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We study a subproblem that arises in some trust region algorithms for equality constrained
optimization It is the minimization of a general quadratic function with two special quadratic
constraiots. Properties of such subproblems are given. It is proved that the Hessian of the
Lagrangian has at most one negative eigenvalue, and an example is presented to show that the
Hessian may have a negative eigenvalue when one constraint is inactive at the solution.
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1. Imtroduction

In this paper, we study a subproblem that arises in some trust region algorithms
for equality constrained optimization. It has the form

gnLr;, g'd+id"Bd (1.1)
subject to

ldll.= 4, (1.2)

[ATd +cf;< ¢ (1.3)

where geR”, BER"™", AcR"™", ceR"”, A>0, £=0 and B is a symmetric matrix.
Problem (1.1)-(1.3) appears in some trust region algorithms for constrained opti-
mization where the original problem is to minimize a general nonlinear function
F(x) subject to c(x)={(c,(x),..., ¢m(x))T=0. At the kth iteration, an estimate
x; is known, a subproblem is constructed by using a quadratic approximation of
F{x,+d)} and a linear approximation of c¢(x; +d). That is,

min dVF(x)+id"Bid =~ F(x,+d)— F(x.) (1.4)
subject to

le(x)+d Velx)ll, =< &, (1.5)
and a trust region condition

ld]lo= Ak (1.6)
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A >0, & =0 and B, symmetric are updated every iteration. It can be seen that
the subproblem (1.4)-(1.6) has the form of (1.1)-(1.3). More details about trust
region algorithms for constrained optimization can be found in Celis, Dennis and
Tapia (1985) and Powell and Yuan (1986). Usually the parameter ¢ in (1.3) satisfies
2= €= €= mi Ald+c 17

lell:> £ émin= min | cll> (17)

and £=|c|, only if &.;,=c|l>. One can easily see that (1 2)-(1.3) has no feasible
solutionif ¢ < £.;, . The condition ¢ =< ||¢|, is not used in the paper, but this restriction
is motivated from the fact that & < | ¢(x, )l in (1.5) as it is desirable to reduce the

linearized constraint violation.
In the case when &= £, it is easy to deduce from the strict convexity of (1.2)

that either there is only one feasible solution of (1.2)-(1.3) or that

£ fmin =i | A"d +c]l. (18)

The case when there is only one feasible solution of (1.2)-(1.3) requires no further
consideration, since this feasible solution must be the solution of the problem
(1.1)-{1.3). Now assume that (1.8) holds. By the definition of £, in (1.7), we have

that
[(AT) ell, < 4, (1.9)

where ( ).+ represents the minimum norm pseudo-inverse, and that condition (1.3)
defines A'd uniquely. By changing variables, we can see that (1.1)-(1.3) is equivalent
to the following problem:

min g - (AN c+d]+ - (AN c+d]"B[— (AT c+d] (1.10)
subject to

A'd =0, (1.11)

ldll,<vVa?= (A7) ¢]3. (1.12)

Now solutions to (1.11) have the form |
d=(I-(AT)"ADd, (1.13)
where d is unconstrained, and (1.13) implies not only that lld|.<|d], but also that

any d of this form can be generated from a d satisfying ||d||,=|d |, Therefore
problem (1.10)-(1.12) is equivalent to

min(g -~ B(AT) )'"(I-(A")*A")d
+3d (I -(AN*'ANYB(I - (ATY*AT)d (1.14)
subject to

Id,<va?-|(AT) |3 (1.15)
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This problem is to minimize a quadratic function within a trust region ball, which
can be solved by known methods; for example, see Gay {1981) and Moré and

Sorensen (1983).
Therefore in this paper, we concentrate our attention on the case when

£> Emin-
In the next section we give some properties of the problem, mainly considering the
signs of eigenvalues of the Hessian of the Lagrangian function at a solution. Our
main result is that the Hessian of the Lagrangian has at most one negative eigenvalue
if the Lagrangian multipliers are unique. We also show by examples that the Hessian
may have one negative eigenvalue when only one constraint is active at the solution
and it may have more than one negative eigenvalue if the Lagrangian multipliers
are not unique. A short discussion is given in Section 3.

