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This paper discusses some properties of trust region algorithms for nonsmooth optimization
The problem is expressed as the minimization of a function h(f(x)), where h{-)1is convex and
f is a continuously differentiable mapping from R" to R™ Bounds for the second order derivative
approximation matrices are discussed. It is shown that Powell's [7, 8] results hold for nonsmooth
oplimization
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1. Intyvoduction

Many papers have been published on trust region algorithms, but most attention
has been given to the smooth case, for example see Fletcher [2], More [5], Powell
(6,7, 8], Sorensen [12], Steihaug [13] and Toint [14]. Trust region algorithms for
nonsmooth optimization are studied by Fletcher ({1, 3, 41, and Powell [9]. The problem
we want to solve is )

min F(x)Eh{f(x)), (r.n

vem"

where h(-) is a convex function defined on R" and is bounded below: f(x)=
(F1(x), falx), o, fn(x))T is @ map from R" to R™ and fix)(i=1,..., m) are all
continuously differentiable functions on R".

The trust region algorithms are iterative, and an initial point x;€R" should be
given. The methods generate a sequence of points x, (k=1,2,.. .} in the following
way. At the beginning of kth iteration, X;, A, and B, are available, where A, >01s
a step-bound and B, is a n X n real symmetric matrix. Let d, be a solution of

min ¢, (d) = h(f(x)+V'f(x)d)+3d " B.d (1.2)
subject to

ldil =< A (1.3)
Here || - | may be any norm in R” space. Since any two norms in a Euclidean spac¢

are equivalent, without loss of generality throughout this paper we assume that -1
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is || -[l2. Let

x.+d. if F{x,)> F{x.+d
.kam{xk k1 {xi) (% i)s (14)

X otherwise.

It is noted that our choice of x.., is different from Powell’s [9] Because our
condition for letting x,., = x; + d, is weaker, our algorithms let x,., = X, + d, more
often, so we have the desirable property of accepting any trial vector of variables
that reduces the objective function.

Let Ay, satisfy

ld|| < Ay <min{c, 4, 4} (1.5)
if

F(x) = F(Xer1) = [ F(x) = du(di)], (1.6)
otherwisé let

Cillde |l = Bisr = €4y, (17)

where ¢; (i=1,2, 3, 4) are positive constants satisfying ¢, =1, ¢, <1 and ;= ¢, <1,
and wheie 4 is a positive constant which can be taken equal to the diameter of
D (D will be defined below) Our theoty applies to several technigues for generating
{B:}.

Fletcher [3] proves that if x, (k=1,2,.. ) areallina bounded set and if B, 1s
the Hessian of the Lagrange function at the kth iteration, then there exists an
accumulation point x* of the algorithm at which first order condition holds, which
means,

max ATVf(x*}d=0 foralldeR" ' (1.8)
Aeah* :
He also points out that the above result holds for a quasi-Newton method as long
as || Bi| is bounded above. However, for many updating methods one can easily
prove that

k
| Bl = cstes 2. 4 (1.9)
jo= 1 :

(see Powell [7]), or that
| Bilf = ¢7+ sk, - (1.10)

yet the boundedness of {| B[} is not explicit. Our main result is to show that
Fletcher’s result (1.8) holds if (1.9) or (1.10) is satisfied for all k.

- Throughout this paper we assume that {x.} (k=1,2,.. ) is bounded, which is
usually satisfied, especially when {x; h(f(x))=<h(f(x,))} is a bounded set. Hence
there exists a compact convex closed set D <R" such that x, € D for all k. Since
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h{ ) is convex and well defined, there exists a positive constant L such that

i (f)— (< Lifi £l (L1

for all f,, f-€ f(D) (Rockafellar, [10, p. 237]). By the continuity of V7f, there exists
a constant M >0 such that

IVTF(x)| <M, (1.12)
for all xe D.

