

lim
k→∞

‖wk + dk
w − w∗‖

‖wk − w∗‖ = 0. (6.7)

(2) If µk = O(‖F (wk)‖2), Bk = ∇2L(xk, uk, vk), and 1− ηk = O(‖rk‖), then

‖wk + dk
w − w∗‖ = O(‖wk − w∗‖2). (6.8)

21



Proof. (1) By Lemma 8 of [34], ‖(Bk −∇2L(x∗, u∗, v∗))dk
x‖ = o(‖dk

x‖) implies that

‖(Gk − F
′
(w∗))dk

w‖ = o(‖dk
w‖).

Let d̄k
w be the solution of the system

F
′
(wk)dw = −Fµk

(wk).

Then

dk
w − d̄k

w = F
′
(wk)

−1
(F

′
(wk)dk

w + Fµk
(wk))

= F
′
(wk)

−1
(F

′
(wk)−Gk)dk

w + F
′
(wk)

−1
(0, 0, 0, rk

Jk
+ RT

Jk
dk

p)

≤ MM0‖wk − w∗‖‖dk
w‖+ o(‖dk

w‖) + M(‖rk
Jk

+ RT
Jk

dk
p‖), (6.9)

where the second equality follows from (6.1) and the last inequality from Lemma 6.2.

Since, by Lemma 6.2,

‖wk + d̄k
w − w∗(µk)‖ ≤ ‖F ′

(wk)
−1‖‖F ′

(wk)(wk − w∗(µk))− Fµk
(wk)‖

≤ ‖F ′
(wk)

−1‖‖F ′
(wk)(wk − w∗(µk))− F (wk) + F (w∗(µk))‖

≤ ML‖wk − w∗(µk)‖2, (6.10)

and by Lemma 6.3

dk
w = −G−1

k Fµk
(wk) + G−1

k (0, 0, 0, rk
Jk

+ RT
Jk

dk
p)

≤ 2M2M̂(‖wk − w∗(µk)‖) + M2(‖rk
Jk

+ RT
Jk

dk
p‖), (6.11)

we have that

‖wk + dk
w − w∗‖

≤ ‖wk + d̄k
w − w∗(µk)‖+ ‖dk

w − d̄k
w‖+ ‖w∗(µk)− w∗‖

≤ ML‖wk − w∗(µk)‖2 + MM0‖wk − w∗‖(2M2M̂‖wk − w∗(µk)‖
+M2‖rk

Jk
+ RT

Jk
dk

p‖) + o(‖wk − w∗(µk)‖) + M(‖rk
Jk

+ RT
Jk

dk
p‖) + M̄µk

≤ (2ML + 2MM2M0M̂)‖wk − w∗‖2 + (2MM2M0M̂‖wk − w∗‖+ 2MLM̄µ̄ + 1)M̄µk

+M(M0M2‖wk − w∗‖+ 1)(1− ηk)‖rk‖+ o(‖wk − w∗‖). (6.12)

By the fact that ‖F (wk)‖ = O(‖wk − w∗‖) and ‖rk‖ = O(‖zk − z∗‖) ≤ O(‖wk − w∗‖),

‖wk + dk
w − w∗‖

‖wk − w∗‖ ≤ (2ML + 2MM2M0M̂)‖wk − w∗‖+ o(1). (6.13)

Hence, (6.7) follows immediately.

(2) If Bk = ∇2L(xk, uk, vk), then Gk = F
′
(wk). Thus,

‖dk
w − d̄k

w‖ ≤ M‖rk
Jk

+ RT
Jk

dk
p‖ ≤ M‖rk + RT

k dk
p‖. (6.14)
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Therefore,

‖wk + dk
w − w∗‖ ≤ ‖wk + d̄k

w − w∗(µk)‖+ ‖dk
w − d̄k

w‖+ ‖w∗(µk)− w∗‖
≤ ML‖wk − w∗(µk)‖2 + M‖rk + RT

k dk
p‖+ M̄µk

≤ 2ML‖wk − w∗‖2 + M(1− ηk)‖rk‖+ (2MLM̄µ̄ + 1)M̄µk. (6.15)

If µk = O(‖F (wk)‖2), 1− ηk = O(‖rk‖), we can obtain the result by ‖F (wk)‖ = O(‖wk − w∗‖)
and ‖rk‖ = O(‖wk − w∗‖).

In the following theorem, we consider the iterate wk at which the terminating condition
(4.34) is satisfied. Thus, a new barrier parameter µk+1 is taken for generating dk

w. We prove
that the full step dk

w will be accepted if wk sufficiently close to w∗, µk is sufficiently small and
parameters µk+1, εµk

, ηk, and ξ are selected elaborately.

Theorem 6.5 Suppose that Assumption 6.1 holds, ‖rk‖ − ‖rk + RT
k dk

p‖ ≥ ηk‖rk‖(0 < ηk ≤
1). If wk is sufficiently close to w∗, µk is sufficiently small, ‖(rk

d , rk
c − µke, r

k
g , rk

h)‖∞ ≤ εµk
,

‖(Bk −∇2L(x∗, u∗, v∗))dk
x‖ = o(‖dk

x‖),
[(µk + εµk

)2 + (1− ηk)εµk
]/µk+1 → 0, (6.16)

and

lim sup (µk + εµk
)/µk+1 < 1/ξ, (6.17)

then yk + dk
y ≥ ξyk for all sufficiently large k, where rk

d , rk
c , rk

g , rk
h are defined in (4.34), ξ is

defined in Algorithm 3.1.

