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Abstract

We present a decomposition method for training Crammer and Singer’s multiclass kernel-
based vector machine model. A new working set selection rule is proposed. Global conver-
gence of the algorithm based on this selection rule is established. Projected gradient method
is chosen to solve the resulting quadratic subproblem at each iteration. An efficient projection
algorithm is designed by exploiting the structure of the constraints. Parallel strategies are
given to utilize the storage and computational resources available on multiprocessor system.
Numerical experiment on benchmark problems demonstrates that the good classification
accuracy and remarkable time saving can be achieved.

1 Introduction

Let S = {(x1, y1), · · · , (xl, yl)} be a set of training samples belonging to m different classes,
where xi ∈ X ⊆ Rn and yi ∈ Y = {1, · · · ,m} are the input data and corresponding label
for the sample i, respectively. The goal of a classification problem is to construct a classifier
which, given a new data point, will correctly predict the class to which the new point belongs.
When m = 2, the problem is called binary classification; When m > 2, it is called multiclass
classification. We consider the problem of multiclass classification in this work.

Support Vector Machine(SVM) [4, 11] is a powerful machine learning technique for classifica-
tion. It is developed from statistical learning theory [45, 46] and gains lots of attention because
of its excellent performance empirically [34, 36, 24]. However, SVM is inherently designed for
binary classification. How to effectively extend it to multiclass case is still an ongoing research
issue. Considerable efforts have been devoted to this area, which fall into two main categories:
One is to build a multiclass predictor on top of a series of binary SVMs by some special scheme
[5, 39, 19, 27, 37, 1, 12, 13, 25, 15]; The other is to construct a multiclass classifier by solving a
single optimization problem, which is developed by borrowing the idea from the design of SVMs
[46, 6, 47, 22, 28, 29].

∗This work was partially supported by NSFC grants 10831006, 70621001,70921061,70531040 and CAS grant
kjcx-yw-s7.
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More concretely, for the first kind of methods, one-against-all is the earliest used implementa-
tion [5]. This strategy is to train m different binary classifiers, each one is trained to distinguish
the samples in a single class from the samples in all remaining classes. When it is desired to
classify a new sample, the m classifiers are run, and the classifier which outputs the largest
value is chosen [38]. Another conceptual simple scheme to build the multiclassifier on top of
binary classifiers is one-against-one, which was introduced in [39], and the first use on SVMs
was in [19, 27]. In this approach,

(
m
2

)
binary classifiers are trained; each classifier separates a

pair of classes. When a new sample comes, all m(m − 1)/2 classifiers are run. If the classifier
between the ith and jth class predicts the sample is in the ith class, the vote for the ith class is
added by one. Otherwise, the jth class is increased by one. At last, the sample is predicted as
the class with the largest vote. The directed acyclic graph SVM(DAGSVM) [37] is the same as
the one-against-one in the training phase - one SVM is trained for each pair of classes. In the
testing phase, the ith class and jth class are compared, and whichever class achieves a lower
score is removed from further consideration. By repeating this process m − 1 times, m − 1
classes are removed from consideration, and the final remaining class is predicted [23]. The idea
of using error-correcting codes for multiclass classification was first introduced by Dietterich
and Bakiri [17]. Then several error-correcting code approaches are developed to combine bi-
nary classifiers into a multiclass classification system [31, 1, 12, 13, 25, 15, 20]. Among them,
[31, 1, 12, 13, 25, 15] can use SVMs as the underlying binary classifiers.

Hus and Lin [23] presented an empirical study comparing various methods of multiclass classi-
fication using SVMs as the binary learner. They concluded that one-against-one and DAGSVM
are more accurate than one-against-all. However, Rifkin and Klautau discovered through ex-
tensive experiments that when the underlying binary SVMs are well-tuned, the performance of
one-against-all is at least as good as one-against-one and several error-correcting code approaches
in accuracy [38]. Therefore, they recommended one-against-all for practical use because of its
simplicity. From these discussions we can see that how to make sure all the element binary
SVMs are well-tuned is not an easy task. Even for the simplest one-against-all scheme, at least
m sets of parameters need to be determined. Considering the complexity of tuning parameters,
the method which can construct the multiclassifier by solving a single optimization problem is
preferred.

The first SVM multiclass model, which solves a single optimization problem rather than com-
bines the solutions to a collection of binary problems, was introduced simultaneously by Vapnik
[46] and Weston and Watkins [47]. Later, it was pointed out in [22, 23] that the formulation
proposed in [46] and [47] are essentially identical, whose primal forms are also equivalent to
the models in [6, 22]. In these approaches, the penalty is payed based on the relative values
output between different classes instead of considering the margin requirement for each class
separately. As a consequence, the dual form of the optimization problem does not succeed in
fully eliminating the primal variables and more equality constraints, which makes the model
much more difficult to train than the standard SVMs [38]. Lee, Lin and Wahba presented an-
other multiclassification model in [28, 29]. This model is constructed based on the asymptotic
properties of SVM regularization for binary classification[30]. Because the asymptotic properties
only hold as the number of data points goes to infinity and the regularization term is ignored, the
performance of this method is not satisfiable in real-world classification tasks which use limited
amounts of data. Crammer and Singer proposed their multiclass SVM model in [14], which can
be considered as specific case of their formalism for multiclass classification using continuous
output coding [12, 13, 15]. Different from the approach of Weston and Watkins, Crammer and
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Singer’s model only penalizes the class with the largest violation, which results in only one slack
variable for each data point in the dual form, rather than m − 1 slack variables per point in
Weston and Watkins’ formulation.

