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1. Inirodaction

We consider the equality constrained problem
minimize f{x) xeR’, | (1.1)
subjectte  h(x)=0, i=12,....m (1.2).

We suppose that f{x} and R{x){i=1,2,..., m)are continuously differentiable and
that the constraints gradients are linearly independent (but continuous third deriva-
tives are assumed in the theoretical analysis}, We employ the following notation:

clx)= (R (x), ..., . (x)T {1.3:;}
CA(x}= Vie(x)) = {Vh{x), ..., V&, (X)) {1.3b)
g(x) =Vf(x). (1.3¢)

We also use o for e(x), A,y for A(x; ), etc.
Given an estimate of the solution x,, many sequentia! quadratic programming
methods for solving {1.1)-{1.2) obtain a search direction d, by solving the following

subproblem:
minimize g;d+id Bd deR", ' : (1.4)

subject to ¢, FALd =0, {1.5)
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- where B, 13 an n X n symmetric matrix. The next iterate has the form

Xpe, =X+ ﬂkdk-r

where « > 0 is a step [ength and «, depends on a line search technique. For more
details see e.g. Bertsekas (1982), Biggs (1978, 1983}, Powell {1978 1983), Powell
and Yuan {1986a) and Schittkowski (1981, 1983).

In this paper, we consider a trust region zlgarithm for selving the constrained
optimization problem (1.1)-(1.2). Trust region algorithms, like line search methads,
are ierative. At every iteration, a trial step is caleulated, and some kind of test is
made to decide whether it should be accepted. Trust region algorithms for uncon-
strained optimization have been discussed by many authors, including Fletcher
{1987}, Gay (1981}, Moré (1983), Powell (1975), Scrensen (1982} and Yuan (1585).
They have also been applied recently to equality constrained optimization calcula-
tions by Byrd, Schnabel and Shuitz (1985) and by Vardi {1985}, using a nondifferenti-
able exact penalty function to force global convergence. However we will employ
a differentiable penaity function.

Trust region algonthms require the length of each trial step to be bounded by a
positive parameter that is chosen automatically. We let d, satisfy the inequality

& 1]:= . (1.7}

where A, > ( is the trust region bound at the kth iteration. One difficulty when using
a trust regton technique is that the trust region restriction {1.7) and the linearized
constraint {1.5) may be inconsistent, that is the equation {1.5) may have no solution
within the trust region. Our way of overcoming this difficuity is the ane proposed
by Celis Dennis and Tapia (1985}, namely to replace equation {1.5) by the condition
lex + Aldfs= ¢, where £, is 2 number between the bounds :

Eir'j]zzﬁnd-‘!lici.—i_ Ard| =g < e, (18)
Lhe lower bound ensures that the constraints on 4 are consistent, and the upper
bound is satisfied as a strict inequality unless | ¢, ||; = 0 in order to help the correction
of constraint violations. Celis et 2al. choose {;. by taking a Cauchy step from d =0
for the function {{lc.+Aidji3: deR"}, but we prefer ¢, to be the least value of
e + AZd]|; subject to Jdll,< b4, for some be[by, b,], where b, and b, are pre-
assigned constants that satisfy 0<b,= b, < 1. Our choice of {; IS zerg on more
iterations whea ill-conditioning makes the Cauchy step shart, and in béth cases the
restrictions on d allow some freedom which is used automaticaliy to reduce the
quadratic objective function (1.4).

The main aim of this paper is to extend the results in Powell and Yuan {1986a)
from line searches to trust regions because there seem to be some advantages in
aigorithms that use exact differentiable penalty functions to force convergence from
poor starting approximations. Specifically, one avoids some difficulties due to first
derivative discontinuities, the best known one being the “Maratos effect” (see Powell
(1983} for example}. Line searches can also cause severe inefficiencies when the

(1.6}
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current vector of variables is far from the reguired solution ( Powell (1983)). Further, .
trust region techniques avoid the need for By to be positive definite on the null
space of AY which occurs 1n iine search algerithms. There is some discussion of

these questions in Section 3.

Our algorithm {except for the updating of B,) is specified in the next section,
some giobal convergence properties are proved in Section 3, and a local superlinear
convergence result iz established in Section 4. Some implementation questions are
considered in Section 5, in particufar the calculation on each iteration of the trial
change to the current vector of variables. The ments of trust region methods and
differentiable exact penalty functions are considered 100 This discussion motivates
the given convergence analysis, because it does seem to be worthwhile to try to
combine the use of a differentiable exact penaliy function with trust vegion technigues
without the calculation of second derivatives.

2. The algorithm

As mentioned in the previous section, trust region algorithms are iterative. In order
1o begin our calculation, an initial point x,, an nXn symmetric B, and a trust Tegion

hound 4, are required,
At the kth iteration, if x; does not satisfy the Kuhn-Tucker conditions, we calculate

a trial step by solving the subproblem
minimize gid +i47B,d, deR’, (2.1
subjectto  fe+AMdl<g and [df<4s | (2.2)
where {£; is any number satisfyiné the inequalities

min He+Ardf. <4< min e+ Aid 2. (2.3)

[ llz=5 8y 4|2 = b2 A

and where b, and b, are two given constants that satisfy D< by,=by<<l. To test
whether we should accept our trial step, d, say. we use Fletcher's differentiable

exact penalty function
6 (x) = f(x) = A () e(x) + e, (2.4)

where. for each xR, A(x) cR™ minimizes the sum of squares of residuals of the
K uhn-Tucker conditions

g(x) — A{x)Al3. AeRT, (2.5}
and where o, > 0 is a penalty parameter. We let D, be the "-predicted change "
D, = (g~ Aki)'ds +3d TBide
_[A (e d) — AT (e AR ) ol ALd N2~ iz, (2.6)
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in ¢.(x) where o, is chosen so that D, <0 and where d, is the orthogonal projection
of d;. into the null space of Af. Then we calculate the ratio

¢y (2, + i} = (X ) .
Iy = {2.7)
D,
of the actual change to the predicted change in ¢, (x}. Our method sets the next
iterate x.., to x +d, if 7, > 0; otherwise X.,=X,. The choice of the wext trust
region bound A, depends on 4;, [|di[; and 7, An nXn symmetric matrix By,
is defined and this completes the kth iteration.