(1.16)

2. Properties of the problem

In this section we consider the optimality conditions of the problem (1.1)-(1 3).
Qur main result is as follows:

Theorem 2.1. Let d* be a global solution of the problem (1.1)-(1.3). Assume that
(1.16) holds. Then there exist non-negative constants A, p such that

(B+ AT+ uAATYd* = —(g+ pAc), (2.1)
where A and u satisfy the complementarity conditions

A{A—|ld*[2) =0, (2.2)

p(g—fATd*+ c|;)=0. (2.3)

Furthermore the matrix -
H(A, u)= B+ Al +pAAT (2.4)

has at most one negative eigenvalue if the multipliers A and p are unique.

Proof. Due to (1.16), the feasible region of (1.2)-(1.3) is convex and has a nonempty
interior, thus the Slater constraint qualification is satisfied. Hence the existence of
non-negative numbers A and p such that (2.1)}-(2.3) hold is a straightforward
application of the Kuhn-Tucker theory of constrained optimization. To complete
the proof, we need to prove that the matrix H(A, ) has no more than one negative
eigenvalue if the multipliers A, p are unique,

First we consider the case when both constraints (1.2) and (1.3) are inactive at
the solution, that is, [|d*].<A4 and [[ATd*+ ][, <& Then d* is a local minimum
of the objective function in (1.1), so B is positive semi-definite, and the theorem is

true.
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In the case when just one of the constraints is active, the multiplier of the inactive
constraint is zero, and the other multiplier is defined uniquely by (2.1). One can
also show that the matrix H(A, ) has at most one negative eigenvalue, by applying
a second order necessary condition (for example, see Fletcher, 1981, Theorem 9.3.1}.
We give a constructive proof below, however, since this approach provides a
technique for proving the theorem when both constraints are active. Assuming the

first constraint is active, that is [|[d*[|l,=4 and [|ATd*+c[.<§ we define the set

G(d*)={d|||d|,=1; l|d*+d|l;= 4; |AT(d*+d) +c.< &b (2.5)
The function

f(dy=g'd+3d"Bd+3\d'd, deR", (2.6)
is stationary at d =d*, where A is the Lagrange multiplier of the active constraint
at d*, and the definition of the problem implies f(d*+d) = f(d*) for all d in (2.5).
It follows that

dY(B+Al)d=0 (2.7)
for all d € G(d*). Consider any non-zero vector d such that d"d*=0and [|d|,=1
Since fATd*+¢|,< & and [|[d*|,= 4, there exists &> 0 such that

IAT((d*+6d)/||d*+od|)A+cll. <€ (2.8)
for all 0= 0 =& Thus the last condition of (2.5) holds if

d=((d*+6d)/|d*+6d|,)8 —d*=v(d*, 0), (2.9)
say, and we see that [[d*+d|;= A too. Hence we have that

o(d*, 0)/[|v(d*, 8]l € G(d*). (2.10)

Further, ||d*+ 6d|l,= 4 +0(8?) because d'd*=0 and |d*|l,= A. Therefore the
definition (2.9) implies that v(d*, 6) = gd + 0(6%), which shows the limit

lim(v(d*, 0)/[lo(d*, 0).)=4d (2.11)

Relations (2.7), (2.10) and (2.11) imply the inequality

d"H(A,0)d=0 (2.12)
for all d such that d'd*=0. Thus the Hessian has at most one negative eigenvalue.
Similarly, one can show that H(0, »} has at most one negative eigenvalueif fd*[,<4

and |[ATd*+c|,=&
To complete our proof, we consider now the case when both constraints are

active, that is

Hd*|[;=4 (2.13)
and

fATd*+clla=¢ (2.14)
Define the set

A(d*)={d||d*+d|,=4, |AT(d*+d)+cf,=¢} (2.15)
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Since d* is a global solution to the problem (1.1)-(1.3), the function
@D, (d)=g'd+3d"Bd +ird"d+3u||ATd+c|3 (2.16)

is stationary at d = d*, where A and u are the Lagrange multipliers at d*. Further,
because &, ,(d*+d)= P, ,(d*) for all d e A(d™), it follows that

d TH(A, nw)d=0, deA(d*), (2.17)
where H(A, i) is the matrix (2.4). Define the vector
y*=A(ATd*+¢). (2.18)