2. Stationary points

For the simplification of notation, we denote
y(x:d)=h(f{x)—h(f(x)+¥Tf(x)d)},
dr,(x)=m‘?x{x(.x:d)|||d|i_<_r}, (2.1)
DF(x:d)=sup{A"V f(x)d|rx eah(f(x))},
A
where ah( f(x)) be the subgradient of h( ), evaluated at f(x). x* is calleda stationary
point of A{ f{x)} if
DF(x*:d)=0 foralldeR", (2.2
which is the same as the first order condition of Fletcher [3]. The following results

are elementary results in convex analysis (see Rockafellar {10, 113).

Lemma 2.1. (i) DF(x:d) exists for all x and d;,

{ii) x(x:') is convex, given d €R", its directional derivative in the direction d.
evaluated at d* =0, is DF(x;d);

(iii) w.(x)=0 for any r>0, and ¢, (x) =0 if and only if x is a stationary point of

h(f(x));
{(iv) ¢.(x) is concave in r;
(v} . ) is continuous for any given r=0.

By using the above results, one can prove that the condition that there exists an
accumulation point x* of the algorithm at which the first order condition holds is
equivalent to the limit

lim Elf' Y (x,)=0. (2.3
And we also have the following lemma:

Lemma 2.2

Fxc)— ‘fbk(dk)—?%df‘ak(-xk) min{l, t»t‘_‘\,.(‘xk)/”Bk [Iﬁi} (24)
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Proof. By the definition (1.2) of d,, we have

Flx)—dud)= F(x)— de(d) forall |d] < 4e (2.5)
Let ||d]| < A, satisty

U, () = F(x) = h(f(x) + Y f () de). (2.6)
Then by using the convexity of A(-), remembering that | - || is the 2-norm, we have

that for all o €{0, 1],
F(x)— du(de) = Fx) — qbk(a&k) = albdk(-xk)—%angBkgk
= a‘!’..\k(-x‘k)'“%“Bk“ﬁliaz-
Therefore

Fxp)— uldy) Boi’lfgi{adfak(xk) '"‘%“Bk”Aiaz}

= % min{y,, (x;), [4rs, (xi )]2/ || B “A%c};
which ensures (2.4}, [J

3. Bounds for B,

In this section it is shown that the result (1.8) holds if By satisfy (19), then we
establish that the result remains valid if (1.9) is replaced by (1.10}. Though the latter
result is stronger than the previous one, we still prove both, because the proofs are
different.

Theorem 3.1. If h{ f(x)) satisfies all the conditions in Section 1, if {x,}, generated by
the algorithms stated in Section 1, is in a bounded set D, and if all matrices By satisfy
(19), then (1 8) holds, or in other words, {x,} is not bounded away from stationary

points of h( f(x)).
Proof. Assume that the theorem is invalid, then there exists 8 >0, such that
i(xg)> 8 (3.1

for all k. From (iv) of Lemma 2.1, Lemma 22, the above inequality and the fact
that A, is bounded, we can show that the inequality

F(x) — éi(de) = comin{ay, 1/] B}, | (3.2)

holds for some positive constant ¢,. Let 3 denote the sum over the iterations on
which (1.6) holds. Then by the fact that A(-) is bounded below, we have

%’ [F (xi) = ¢ (di)] (3.3)
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is convergent. From (3.2) we have

>/ Ak/(cs‘*‘ Cs i Ai) (3.4)
k i=1

is convergent. By the definition of 4,, we have, due to Powell [7],
k k '
2, Ais(]""cl/(]_’frs))[ﬂl'i” Z’A.:l- (3.5)
i=1 i=1

Therefore

. ' | o\ .
v flave(igt) £ra)

is also convergent. Hence, we can show that Y . dx is convergent. Notice that by
(3.5), we have that ¥ ;_, A is finite. Consequently, || B is uniformly bounded.
Then from Fletcher's results [3], (3.1) cannot be satisfied for all k. This is a
contradiction, which shows that the theorem is true. U '