The presence of the terms 3,: and 1A1d, in the definition (2.6} deserves some
comment. The vector Jk accurs because our condition on the matrices {By: k=
1.2,3. ...} for superlinear convergence is not that the ratio [|(8, ~ W*)d, |/ || e[| 2
tends 1o zero as k-0, where W* is the final second derivative matrix of the
Lagrangian function: it is the weaker condition that ]vk{Bk — WHid,|/ i), tends
to zero, where ¢, is any normalized vector such that Alp, =0. Thus, the use of d,
can provide Q-superlinear convergence as shown in Section 4. The term (e, +141d,)
is just an estimate of the constraint vector at the mid-point of the line segment from
x, to x, + d,, which is alse important to the analysis of Section 4. Both d, and D,
would be zero only if they were calculated at a Kuhn-Tucker point x,, but in this
case termination would occur first at the beginning of the iteration.

A formal description of our algorithm. including some more details that are
lmportant to convergence, is as follows:

Step 0. x;eR", BieR™™, A >0, and 0 < by< b, <1 are given. Choose ¢,> 0 and

small £ > 0. Set k=1. |
Step 1. I ||eeflz ¥ g — Asrpll2 = € then stop. Otherwise solve the problem (2.1)-

v2.3) which gives d,.
Step 2. Calculate D, by formula (2 6). If the inequality

Dy <o (o + ATd - ha 3 " (2.8)

fails then increase o, to the value

i EDulj
or = 25°1d+max{ } (2.9)
"lledi-lles ‘*‘ATdkuz
which ensures that the new value of expression {2.6) satisfies condition (2.8}
Step 3. Calculate the ratio (2.7). Set the values

x+d, if >0,

Xty ::{ : k: i s [2_1{})
X}, otherwise,

and
max[Ay, 4]|d. ], r, > 0.9,
Ay =14 e, D1<r =09 {2.11)
min[dkg‘:ij, de]la/2). <01

Generate By, Set oy, = . Set k=&k+1 and go to Step 1.

1 12 T DAL
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We note that D, is always negative at the end of Step 2, due to inequality (2.8)
when ¢, #0, and due to the equivalence of expressions (2.1) and (2.6} when
¢, = Ard, =0. Therefore condition (2.10} accepts a trial step if and only if it reduces
tha penalty function (2.4). We note also that the penalty parameter o; is adjusted
automatically. It is quite suitable to choose ¢, to satisfy condition (2.8}, because
an increase in oy is needed only when the step from x, to x. +d; is predicied to
increase the Lagrangian part [f{x) = A{x) ¢{x)] of the merit function {2.4). In this
case a new value of o, makes the new predicted decrease in oy[ c{x}||3 of the
magnitude that is necessary for D, to be negative. Further, as in Powell and Yuan
{1986a), the use of A{x; +d;) in expression (2.6) leads to a suitable adjusimeat of
the penaity parameter without the calculation of any second derivatives.

Unfortunately this algorithm is mainly of theoretical interest until an efficient
procedure is developed for the calculation of the search direction. This problem 1s
addressed in Yuan (1988). There a Newton-type method for determining 4, in the
case when B, is positive definite is described and analysed, and some numerical

results are presented.

3. Global convergence

We call x a stationary point of the problem (1.1)-(1.2) if it satisfies the Kuhn-Tucker
conditions

letx}2+ | P{x}g{x}]. =0, (3.0

where P(x) is the least-squares projection operator from R’ to the null space of
Afx}', which, in.view of the second assumption below, is the matrix '

Plxi=T—AXA( AT Alx) =1 %4{::).4{;1‘}"’. (3.2)

it fellows from the definition of A{x) that P{x)g(x)=g(x)— A(x)A{x). so the
convergence test in Step 1 is a test on the Kuhn-Tucker conditions (3.1).

It 1s proved in this section that the following assumptions imply termination of
the algonthm, wheire £ in Step 1 is any prescribed positive ¢onstant. Thus, one can
calculate a point that is arbitrarily close to a stationary point of the problem
{1.1)-{1.2). Some condition such as Assumption 3.1(a) is inevitable to rule out
calculations where the algorithm should generate 2 divergent sequence {x: k=
1,2.3,...1 because the objective function is not bounded below on the feasible

Tegion.

Assumptions 3.1. {a) There exists a hounded convex closed set 2 =R" such that
x; and x;. +d, are in £2 for all &
~(b) A(x) has full column rank for all xe {2,

{¢) The matrices {B,: k=1,2,3,...} are uniformly bounded.



194 MDD, Powell Y. Yuan f A frust region algorithm
The first three lemmas provide an upper botind on X, that is important to the
test for increasing oy,
Lemma 3.2. For any positive number A, any vector geR" and any nXn symrméiric
matrix B, if d is a solution of )
minimize g'd+3d ' Bd deR’, (3.3)
subject 1o ||d[[,= 4 (3.4}
then the scalar product g'd satisfies the inequality

T3 Hgﬂgﬂ . ”E"%u‘ﬂiz
i< - - 2 " 3
& dS o Bl,a+ gl Z}Blaldl+ 8l (33)

Prool. Because condition (3.5} is trivial when g =0, we assume that hell,> 0. If
(d [l A, then B is positive definite or positive semidefinite and the equation

Bd+g=0, (3 6)
holds. Hence we have the relation
d=—Bg+d | | (3.7)
where B is the generalized inverse of B and where d is a vector in the null space
of B. Since g must be in the range space of B, it follows that the inequality
1 :
i Bll2

is sarisfied, which implies the first part of condition (3.5), while the second part is

always an immediate consequence of ||d[,= 4. | _
If §d|l,= 4, then. by Theorem 5.2.1 of Fletcher {1987}, there exists a nonnegative
number p satisfying the equation

g+ (B+ulld =0, - ' (3.9)