When Crammer and Singer gave the model, they also developed a decomposition algorithm to
train the model at the same time, in which a single data point is chosen at each step and a fixed-
point algorithm is designed to solve the reduced m-variable quadratic programming. Various
experiments on a number of data sets from the UCI repository [2] are carried out by Crammer
and Singer to compare their approach with the one-against-all scheme. Based on the experiment
results, they claimed that the new model outperforms one-against-all in accuracy. In [23],
Crammer and Singer’s model was compared with one-against-all, one-against-one, DAGSVM
and Weston and Watkins’ model. The results also show that if the regularization parameter
and the kernel are carefully chosen, Crammer and Singer’s model can achieve state-of-the-art
accuracy. However, the efficiency of Crammer and Singer’s training algorithm is not comparable
to the algorithm of standard SVMs, so the author recommended one-against-one and DAGSVM
for the practical use.

In recent years, Crammer and Singer’s model draws more and more attentions from the
research community and lots of efforts are devoted to design efficient training algorithms for
it and its extended models [43, 42, 9, 26]. A cutting plane algorithm [43] was proposed to
train a general structured model in primal form with linear kernel1, which takes Crammer and
Singer’s model as a special instance. The Bundle method considered in [42] extends the cutting
plane algorithm to general regularized risk minimization problems. In this work, a modular
framework is designed to support different regularizers and risk functions for different machine
learning methods2. When the l2 normalizer and vectorial loss function are used, the framework
is reduced to Crammer and Singer’s model. The development of all these algorithms require the
explicit representation of samples in the primal feature space for the finding of cutting plane
or calculation of subgradient of the objective function. Because the vector of primal variables
could be in infinite dimension space for some kind of nonlinear kernels(for example, the RBF
kernel), we can not extend these algorithms directly to the case of general nonlinear kernels.

In [9], the authors proposed the exponentiated gradient method for the training of structured
log-linear and max-margin model, which covers Crammer and Singer’s model as a special case.
The related convex programming is solved in its dual form by the exponentiated gradient up-
dating scheme. However, calculating the gradient of dual objective function still requires the
representation of samples in primal form. In [26], an elegant coordinate descent algorithm is
specially designed for Crammer and Singer’s model3. Although the dual form of the model is
considered, the inner-product of samples is decoupled to save the floating point operations when
calculating the gradient, and thus the algorithm can not be generalized to solve the problem with
nonlinear kernels either. Since general nonlinear kernels are of great importance for describing
and analyzing considerable amount of multiclass classification problems [40], we attempt to de-
sign efficient training algorithm for Crammer and Singer’s model with nonlinear kernels in this
work.

1Efficient implementation is provided in the corresponding package SVMmulticlass, which is public available
at http://svmlight.joachims.org/svm_multiclass.html.

2The framework is implemented in the ELEFANT package which can be downloaded at http://elefant.

developer.nicta.com.au.
3The implementation of this algorithm is contained in the LIBLINEAR package, which is available at http:

//www.csie.ntu.edu.tw/~cjlin/liblinear/.
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The structure of the paper is as follow. In the next section, after briefly introducing the
mathematical formulation of Crammer and Singer’s model, we give the general decomposition
algorithm for the model and propose our new working set selection rule under this framework.
A discussion on global convergence of the algorithm is also given. Section 3 concentrates on ap-
plying the projected gradient(PG) method to solve the quadratic subproblem at each iteration
efficiently. Firstly a special projection algorithm is designed by exploiting the structure of the
constraints. Then we explain in more detail each of its main steps and how they differ from
published PG algorithms. We address on the issue of implementation such as practical working
set selection rule, kernel evaluations and parallelization strategies in section 4. Numerical ex-
periments for the serial and parallel implementation on several public data sets are explained in
section 5. A brief conclusion is given in section 6.

2 The New Decomposition Algorithm

From mathematical point of view, the classification problem can be interpreted as finding a
function H : X → Y that maps an instance x into an element y of Y. In [14], Crammer and
Singer started from considering the classifier of the form

HM (x) = arg max
1≤r≤m

{Mr · x} (2.1)

Where M ∈ <m×n and Mr is the rth row of M . The value of inner-product of Mr with the
sample x is called the similarity score for the r class. Therefore, according to the classifier,
the predicted label is the class attaining the highest similarity score with x. Crammer and
Singer generalized the conception of margin from SVMs and proposed the following quadratic
multiclass vector machine model

min
M,ξ

1
2β‖M‖2

2 +
∑m

i=1 ξi (2.2a)

s.t. maxm
r=1{Mr · xi + 1− δyi,r} −Myi · xi = ξi, ∀i = 1, · · · , l. (2.2b)

When there are only two classes(i.e. m = 2), the above formulation reduces to the primal form
of binary SVM by setting w = M1 −M2 and C = β−1.