QOur assumption that A and g are unique in (2.1) ensures that d* and y* are linearly
independent. For any vector d,€R" satisfying [|d,|,=1,

did*=0 and d|y*=0, (2.19)
there exist vectors 4, (i=2,3,..., n—2) such that

did =85,

did*=0 and d]y*=0, i=1,2, ..,n—2. (2.20)

Lj=1,2,...,n=2,

Now consider the system
fd*+dl,=4, AN (d*+d)+c|,=¢
: o - o
d,d=t, d;id=0, i=2,3,...,n—2,

for sufficiently small +> 0. By the implicit function theorem, (2.21) has a unique
9sotution

d(t)=(J*)" +o(1t) (2.22)

O -, OO

0
for sufficiently small + >0, where J* is the Jacobian matrix of (2.21) at d =0 We
see that

(N7 =lw, 0%, d,, .., d, ) (223)
where u*, v*¥espan(d*, y*), and it follows from (2.22) and (2.23) that
lim (d(0)/[|d(0)]]2) = d,. (2:24)

Hence, since d(t)e A(d*), we deduce from (2.17) that |
diH(A p)d, =0. (2.25)
The freedom in the choice of d, shows that (2.17) holds for all d satisfying
d'd*=0 and dTy*=0. | (2.26)
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Ifthe matrix H(A, ) had two negative eigenvalues, there would exist two orthogonal
unit vectors e,, e, R” such that

dTH(A, p)d <0 . (2.27)

for all non-zero vectors d in the subspace span(e,, e,). Therefore, because (2.26)
implies (2.17), the system

(e, +Pe) d*=0, (oe,+Be) y*=0, a’+p*#0, (228)
in a and B has no solution. Thus the matrix
T T
(5 5)
is non-singular. Now the system
Hff*+-d”2=d, |AT(d*+d)+c].=¢ d espan(e,, €}, (2.30)

represents the intersection of a circle with an ellipse in R*. If (2.30) has no non-zero
solutions, it can be easily seen that (a, 8)=(0,0) is a minimizer or maximizer of
the function [AT[d*+ (ae,+Be)]+c],—¢ in « and B subject to [d*+
(ae, + Bey)), = 4, which implies (e]y* e;y*)=7(e]d* e;d*) for some 7€R. This
contradicts the nonsingularity of (2.29). Hence (2.30) has a nonzero solution, say
d 1t follows from (2.27) that '

@, (d*+d)=D, (d*)+id " H(A, p)d < &, ,.(d%), (231)

which contradicts the fact that d* is the minimum of @, ,(d) subject to (2.13) and
(2.14). This contradiction proves that H(A, s) has at most one negative eigen-

value. O

We have noted that the matrix H(A, i) is positive semidefinite if both constraints
are inactive. However the result for the case when only one constraint is inactive
seems too pessimistic, because one might guess that the matrix H(A, u) is also
positive semidefinite if either [d][, <4 or JJATd*+ ¢, < ¢ because it is well known
that the matrix B+ AT is positive semi-definite if d* is a global solution to problem
(1.1)-(1.2) (for example, see Gay, 1981). However, Lemma 2.2 shows that this view
1s incorrect.

One can easily see that A and g are unique if at most one constraint is active at
the solution or d* and A(A"d*+ c¢) are linearly independent when two constraints
are active. Hence, A and p are not unique if and only if both constraints are active
and d* and A(A"d*+¢) are linearly dependent. The following lemma shows that
the matrix H(A, ) defined in (2.4) may have more than one eigenvalue if A and
J4 are not unique.