[F3E : (3.8)

where the matrix B+ uf is positive definite or positive semidefinite. Using the
argument above, we have the bound

g'd=< g/ | B+pll: (3.10)
Now equation {3.9) gives the relation | |

b
“ TN,

so we have the condition

|8+ uTf,<2] Bll:+ fell-/ A. (3.12)

(1B + gl < 1Bl +l1gl/ A, | TRy

Therefore inequality (3.5) follows from expression (3.1¢}. [
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Lemma 3.3. The inequality

[l + ATy mfn{ztck la. ”"'f;;“.lﬁ‘z} (313)

holds for all k, where by is introduced in (2.3).
Proof. 1If b4, = AL | |2, we have that §;, =0, since ¢, + A =(Af) ¢ ]1=0and
| — (AL g || b24y. Therefore the equation

||C::||z" HCI: +-4-£d;: |]2= HC:: Hz:. . (3-14)

is implied by the first of the constraints (2.2).
In the case.when b,4, < ||AF]2] ¢ ||z, the second part of condition {2.3) and the

relation || + ALd.| .= £ give the bound

i| Cr. “2 - ;i L + A;Ed;; ||2 = ” Cy “2 = g.l;

: . b-}.‘ﬂk
= |le ||| e —=AT{—-—'—"} Al e,
” 5‘-”2 k & H{AI}-‘-C;;HE ( k ] "
b4, b4y
= feudl et {3.15)
e fanr ol Tait:
Inequality {3.13) follows from expressions (3.14) and (3.15). {J
Lemma 3.4. There exisis a positive constant m, such that the inequality
D, +3o ([l e | 7= [l ex + AEH&H%}
1 A
< -palimin - ]
R CT A ¥4 P
' N b4 .
+ || d; HE”EI:HE"I;.'G'F:“CF: [ m""{ffck 2 1—+k} (3.16}
fAcH: |
holds for all k, where we use the notation '
=gt Bd,. _ {3-”3}_
dy =7~ P, )d, (3.17b)
B, = (AL~ (413" ' {3.17¢)

and P, = P(%.).

Proof. Thedefinition of d;, equation (3.2) and | ¢, + Ald, > = | ][ imply the bound
1l = AcA dillo = JAD T T{e + Akd) — el < 2f ALl el (3.18)
We recall from equation (2.6) the notation

d = dy — &, = Pds. (3.19)
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Because of the definitions of d, and 4, , the vector d,. is a solution to the subproblem
minimize gi(d.+d)+¥d.+d) B.(d,+d), deR" (3.20)
subject to  AId =0, [d,+dl;=<A,. (3.21)
E}acause Ard = allows d to be replaced by Pd in this subproblem, it follows that
. also solves the calenlation
minimize (P8 )'d+3d"P.B.P,d de®", (3.22)
subjectto  Ald=0 and [d|.=A4;, {3.23)

where the last condition depends on the orthoganality of dx to d,. Since the addition
to Jk of a vectorin the ¢column space of A, would make no diffcrence to the cbjective
function (3.22) but would increase ||§;; Iz, it follows that the vector (3.19} solves the
problem (3.22)-(3.23} even if the constraint Ald = 0 is deleted. Therefore Lemma
3.2 gives the relation

iP5 ]34
2| B, 24k + || g b

Frd,=(Pg.)Tdy = -

. 1 Ek
< —3|| Pg. || 5 mt ' 3 ) e
H kE. “2 m]n{zﬂﬂk i]z H Pl:gk Hz} { }

Hence the defimtions of Ay, JR and g,., the fact that expression (3.22) increases
monotonically between d = d; and & =0, and the inequalities (3.18) and |4, |, =

| d, ||; imply the bound
(g — A Td, + 1 Bid,
= (gi+id{ B} =dgid, +1dB.d. +3g1d,
<lgid, <3gLd, + 31 B )4 ]
1 4,
2 Bil>" | Pegellz

Moreover, due to the definition of A{x) and Assumptions 3.1{a} and {b), there exists
a positive constant m. such that the condition

< -1jR | I min{ ST REANPANPYRCESY

A Cx ) ~ACx +d) = myfld . (3.26}

holds for all & Using elementary properties of norms to deduce from [+ Aidi <
ekl that || +4A5d.[a= §& |-, the inequality (3.16) now follows from the defini-
tiecn (2.6), Lemma 3.3, and the bounds (3.25) and (3.26), i we let
my = ma -+ sup {l Bl AL (-}, which is finite due to Assumptions 3.1. [0

Next the following corollary of Lemima 3.4 is used in Lemma 3.6 to establish that
the penzalty parameter o, remains bounded.
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Corollary 3.5. There exist positive constants iy and my, such that, on the iterations
that satisfy the condition

lleillz< msd., (327}
we have the inequality
Dr‘-: + %G-I:( ” €3 Hg - “ s + A'Id.l H%) = - mddﬁ:' (328)

Proof. Because Assumption 3.1{a) implies that 4, is uniformly bounded, we may
choose m, to be so smail that condition {3.27) implies [&.].=32. Hence if the
convergence test of Step 1 of the algorithm allows the calculation to continue, we

have the bound

g, — Auril=3e {3.29}
Further, we Shoose m, small enough to yield the inequality

e 2= iE{SLLP B M- AZlD | (330

in order that we have the relation
g Avdella= [ Pegs iz
< || Pigillz | PuBudy 2
< || Pugll 2+ 2[L A% a1l Belail € 112
<JPgi 2+ 3e, (3.31)
which depends on the definition (3.17a} of g, and on ineqgualities (3.13) and {3.30).
Thus, condition (3.29) gives the bound
(BB PEGL: (3.32)
it follows from Lemma 3 4 that the inequality
Dy +zon (el |lo + Ade||3)
< — e minfie] Bz, &1+ mlldi ol ell2 (3.33)

is satisfied. We impose the restriction m,y < 0 3(sup||Af|2)”", in order that condition
{3.27) provides 2[fAL .| e . =0.64,, because then expressions {3.17a) and (3.18)
give A, =0.84,. We now see that, for sufficiently small ||¢, ., the modulus of the
first term on the right-hand side of ineguality (3.33) Is at least twice the modulus
of the second term. Hence . by reducing m; again if necessary, we have the condition