To prove that the above theorem is still true if (1.9) is replaced by (110), we
need the following lemmas.
Lemma 3.2. If {d, || <4y, then
Hdk” = %d’l(xk) min{l/ LM, 1/{1+ j)”Bk“} (3.6)

Proof. Consider the function

G (B) = duldy + Bldi —di]), 0=<B=1, (3.7)
where d, is defined in Section 1 and d, satisfies

x (s d) = (%)

and ||d, || = 1. The definition (1.2) shows that & (B) is the sum of a term that depends
on h(-) and a term that depends on B,. Using the convexity of h{-), the definition
of d,, and conditions (1.11) and (1.12), the first of these terms is bounded above
by the expression

(1= B)A(f(x)+ YV f(x)di) + Bh(f (x)+ V[ (x)dw)
= h(f(x0)+ Y F(x)d) + BIR( () — i (x) = h(f(x) + VT (i) )]
< h(f(x) + V() di )+ BL— v (i) + LM || di 1],
and the other term satisfies
\(d, + B[, — d]" Bu(dy + Bld — di]) <3d Bidy + B|| Bull | dill(1 + 4)

B LAY
+ B+ B)2
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Thus we deduce the relation

B.’Z

5(B)= $(0)+ B~ (x) + | de (LM + || Befl (1 +Z!'))]+—2- Bl (1+ 3)%,

since Ndill < A, #.(8) does not decrease initially when B is increased from zero.
Hence the coefficient of B8 in (3.7) is nonnegative, consequently

d |l = ¢ (x)/[EM + (] +4)| B}

Therefore the lemma is valid. [

It is noted that the above lemma reduces to lemma 6 of Powell’s [9] if | Bi]| are
uniformly bounded and ¢, (x,) is bounded away from zero, and it should be pointed
out that the proof of the lemma is guided by that of Powell’s lemma 6 [9].

femma 3.3. If h(f(x)) satisfies all the conditions stated in Section 1, and if (3.1)
holds for all k, then there exists a positive number ¢o such that

A= o/ M, (3.8)
for all k. where M, is defined by

Mo =max{ B} + 1 (39)

Proof. Since ¥ 'f(x) is continuous on the compact set D, there exists a >0 such
that
. , L, oy Gkl — ) ,
1f(x) = f(x") =V (xWx =X 5‘—?‘"—21—'— fix—x| (3.10)
holds for all x, x'e D such that || x—x’}} < n We prove the lemma is true when ¢q
has the value

Clo=min{A,M,, canM,, SM,/2LM, 8/2(1+ A), c,, ¢sco(1— )}

Our proof is inductive. :

By the definition of ¢;o, (3.8) holds for k=1 We assume (3.8) is true for k, and
prove it is also true for k+ 1.

If [dy|| = 9, then Ap.; = calldi]| = can = €10/ M, 50 (3.8) holds for k+1, since the
definition (3.9) indicates that M., = M, for all k. Therefore for the remainder of
the proof we assume [|difl <.

If (1.6) is satisfied, Lemma 3.2 gives

A = dill =18 min{l/ LM, 1/(1 +AYM} = o/ M= Crof My,
50 (3.7) holds for k+1. ' '
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To complete our proof, we assume ||d;}{ <, and (1.6) fails. From (3.10) and
{111), it follows that

F(x,+d) = F(x)=h(f(xe +d))— h(f(x) +VT () di) — x O di)
< L||f (xi+di) — 1 () = Vf (x) || = x (s i)
= 3¢o(1 ~ eo) | dicl] — x (xic dio)-
Remembering that (1.6) fails, from the above inequality we can show that
(1—co)[5eslldi || = x (xis di)1= 36, Bedh. (3.11)
By addi.ng (3.11) and (1 —¢,) times (3.2) and using (1.2) and (2.1), we deduce
1de 1”1l Bell = co(1 = ) min{||di |, 2/ | Be || = | dicl}-

If ||del|=2/||Bi]l - | di]l then ||dill=1/]B], otherwise |diil*| Bill= o1~ ca)fldif
Hence ||dii|=min{l, co(1 —c;)}/ M.  Consequently Ao = clldi]| = cro/ My =
10/ Mis, This shows (3.8) holds for k-+1 By induction, our lemma is true. []

From this lemma, we have the following result, which and whose proof are due
to Powell [8].