Lemma 2.2. The matrix H(A, ) may have a negative eigenvalue when one of the
constraints is inactive, and it may have more than one negative eigenvalue if d* and
A(ATd*+¢) are linearly dependent.
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Proof. First we consider the following example: n=m=2, A=2, £=1 and

g=(§), B=("§ (2)) A=], c=(_§).. (232)

Then, because the second component of d* must be zero, it is easy to show that

. (2
d _(0) . (2.33)

is the unique global solution to (1.1)-(1.3). One can verify that A*=1, x*=0 are
the multipliers, and that H(A™, u™*) 1s the matrix

-1 0

It has a negative eigenvalue, which proves the first part of the lemma.
Now we study another example: n=m=2, A=2, £=1 and

05 —1 0 —1
=), m=-r=(Ty ) a-n e=(7) e

One can show that the unique global solution to (1.1)~(1.3) is

s {2
d -(0), (2.36)

and that the Lagrange multipliers are A, u =0 satisfying 2A + g =1.5. Hence the
choice A =3 and u =0 gives H(A, u)=--0.251, which has two negative eigenvalues.

This completes our proof. O

Next we consider the case when the multipliers A and p are not unique. We need
the following lemma.

Lemma 2.3, Let C, DeR"*" be two symmetric matrices and let A and B be two closed
sets in R” such that

AuB=R" (237)
If we have
x"Cx=0, xeA, x"Dx=0, xeB, (2.38)

then there exists a t &[0, 1] such thar the matrix

tiC+(1-0)D (2.39)
is positive semidefinite.
Proof. The lemma is trivial if either A or B is empty. Hence we assume that A and

B are nonempty sets. Without loss of generality, due to (2.38), we can also assume
that —-~A=A and -B=8B.
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Let v(?) be the least eigenvalue of the matrix (2.39). If v(¢) =0 for some t€[0, 1],
the lemma is true. Therefore we assume that

v(1) <0 (2:-40)
for all t€[0, 1]. Define the set
S()y={x|x"(1C+(1-)D)x=v(t)}n T (2.41)

where I” = {x] ||x}|,= 1}. By the definition of v(t), S(#) is an intersection of a subspace
and the unit ball I Further, S(1) is non-empty for all &[0, 1] and because S(t) is
closed one can show that

S(r) Ql;m S(f,)E {xlx=}\1m X, Xi € S(f;\), I:EIm {A} (242)
= L~ OO ™ *]

It should bé pointed out that this definition of the limit of sets is not the standard
one. Inequalities (2.38) and (2 40) imply

S(0)nA#0, (2.43)
where ¢ is the empty set. Let r, be the largest number in [0, 1] such that
S(t)ynA#Q, (2.44)

which exists due to (2.42). If t, <1, the definition of ¢, relation (2.37) and the fact
that S(t) is non-empty imply

S(INnB=(S(InB)U(S(HNA)=8S(1)#0 (2.45)
for alt te(t,, 1] Hence, due to (2.42), it follows that
St )N B#¢. (2.46)

On the other hand, similar to (2.43), we can show that (2.46) is also true if f,=1.
. One can easily see that either S{t)-is-a connected set or- it consists-ef two-points, ——— _
that is S(#,)={x,, —=x,}. If 8§(1,) is connect, the relations (2.44) and (2.46) give |

S(t)NnANB#0. | (2.47)

Otherwise, because S(t,)={x,, —x,}, relation (2.44) and the assumption A=-A
imply that S(¢,) € A. Similarly, S(t,) < B. Hence (2.47) holds. Now (2.47) contradicts
(2.38) because of the inequality (2.40). Therefore the lemma is true. [

This lemma is used in the proof of the following result.

Theorem 2.4. Assume that the conditions of Theorem 2.1 hold, then there exists
(A, ) € 2 such that the matrix (2.4) has at most one negative eigenvalue, where 0 is
the set of Lagrangian multipliers.

Proof. Assume that d* is a global solution of (1.1)-(1.3). If the Lagrangian multi-
pliers are unique, 2 has only one element and the theorem is true by Theorem 2.1.
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In the case when the multipliers are not unique, it can be easily seen that both
constraints are active at the solution and d* and y*=A(ATd*+c) are linearly
dependent. Due to inequality (1.16), the feasible region (1.2)-(1.3) contains some
interior points, so there exists a positive number @ such that

y* =wd* (2.48)
It follows from the Kuhn-Tucker condition (2.1} and the non-negativity of A and
u that there exists a nonnegative number ¢ such that