Dy +iou(ladz—lla+ Akdi2) < —2a6 minfel B.f7, 0.84,]. {3.34)

The corollary now follows from the remark that [ B,[|;" is bounded below by A,/ M,
where M is any constant upper bound on the numbers {| B[,4;: i=1,2,3,...}. O

Now, using the above resulis, we can eastly prove the boundedness of the sequence
{eo: k=1,2,3,...}, which is important in establishing the convergence properties
of our algorithm. '



193 M.1.D. Fowell, Y. Yuan [ A irust region algovithm

Lemma 3.6, The sequence {o.: k=123, ...} remains bounded. In other words,
because any increase in oy, is by at least a factor af 2, there exists k| such that

o =0y, forallkz=k. ' {3.35)

Proof. Corollary 3.5 shows that condition {2.8) fails only if [|¢ J,> m;d;. In this
case, using 4, = {d.|[; too, Lemma 3.4 provides the bound
Dy +3o (e 2 e, + Ard, ”i)
= iid;:HIH‘f;: {2l e, — 1o, min(m;, by/ ms)], (3.36)

where m; is an upper bound on {§ALfl.: k=1,2, 3, ...} Hence condition (2.8) holds
if ap is not less than the number 2m, max(1/ m;, ms/ &), Therefore the number of

increases in oy, is finite. O

We now assume without loss of generality that o, is independent of & Our next
two lemmas show that both the trust region bound and the constraints converge to
zero, if the algornthm does not terminate after finitely many iterations.

Lemmsa 3.7.  [f the algorithm does no! terminate. we have the limit

lim 4, =0. (3.37)

£ —o

Proof. To prove the lemma, we assume that the number

7 =lim sup 4, : {3.3%8)
-
is posttive and deduce a contradiction. If the assumption were true there would
exist an infinite subsequence {k{i):i=1,2,3,.. }suchthat 4, <2% and 4,4, >
37 for all { In this case condition {2.11) implies the bounds

. ?I;l{l’};{}-l and di:{i}} :‘?,KS - : (339] IR

Since the monotonically decreasing sequ:ence: {d(x ) k=1,2.3,...}is convergent,
the condition r;;, =0.1 on expression (2.7} implies the limit

Eﬁ D=0 - {3.40)
We combine this remark with Corollary 1.5. If condition {3.28) held for &{f) we
would have Dy, =< —mdy < —m,n/8 which is not possible for sufficiently large

i. We may therefore assume that the condition of Corollary 3.5 fails, which gives
| €eenlla= #3455 Thus, inequalities (2.8) and (3.13) imply the relation

Dy = %E’IE Ck{:‘:ijz{” eyt AL ':ds.{:-}uz‘_ " Cki:‘}”l}
< —Somyd i, min[my by ms), - (3.41)

where m; is defined after expression (3.36). Now, however, inequality {3.39) contra-
dicts the himit (3.40). Therefore the lemma is true. O
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Lemma 3.8, [f the algorithm does not terminate, we have the limit

lim ||e. ||, =0. (3.42)
it
Proof. In this proof we deduce a contradiction from the assumption

£=1im sup|| ¢ [ >0.
R—rcd

{3.43})

Because we can restrict attention to large values of k it follows from Lemma 3.7
that we can assume without loss of generality that the inequality

holds for all k, where mi is still a constant upper bound on the norms { AL f:: k =
1,2.3,...}. We extend this assumption in a way that is related to the remark that,
due to the definitions {2.4) and (2.6) and the continuity of third derivatives, we
have the bound

[Dk =[x +di}— d’x;{xx;)]-l = mefld, | 3. {3_-45J
where M, is another positive constant. Specifically, Lemma 3.7 allows us to presume
that the inequality

2o (0.1 )by ms = 2m A, (3.46)

also holds for all o _ .
We now consider the value of D, when k isin the infinite set K, ={k: | .= 0.1£).

[nequalities (3.13) and (3.44) imply the relation

leulls = llee+ Afdelfa = by fms, ke K, | (347
$0 cnnditicn-{z.ﬁ] yields the bound _

D < —1o{0.18}b.4,/ms, ke K. (3.48)
Hence, remembering fd, |, = 4,, it follows from expressions (3.45) and (3.46) that

the inequality {r, =0.5: ke K,} is satisfied, where r, has the value (2.7). Thus we
have the relation

¢ (xi +di) — p(x) < —0.0250¢b,4,/ m=, keK,, (3.49)

and the definition {2.11} implies {4,,,2 4,: ke K}

In view of Lemma 3.7, this last condition shows that there are infinitely many
positive integers that are not in K. Therefore we may let {k{(i}:i=1,2,3,...} be
an infinite subsequence such that {jle .= 08£:i==1,2,3,.. .} and such that any
two adjacent members of the subsequence are separated by an integer that is not
in K. For each i, we let 1(7) be the least integer such that {(i}> k{i} and I{i} g K,
and we consider the difference [ @(xy,} — ¢ (x:,) ] Conditions (1.7) and (3.49) and
the triangle inequality imply the bound

DX — P{x 1} = — 00250 8D [ xy00) — Xpn |2/ ms, . {350
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and the conditions Jic(xucn) 22 0.9¢ and [le(xy)ll <0.12 imply that |, = Xl s
bounded away from zero. These remarks, however, contradict the fact that the
sequence {@(x ) k=1,2,3,.. . }is monotonic and convergent. Therefore the lemma

is true. (O
Now we can prove our global convergence result:

Theorem 3.9, {/nder Assumptions 3.1, our algorithm will terminate aftes finitely many
iterations. In other words, if we remaove the convergence test from Step 1, then dy =0
for some k or the limit

tim inf [+ | Prge 21 = 0 IREE)

is obtained, which ensures that {x,: k=1,2 3, ...} is not bounded away from stationary
points of the problem (1.1)-{1.2). :

Proof. The termination condition of the algorithm and the iimit (3.42} allow the
bound

hP.gull:=36/4 _ {3.52)

:0 be assumed without loss of generality. In view of Lemma 3.7 we may also assume
| B,d.| = e/4. in order that expressions (3.17a) and (3.52) imply the inequality

| Pz i =3 ' (3.53)

We suppose that the algorithm fails to terminate and deduce a contradiction.

The first part of the proof will show that the ratios {[Pdifl/ A k=1,2,3....}
cannot stay bounded away from zero. Then we pick an infinite subsequence {k{(i}: i =
1.2, 3....} for which these ratios tend to zero. Hence we find a particular sequence
{EH,-;,: i=1 2.3,...} of vectors in R” that satisfies the constraints (2.2} on 4 for
sufficiently large { The contradiction is"that:, for targe i, the value of the objective
function (2.1} when d == ka is less than the value that occurs when d = dy;. This
constructien depends on &, < 1 in the left-hand inequality of expression {23},

Lemma 3.4 and condition (3.53) imply the bound

= —1 : l A
Do mldibilebs—e min{ i 5. (3 54)
Hence, because [[di],< 4, and Jjec |20, if A,/ 4, were bounded away from zero,
then, for sufficiently large k&, I} would be bounded above by a negative muliiple
of A;. It would follow from expression {3.45), however, that the ratio (2.7) would
rend to one, and then we would have 4, ,, = 4, for all sufficiently large &, contradict-
ing Lemma 3.7. Therefore the algorithm gives the limit

lim inf(4,/ 45) = 0. | (3.55)
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Now the relation 4, = | P.d,]l; is an elementary consequence of expressions 1.7,
{3.17b) and (3.17¢). Therefore, as asserted earlier, there is a subsequence {k(i): i=
i 2.3.. .} of positive integers that provides the equation

lim| Priydicnlle/ Au = 0. (3.56)

The vector Ef“i] has the form
&;« iy kl: il + {l T}d}, (i m?']—dk{.'j_PI:{ TR (3 5?]

where + is a constaat from the interval (0, 1) that will be chosen later, where dhi
is any vectar that satisfies the conditions

|@keoflz=< bidug, _ {3.58a}
fern+ Axc: Adainls < L. (3.58b)

whose existence is a consequence of inequality (2.3), and where my 1s the constant

m, =4 supllgll.f € (3.59)

Recause 0 < r-< 1 and because AL Puy =90. it follows from expressions (2.2}, {3. 5?}
and (3.58b) that the constraint feu,+ ALd [l {r is achieved by d = oy
see that | di 82 < Awy is satisfied too if we have the inequality

H(1 = =)y — mardin Py 8l S (1_ = by 7). _ (3.60}

We square both sides of this exprassioﬁ, we rearrange terms and we employ the
bounds {dinll;= A and [Pl e, iilz. Thus, we find that the condition

—2mo{1- THL:JPI:V;ELUJ""”T%Tduu||gkr.nﬂ§
=(1—b{2—1=b T}, {3.61}
is sufficient for ||diy )= 4ig,- Now the Cauchy-Schwarz inequality
Ty Prin el < | Pandeanllzll guin 2 (3.62)

and the limit (3.56) show that the first term of expression {3.61) tends to be much
smaller than the other twa terms. Therefore we obtain the required conditions on
di Tor sufficiently large i by choosing r to be any constant from the open interval
{0, 1) that satisfies the relation

m%TSl:P”g;;”g‘i{l —b}2=-r—B1} (3.63)

so it is sufficient to let 7 be small and positive.
Finally we recall that, because of the definition of dj in the algorithm, the condition

g r;dkts)‘f“%dfmﬂs:mdu'-l5EI{r-}JH-}'f‘%JLi]BHuE:;m {3.64)
should hoid when i is so large that [d; |2 dsery- Equation {3.57} gives the value
EI:.J:{&;:::'] - f?u ia] = 'TEI( i:(dl Liv — k{i‘.l) + m?rﬂ;{ }” Prings m“z {3-55}
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Hence, using the elementary bound
grl digiy— dien) = =~ 2 gtz i, (3.66)
the defnition (3.59) of m, and inequality (3.52), we deduce tEe relation
2linldi— duy 2 (2]l gl + 9 suplgaffa/ 4l 7dics
= supllg. [278un/4. ' (367)

Since the second-order terms of expression (3.64) are bounded by Al supll Bed,
and since A, tends to zero as i—+o0, it follows that condition (3.64} fails for

sufficiently large i Therefore the theorem 15 true. L)

4. Local superlinear convergence

in this section we analyse the rate of convergence of the algorithm when ¢=0 and
when the sequence {x.} converges to a point x¥. Theorem 3.9 shows that x¥isa
Kuhn-Tucker point. We require both the second-order sufficiency condition and
the assumption on the accuracy of the matrices {B;: k=1,2,3.. .} that are given

below.
Assumptions 4.1. (a) x, - x*;
{b} There exists a constant mg> 0 such that the inequaliity
dTWHd = my| d||2 ' (4.1)
holds for all d satisfying A(x*}'d =0, where W* is the matrix

W =9(x*)— T AT e {x*). . (4.2)
) Pl _ :
and where the Lagrange multipliers {A *. ;=1 2. ... .m}are defined by the equation
Vilx*)= T AiVa(xh). ' (4.3)
=]