Proof. The inequality ‖(rk
d , rk

c−µke, r
k
g , rk

h)‖∞ ≤ εµk
implies that ‖Fµk

(wk)‖ ≤ √
n + 2mI + mEεµk

and ‖rk‖ ≤ √
mI + mEεµk

.

For every i, if u∗i > 0, then by Assumption 6.1 y∗i = 0. Thus,

yk
i = yk

i − y∗i ≤ ‖wk − w∗‖ ≤ ‖wk − w∗(µk)‖+ ‖w∗(µk)− w∗‖ ≤ M3εµk
+ M̄µk, (6.18)

where M3 = 2M
√

n + 2mI + mE . Since

uk
i (y

k
i + (dk

y)i) = µk+1 − yk
i (dk

u)i, (6.19)

and, by (6.11),

‖dk
w‖ ≤ 2M2M̂(‖wk − w∗(µk)‖) + M2(‖rk

Jk
+ RT

Jk
dk

p‖)
≤ (2M2M̂M3 + M2

√
mI + mE(1− ηk))εµk

, (6.20)

we have

[yk
i + (dk

y)i]/yk
i = [µk+1 − yk

i (dk
u)i]/(yk

i uk
i )

≥ [µk+1 − (M3εµk
+ M̄µk)‖dk

w‖]/(yk
i uk

i ) (6.21)

≥ [µk+1 −M4((εµk
+ µk)2 + (1− ηk)εµk

)]/(yk
i uk

i )

≥ (µk+1/(yk
i uk

i ))[1−M4((εµk
+ µk)2 + (1− ηk)εµk

)/µk+1],
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where M4 = max{2M2M̂M3,M2
√

mI + mE}max(M3, M̄). The last inequality follows from the
fact that εµk

and µk are sufficiently small.

Because ‖rk
c − µke‖∞ ≤ εµk

, we have yk
i uk

i ≤ µk + εµk
. Then it follows from (6.21), (6.16)

and (6.17) that yk
i + (dk

y)i ≥ ξyk
i for all sufficiently large k.

If, for some index i, u∗i = 0, then by Assumption 6.1 y∗i > 0. Since

yk
i + (dk

y)i ≥ y∗i − |yk
i + (dk

y)i − y∗i |
≥ y∗i − ‖w∗ − w∗(µk)‖ − ‖wk + dk

w − w∗(µk)‖, (6.22)

and

‖wk + dk
w − w∗(µk)‖

≤ ‖wk + d̄k
w − w∗(µk)‖+ ‖dk

w − d̄k
w‖ (6.23)

≤ ML‖wk − w∗(µk)‖2 + MM0(‖wk − w∗(µk)‖+ M̄µk)(2M2M̂‖wk − w∗(µk)‖
+M2(1− ηk)‖rk‖) + o(‖wk − w∗(µk)‖+ (1− ηk)‖rk‖) + M(1− ηk)‖rk‖,

for sufficiently small µk and εµk
and for wk sufficiently close to w∗, we can have

‖w∗ − w∗(µk)‖+ ‖wk + dk
w − w∗(µk)‖ ≤ (1− ξ)y∗i (6.24)

for sufficiently large k. Thus, for every i = 1, . . . , mI , we have yk
i + (dk

y)i ≥ ξyk
i for sufficiently

large k.

7. Conclusion

Using subspace techniques to improve the robustness of line search interior-point methods
of nonlinearly constrained optimization is not a new methodology. It has firstly made success in
trust region interior-point methods proposed by Byrd, Gilbert and Nocedal [3]. A kind of robust
line search interior-point methods are then presented in Liu and Sun [20, 21]. Numerical results
in Byrd, Hribar and Nocedal [4], Liu and Sun [20, 21] have illustrated that these methods
are robust and efficient in solving some hard problems, including some simple but eccentric
problems presented and discussed by Burke and Han [2], Byrd, Marazzi and Nocedal [6], Hock
and Schittkowski [18], Wächter and Biegler [30], and problems from the collection MacMPEC
of mathematical programs with equilibrium constraints [19, 23].

There are some restrictions on line search interior-point methods in [20, 21], however, which
are undesirable and may circumscribe the applications of these methods. The method in [20]
generates a weighted Newton step and a weighted Cauchy step in each iteration. The existence
of these steps closely depends on the positive definiteness of the approximate Hessian. Although
[21] does not clearly show how to calculate the range-space steps, its global convergence analysis
is based on assumptions on the exact solution of problem (2.1), the positive definiteness of the
approximate Hessian and that gradients of equality constraints are of full rank in all iterations.
We get rid of all these limitations in this paper, and prove that the algorithm has strong global
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convergence properties under some much general conditions on range-space steps and approx-
imate Hessian. Recently, using a different approach, Chen and Goldfarb [7] have shown that
their method has similar strong global convergence properties.

Additionally, following the approaches proposed by Byrd, Liu and Nocedal [5] and using
some results of Yamashita and Yabe [34], it is proved that by suitably controlling the exactness
of range-space steps, selecting the barrier parameter and Hessian approximation, our algorithm
generates a superlinearly or quadratically convergent step. The conditions on guaranteeing the
positiveness of slack variable vector for a full step are also presented.

Acknowledgements. We thank the associate editor and two referees for their valuable comments and
suggestions on an earlier version of the paper.
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