—(g+ Bd*)=yd*. ' (2.49)
For > 0, define the sets |

AN ={d|||d*+d],=4; fa"(d*+1d) +cl,< & [d]=1}, (

v _ 2.50)

B(t)={d||d*+d],=<4; |[A"(d*+d)+cl.= & [d:=1}
and let

lim A(t) = A, lim B(t)= B, _ (2.51}

10, =0,

where the limits are defined by (2.42). It can be seen that A and B are closed sets.
Using (2 .48), one can show that '

AuB={d|d"d*=0; |d|,=1}. (2.52)
Because d* is a solution to (1.1)-(1.3), d =0 is a minimum of the function

gt (d*+td)+d*+d) (B+yl)(d*+id), d e A(1). (2.53)
It follows from (2.49) that d (B + ¢ )d is nonnegative for all d € A(1), which implies

d"(B+yl)d=0, deA. (2.54)
Similarly, one can show that

dT(B+(y/w)AAT)d =0, deB. (2.55)

Applying Lemma 2.3 in the linear subspace {d| d"d* =0} we deduce that there
exists a number t€[0, 1] such that

dT(B+ I +(1— )¢/ w)AA")d =0, (2.56)

for all d such that d*d*=0. Thus the matrix H(nf, (1 —1)}¢/w) has at most one
negative eigenvalue, 1 and (1--1)/w being Lagrange multipliers. This completes
our proof. [

We also have the following sufficient condition for problem (1.1)-(1.3).

Theorem 2.5. If d* is a feasible point of (1.2)-(1.3), if there are two multipliers A,
w =0 such that (2.1)-(2.3) hold, and if the matrix (2.4) is positive semi-definite, then
d* is a global solution of the problem (1.1)-(1.3).
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Proof. If d* is not a global solution, there exists a feasible vector d such that
g'd+id"Bd <g'd*+4d*"Bd*. ' (2.57)

Moreover, because H(A, n) is positive semi-definite, d* is a global minimizer of
the function (2.16). Therefore we have

Ald3+uATd+cl3> Alld*3+ n|ATd* +c]l3, (2.58)
which, due to (2.2) and (2.3), implies
A3~ A%+ (AT + |3~ £)>0. (2.59)

However this contradicts the feasibility of d and the nonnegativity of A and .
Therefore the theorem is true. [

3. Discussion

It is shown that the Hessian of the Lagrangian at the solution has at most one
negative eigenvalue. Unfortunately, the Hessian may have a negative eigenvalue
even if only one constraint is active at the solution and it may even have two negative
eigenvalues if the gradients of both active constraints are linearly dependent.

We are now studying the problem of constructing an algorithm for solving
(1.1)-(1.3). If the matrix B is positive definite, for any A, p =0 one can always
define d(A, )} such that (2.1) holds, that is

d(A, w)=—H(A n) (g+pAc). - (3.1)
Then it is sufficient to solve the system

AT~ d(, w3 =0,  w(&—[|ATd(A, u)+c]3) =0, (32)
subject to d(A, u) beiﬁg a feasible poiﬁt of (1..2)—(1‘.3j-, ihat is

A= |ld, w3=0,  E£-[|ATd(A, p)+cli=0. (3.3)

An initial guess A =y =0 satisfies (3.2) but not (3.3) if d(0,0)= -~B7'g is not a
solution to (1.1)-(1.3). We have tried an algorithm that is based on Newton’s method
for solving (3.2) subject to the condition (3.3). Numerical results show that the
algorithm performs reasonably well. However more work is needed to analyze the
convergence properties of the algorithm. In the case when B has negative eigenvalues,
trying to solve problem (2.1)-(2.3) by considering problem (3.1)-(3.3) may have
difficulties, since the matrix H(A, &) may be singular. Another possible way for
solving (2.1)-(2.3) is that for any feasible point d of (1.2)-(1.3), we let (A(d), u(d})
be a least squares solution of (2.1)-(2.3) subject to A =0, =0, Then at each
iteration, we update d such that the residual of (2.1)-(2.3) (with A =A(d) and
= u(d)) decreases (for example, Newton’s step may be suitable) and such that
the new d also satisfies (1.2)-(1.3).
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