Assumption 4.2,
lim max [dT( B, — W*)d,|/d.].=0. - {4.4)

koo ALd =0, |d]z==1

Assumption 4.1{a) is not very restrictive because, when Assumption 4.1(b} holds,
‘the exact differentiable penalty function (2.4) has a local minimum at x* for
sufficiently large o, and it is usual for this local minimum to trap the sequence
{xe: k=1,2,3,...} In this case, assuming that the final value of o is large enough,
Theorem 3.9 and the monotonicity of the sequence {$.{x): k=1,2,3, ...} after o
achieves its final value imply that {x,; k=1,2,3,. ..} does converge to x*.
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It is proved in Boggs, Tolie and Wang (1982) and Powell (1983) that, if d,
minimizes the function {1.4) subject to the constraints (1.5}, and if xp =X+
for all sufficiently large k, then the rate of convergence of the sequence {xp: k=
{,2,3,...}is superlinear if and only if condition (4.4) holds. Therefore, making
the given assumptions, the purpose of this section 1s {0 show that our use of {rust
regions does not invalidate this superlingar convergence property. First we establish

the limit
}I_g‘c ledill=0. (4.5}

and then, using four lemmas, it is shown that r,— 1, so formula {2.11) keeps 4,
bounded away from zero. Thus, the limit {c.|[;= 0 and expression (2.3) imply { =0
for all sufficiently large k. It follows from the limit (4.5) that eventually every d, is
the search direction of the analysis of Boggs, Tolle and Wang (1982) and Powell
{1983}, which gives the required superlinear rate of convergence. One complication,
addressed in Lemma 4.4, is that, although Lemmas 3.2-3.4 still hold, we have to
re-establish Lemma 3.6, because the method of proof'in Section 3 depends on e >0
in Step 1 of the algorithm, but now we are investigating the case when g = 0.

Expression (4.5} can be deduced from Lemma 4.3 below, but the following proof
is more elementary. Because this limit follows from |4, |.= 4y, if A, - 0, we assume
lim sup 4;, = 7 > 0. For all sufficiently large & we have [[ X, — X[ = 17/8 by Assump-
tion 4.1{a), which implies 4,.,<max{4, 37]. but when x;,;=x formula {2.11)
pives Ay, <4,/4. Therefore limsup 4, =n»n=>0is possible only if the number of
iterations that set x,., = X, is finite. Hence x,.,., = X, +d, for all sufficiently large k.
so the limit {4.5) is a consequence of Assumption 4.1(a}.

Lemma 4.3, The algorithm gives the bound
Hdk JE:: =0 “ ﬂ.t:ﬂz"‘ HP:-E'i-Iiz) . (4.6)
on the trial steps.
Proof. Because the vector {3.19) satisfies AE&L:{}, Assumption 4.2 provides the
equation
|d%Bud, —diW*d,] = o{[[d, ]| df2)- (4.7)
Therefore by substituting 4, = Jk+5k we find the relation
ldiBd,. —dy Wtd,|=o(]d. 1D +O(||di Bl i ll2)- (4.8}

Thus, from condition (4.1), from the non-positivity of expression (3.22) when d = d:.
and from the definition (3.17a) of Z,.. we deduce the inequality

ymgld 2= B d + O i ll2)
< 2 P || Jl: - +O(| d;. iz '-'.'j:; Py
=20 Pigi 2l dell 2+ O e ol i 1) (49}
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for sufficiently large k. It follows from [|dy{l>= #di [l + |4 §» that we have the bound
gl ds |l < 2)| Pegellz+ Ofldel2)- (4.10)

Condition (4.6} is now a consequence of inequality (3.18), so the lemma is true. [

Next it is shown that the sequence {oy: k=1,2,3,...} is bounded above under
the second order sufficiency conditios. In other words Lemma 3.6 remains valid if
we remove the convergence test in Step 1 of the algorithm.

Lemma 4.4, There exists an integer ky such that

o =ay, for all k=i,. {411}

Proof. As in the proof of Lemma 3.6, it is sufficient to show that the right-hand
side of expression (3.16) is negative if k and o, are sufficiently large. First, we
establish the existence of positive constants m, and k, such that the conditions

el mslldi]l;, k=K, {4.12)

imply that the sum of the first two of the three terms on the right-hand side of
expression {3.16} is non-positive. No details of the remainder of the proof are given,
as the alternative case when || ;> mofld,.| 2 can be treated by replacing m; by iy

throughout the proof of Lemma 3.6.
We let k, be any constant integer such that the middle line of inequality (4.9)

provides the bound
FEAFESTNEAFEEIN AN
E"%”‘*S[fdﬁ:l[z_{%ms'ﬁ'mm}HEk”L k2 ks (4.13)

where m,, 15 another positive constant, and where the last line is derived from the
triangle inequality. Therefore letting my satisfy the constraint,

iy my/ [{4mg +161,0) sup} AL ), (4.14)
expressions {3.18}, (4.12} and (413} give the relation

| Pugell2 = gmalidifiz (4.15}
Further, following the argument that comes immediately after inequality (3.33), we
impose m;<0.3(sup|AfJ|.) 7", in order that 4, 2 0.84,. Thus, when the conditions

(4.12) are satisfied, the first term on the right-hand side of expression (3.16) is
bounded above by the negative number

m§ fHg

512 sup| Bif, " 40

4] min S B (4.16)
say. Therefore the right-hand side of expression (3.16) is negative as required if we
also impose the constraint #1,< 1,/ m,. The proof is completed in the way that is
mentioned after inequality (4.12). O
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Our next lemma gives a lower bound for the predicted reduction in the penaity

function.

Lemma 4.5. There exists a positive constant m,» such that the inequality
D, < —mpfdi ([l difla+ [ ¢ ]l2) (4.17)

holds for all sufficiently large k.