Iemma 3.4 (Powell, 1982) Let.{Ak} and {M,} be two sequences such that A, =
1o/ My >0 for all k, where ¢,,>> 0 is a positive constant. Let I be a subset of {1,2, .}
Assume

Ak-f']éC]Ak, kE la

A S cdy, kgl

M, =M, forallk, S min(4,, 1/ M) <o,
1

where ¢,> 1, ¢, <1 are positive constants. Then the sum

> /M, <.
k=1

Proof. Let p be a positive integer such that c,c?”! 1. Denote L, =1n{1,2,.. ,k}
and g(k) be the number of the elements of /. Let J={k; k=pq(k)} and =T
{1,2,..., k}. Since M, does not decrease as k increases, we have that (for details,
see Powell [8])

gl/MkSPIZ 1/ M,

which shows that )., 1/ M, is finite. By the definition of J, we have the inequality

. ¢ g{k--1) A c q(k)
— —1)— — k— 1 1 1 k
C}O/MkSAkSAIC?(k I)Cg,k D-alk ])=A164 l("" :E';'_(——) Ca
. Cs Ca \C4

:% (c,c2H*? forallke ],
4




Y. Yuan / Trust region algorithms/ nonsmooth optimization 227

which shows that the sum Y., , 1/ M, is also finite. This completes the proof. [
From the above lerhmas, it can be shown that
Theorem 3.5. Theorem 3.1 still holds if (1.9) is replaced by (1.10).

Proof. If the theorem is not true, then (3.1} holds for some &> 0, consequently (3.2)
and (3.3) hold. Let [ be the set of those k such that (1.6) holds. Then from (3 2),
(33), Lemma 3.3 and 3 4, it follows that '

> I/ M, <0,
Kot

which contradicts (1.10). Therefore the theorem is true. []

4. Discussions

The main interest of this paper is investigating bounds on B, to ensure global
convergence (Fletcher [3]). Global convergence result holds if the sum

2 1/ M,
k=1

is infinite, where M, is defined by (3 9), and the condition could not be strengthened
(see Powell [8]). Hence our results are a generalization of Powell’s results [3].

It would be interesting to investigate relations between the boundedness of || Byl
and convergence of the algorithms, since one might ask whether or not the bounded-
ness of || By| is a technical step towards the more interesting result of superlinear
convergence. But, one can easily show that the boundedness of || By | is not necessary
for convergence (not even for superlinear convergence). However, the superlinear
convergence ensures that |d§Bidy|/ || di|” is bounded (see Powell [9]).

Updating schemes for the matrices B, can be obtained by applying updating
formulas for smooth optimization (see [7] for example]. The only change we need
to make is replacing the gradient of the objective function by that of the approximate
Lagrange function. If the approximate Lagrangian multipliers are sufficiently accu-
rate, { B;} can be updated such that (1.9) holds, and a fast rate of convergence is
expected. However, due to the Maratos effect, it seems that a general superlinear
convergence result cannot be proved for nonsmooth A{-) without other additional
conditions. Yuan [15] gives examples of only lineatly convergence of trust region
algorithms for nonsmooth optimization, and the author believes that second order
information should be considered to construct superlinear convergence algorithms.
Second order algorithms have been studied by Fletcher [4] and Yuan [16], and the
author thinks Fletcher’s conjecture [4] that his second order algorithm [4] ensures
supetlinear convergence is true.
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