Proof. Let m,; be a positive constant that satisfies the condition
= min[my, my/(2m, +my, )1 {4.18)
where m, and iy, occur in the proof of Lemma 4.4. Thus the inequalities
ey o= mulldell, bz ks, . (4.19)
imply the relation
D, =< —m ld )3+ mfd|:lclz
= —3m,, i, ||l dy B+ Bl ], ' (4.20) _

where the first line depends on expressions {3.16) and (4.16), and where the second
line is an elementary consequence of the constraint ||¢ ;= my || di |2/ (2 + )
which is given by the bounds (4.18) and (4.19). Therefore, in the case (4.19}, we
achieve the required condition (4.17) by choosing m;, < imy..

Alternatively, when we have the refation

ez mulldillan (4.21)

we make use of the fact that, due to Lemma 4 4, inequality (2.8) holds for all large
k. Thus, using inequality {3.13} also, we deduce the bound

D= -%ﬂ-ﬁ:{ﬁ £y Hi_ “ €y -ql.dk ]]%}
bady }

<ol min{ el 255
. Ltz

. by
= _TL_U& mln{m,3 - m}ﬂ O ﬂzﬂf-f;: “2
A b m :
= _%{Tk mln{mu._. HAE”;} 1+ :;:13 ” dli:”l(ﬂdk Ii2+ HC;; EEI}- (422}

where the last line is an elementary consequence of condition (4.21). Therefore the
lemma is true. []

Lemma 4.6. Under our assumptions, we have the limit

limr,=1. . (4.23}

ke
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Proof. The definitions (2.4) and (2.6) and Assurﬁptiéﬁi.l(a] imply the refation
& (xy, + de ) — du(6) — D,
={g — Ay) d, +id W,
(A d) = A (e + Ard) — ol ]l3 = llex + Ardi||12)
(g, — AA)Td, —3d T By [ A (e H d )~ 4] e +3A0d)
+ o ([lenllz = llen+ Axde ]| D + ol ffaF 1l s 2+ 1l e lla])
=1dIW*d, ~3d1B.d,
—YAlx+d) — AT AL +of || [l || d bz + [l exll21). (4.24)
By differentiating the normal equation
A{x)(g(x)—Alx)A{x)) =0 (4.25)
at x =x*, we obtain the 1dentity
V(A(x*) = |::.z¢'1l{x*'}}+ W {4.26)
which gives the equation
[A(x+ di} - A (x)TTATd, = T WA AGx*) T ALd + ol e 13)
=dW*d, +o(}d, ||3). (4.27)
We use expressions {4.24), (4.27) and (4.4) to deduce the bound
Sulx+d) —du(x)— Dy =3 W* — B )+ o d L[| e |+ | il =T
= o(§dijl |l difl2+ [l e izd). (4.28)

Thus, the limit (4.23) follows from Lemma 4.5, [
Lemmas 4.3 and 4.6 provide our superlinear convergence result.

Theorem 4.7. If Assumptions 3.1, 4 1 and 42 are satisfied, then {x.} generated by
the algorithm converges to x* superlinearl).

Proof. Due to Lemma 4.6 and equation (2.11), the sequence {A,:k=1,2,3,...}
15 bounded away from zero. It follows from equation (4.5) that the trust region
bound becomes inactive for sufficiently large k. Thus, for alf large &, 4, is the solution

of the preblem
minimize g,d+id Bd deR" : (4.29}
subject to o+ ATd =0, (4.30)

“Therefore superlinear convergence is a consequence of the theory of Boggs, Tolle
and Wang (1982) and Powell (1983). 3
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5. Driscussion

The given analysis suggests that, when solving optimization problems with nonlinear
equality constraints, it is possible to combine the differentiable exact penalty function
{2.4) with the use of trust regions in a way that gives good theoretical convergence
properties. This conclusion may be important, because trust regions have some
advantages over line searches when there are nonlinear constraints. In particular,
if nonlinearities make it necessary for x,,, — x| to be very small when x, is far
from a Kuhn-Tucker point, then a line search algorithm would use a step length
that is much less than one, so, even if linear approximations to constraints are quite
accurate, any constraint viclations tend to zero only at a slow linear rate, at least
until it becomes possible to take unit steps along search directions. With trust regions,
however, when x,.., # x3, the step from x, t0 X4, can include 2 component of length
at least .4, that is used primarily to reduce constraint violations. In other words

because a trust region step is the full 4, that is calculated even when 4, Is small,
ane gains from all of the linear approximation to a constraint that occurs in the
definition of d;, but 2 line search algorithm introduces the step length as a scaling
factor on the predicted reductions 1n constraint violations,

The advantages of preferring a penalty function of the form {2.4} over a non-
differentiable one are well known, for example see Bertsekas (1982). The need to
salculate A(x) for any x, however, introduces severe difficulties if the constraint
zradients become linearly dependent. This is unlikely to happen if there are fewes
constraints than variables, but a possible remedy is to change the defimition of A{x)

.0 the vector that mimimizes the expression
lg(x)— A(x)Afl2+ 8lleCeMiIAfE, AeR™ (5.1)

vhere # is a prescribed positive constant. Thus the calculation breaks down only
f the constraint gradients are linearly dependent and all the constraints are satisfied.
Jur theory does not apply to this new choice of A(x), but the main results may still
10ld. Indeed {A{x): xR} remains differentiable, the new value of JA(x)], is no
sreater than before, and the change to A(x) due to >0 in expression (5.1} 1s of
nagnitude [[x —x¥|; when x is close to a feasibie point x*, provided that constraint
jradients are linearly independent at all feasible points.

In order to Aind a value of £, in the interval (2.3), one may begin by calculating
he shortest vector d that satisfies ¢, + A;d =0, which is straightforward if one
reserves the QR factonzation of A; from the computation of A;. It is suitable to
et §, =01 |df,= b, 4,. but otherwise £ must have the value

&=l t+ Acd(8)], (5.2)
vhere @ is any positive parameter that provides the conditions
b A, = d(0)fl,=<b,4,, (3.3)

urd where d{#) minimizes the expression _
e+ AT+ B)d)2, der” (5.4)
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Because d(#) has to lie in the column space of A, the adjustment of & is similar
1o the trust region calculation that is considered on pages 104-106 of Fletcher (1987).
Of course it is helpful to choose b, <0 b,

When 7, =0, one can complete the computation of &, by another simifar trust
region calculation, because the required trial step has the form

dy = ﬂ_tj.."'éj.:-- {5--5)

where d, = d is defined in the previous paragraph (so its value is known) and where
4, is from the null space of A}, Specifically, one adjust d, so that the vector (5.5)
minimizes the quadratic function (2.1), the trust region constraint being the inequality

I, [.= (A2 || A D"~ (5.6)

This calculation is equivalent to the generation of trial steps intrust region algorithms
for unconstrained optimization, because one can express d, in terms uf an orthogonal
basis of the nuill space of AL

~ We could also apply this method to the ;>0 case if we satisfied the constraint
e, + Axd ] =< {, by imposing the condition Ajdy = Ald(#), where d{#) occurs in
equation (5.2) and is known. We would replace d; by d{8) throughout the previous
paragraph. In general, however, one can achieve a smaller value of the objective
function (2.1} by not making this simplification. It is therefore desirable, both in
aur algorithm and in the procedure of Celis et al. (1985}, to find a suitable technique
for minimizing the function (2.1) subject to both of the constraints (2.2).

In practice one requires tolerances on this subproblem in order that it can be
solved in a finite number of computer operations, but one should ensure that the
tolerances preserve the convergence properties of Sections 3 and 4. The following
technique is shown to be suitable in Powell and Yuan {1986b) . which 1s the original
version of the present paper. We let by and b; be any constants that satisfy 0 < h; <1
and b,=1. Then it is sufficient if, instead of the conditions. (2.2}, the vector 4,
mintmizes the function (2.1} subject to the constraints

leo+ARdla=<& and  |dfs=4,, - (5.7)

where [, and A, are any numbers from the intervals [£; . boli + (1 — bo}| ¢.|l2] and
{AL, b4, ], respectively, except that we require £ = ¢, when £, =0, which is the
case that has been addressed already in the paragraph that includes equation (5.5).

The form (5.7} of the constraints is convenient in practice, because the Lagrangian
function of the calcuiation of the search direction is the expression

L (dy=gld +idTBid +ig||c. + ALd |5+ 3lldl3, deR” (5.8}

- Therefore, if for any choice of ¢, =0 and =0 we solve the linear system of
equations ¥V L.(d) =0, then we find a stationary peint ¢of the function {2.1) subject
to the constraints (5.7), where /, and 4, are the values of |¢;+ Afd|, and |d|
that occur for the d that has just been calculated. Further, there is usually a range
of values of , and ¢, that yields a d; that satisfies the conditions of the previous
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paragraph. Thus, it should be possible to develop finite procedures for generating
search directions that give the convergence properties that have been presented, It
has been mentioned already that a suitable algorithm is proposed in Yuan (19388)
for the case when By 15 positive definite.

Partly because we have not yet decided how to adjust ¢, and v, our algonthm
has not been used yet lor any numerical computations. However, it was devejoped
from an earlier procedure that has been tested. The main difference from the present
method 15 that, on every iteration of the earlier procedure, d; is caiculated to
minimize {|[¢. + ALd.: 4 eR"} subject to || 4|, 4, so the objective function (2.1}
is relevant only if some freedom remains in d after minimizing || ¢, + AL 4 ||, Numeri-
cal results from the earlier procedure were presented by Yuan in an unpublished
paper at the 1985 Dundee Numerical Analysis conference. They compare favourably
with the results of the algorithm of Powell and Yuan {1986a) that uses line searches
instead of trust regions.

Another question that has to be answered in order to provide numerical results
is the choice of the matnices {B,: k=1,2.3,. .. }. Pawell and Yuan {1986a) obtained
B..., by applying the BFGS formula to the change in gradient of the Lagrangian
function along &, using the Lagrange multiplier estimates A, and A; 4, . and including
a device that preserves positive definiteness. An advantage of trust regions, however,
is that one can give up positive definiteness, which is particularly helpful when each
D, is to be sparse, because sparseness conditions on B, make it more difficuit to
preserve positive definiteness, even in unconstrained calculations with exact line
searches {Sorensen 1581). Therefore the generality of B, in our theoretical analysis
seems to be useful. '

Section 3 is entirely suitable to the stopping condition of the algorithm, and
Section 4 is of practical value, because it shows that convergence to a Kuhn-Tucker
point cannot be impaired by the Maratos effect when the given conditions hold. It
is possible, however, that the sequence {x: k=1,2,3,. ..} would not be convergent
il & were set 1o zero. We doubt the value of modifications to rule out this behaviour,
because the stopping condition in Step 1 does not need them. A usual remedy Is to
accept a trial step 4, only if it gives a “sufficient decrease™ in the merit function
{2.4), the least acceptable decrease being proportional to 4, times the Kuhn-Tucker
residual term [fo [+ | gx ~ AiAsflz]. Convergence analysis becomes much easier in
this case, and one may be able to prove under our assumptions that all limit points
of {x.:k=1,2,3,...} would be Kuhn-Tucker points il ¢ were set to zero. We
believe, however, that 4, should be accepted whenever ¢ (x, + ) < . (x0), because
the main purpose of merit functions is to compare estimates of the solution x*. A
striking example of the disadvantage of the “sufficient decrease™ criterion is that it
can prevent the step to the true solution in an unconstrainad calculation when there
is only one variable.

Practical experience would be needed to decide on suitable values of the constants
by, b,, by and b, that help to make the calculation of the trial step finite, and that
balance the corrections to constraint violations with the reduction in the objective
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funetion. It is encouraging, however, that our theory seems to allow many suitable
choices of these parameters.
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