Through taking the Lagrangian dual of problem (2.2) and replacing the inner-product with
the general kernel function, Crammer and Singer gave the dual form of their model as following4,
which is the optimization problem we focus on in this work

min
α

1
2

∑l
i,j=1 K(xi,xj)(αT

i αj)− β
∑l

i=1 αT
i eyi = f(α) (2.3a)

s.t. αT
i 1̄ = 0,∀i = 1, · · · , l; (2.3b)

αi ≤ eyi ,∀i = 1, · · · , l; (2.3c)

where 1̄ ∈ <l is a vector with all elements 1, ei ∈ <l presents the ith unit vector. K(xi,xj) is
the (i, j)th element of kernel matrix K. Sometimes for simplicity, we write it as Ki,j . If the
kernel function K(·, ·) satisfy Mercer Condition [32], K is positive semidefinite.

Suppose the optimal solution of problem (2.3) is α∗. Then the classifier is

H(x) = arg max
1≤r≤m

{
l∑

i=1

αi,rK(x,xi)} (2.4)

4The detailed derivation can be found in [14]
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If α∗i 6= 0, the corresponding sample i is called a Support Vector(SV). Furthermore, if α∗yi,i
= 1,

it is called a Bounded Support Vector(BSV).
Readers may ask since model (2.3) is only a quadratic programming(QP) and there already

exist several QP solvers, why we design a new algorithm for it. One of the main reasons is that
the kernel matrix K is always dense and its size depends on the number of training samples.
On one hand, prohibitively large memory is required to store K for large-scale problem. Take
a problem with 60, 000 training samples as an example(this is exactly the scale of test problem
“mnist”, which will be used in our numerical experiment in Section 5), the required space to
store K only in single precision will be 13.41GB, which may be too large to be fitted into the
memory. On the hand hand, the cost to recompute the matrix every time when it is needed is
also extremely expensive. This difficulty prevents us from using off-the-shell quadratic solvers
which require explicit storage of second order coefficient matrix in the objective function. In
fact, this virtually happens for all the kernel based learning algorithm.

The decomposition method was first proposed to overcome the memory limitation for the
standard binary SVM [34], which has become one of the most popular algorithms [36, 24, 10, 8,
49]. The basic idea is that since all the variables are very difficult to be updated altogether, only
part of variables are chosen to be optimized at each iteration. The index set corresponding to
these selected variables is called the working set. Different decomposition algorithms distinguish
with each other on how to select the working sets, how to solve the subproblems and how to
design the stopping criteria.

2.1 The Basic Decomposition Framework

To describe in detail the decomposition algorithm for Crammer and Singer’s model (2.3) we
need more notations. The gradient of the objective function (2.3a) is

Fi,r(α) =
∂f(α)
∂αi,r

=
m∑

j=1

Ki,jαj,r − βδyi,r, ∀ i = 1, · · · , l; r = 1, · · · ,m. (2.5)

Here δ·,· follows the general definition for delta function(i.e. δi,j = 1 if i = j; otherwise δi,j = 0)
and δyi,r is the rth element of vector eyi . At each decomposition iteration, the indices of the
variables αi, i = 1, · · · , l, are split into the set B of basic variables(this is the working set
mentioned above), and the set N = {1, 2, · · · , l}\B of nonbasic variables. nB is the maximum
size of the working set, i.e. #B ≤ nB for all the iterations. (k) and ∗ are used to superscript the
values at the k-th iteration and the values corresponding to the optimal solution, respectively.
Then the quadratic subproblem at the k-th iteration can be written as:

min
{αi}i∈B(k)

1
2

∑
i,j∈B(k) Ki,jα

T
i αj +

∑
i∈B(k) αT

i (F (k)
i −∑

j∈B(k) Ki,jα
(k)
j ) (2.6a)

s.t. αT
i 1̄ = 0,∀i ∈ B(k); (2.6b)

αi ≤ eyi ,∀i ∈ B(k); (2.6c)

The framework of the decomposition method for problem (2.3) is given in Algorithm 1. In
this frame, the iterates start from a feasible point of (2.3). In each loop of the algorithm, a new
working set is selected based on some given strategy; The quadratic subproblem is constructed
and solved to update the values of variables in the working set, while fixing other variables to their
current values; The stopping criteria is checked to determine whether we should terminate the
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iterative process. Among these steps, How to choose working set is one of the key components for
the decomposition method. In fact, it does not only affect the efficiency of the algorithm, but also
the convergence of the iterates. The stopping criteria are usually designed accompany with the
working set selection rule. Usually, good stopping criteria can save unnecessary computing time
and prevent the occurrence of the phenomenon of early termination. Therefore, we concentrate
on present our new working set selection rule and corresponding stopping criteria in the next
subsection.

Algorithm 1 Decomposition Method Framework
Step 0. Initialization. Input 1 ≤ nB ≤ l, B(0), α(0) ∈ Rl×m and k = 0.
Step 1. Quadratic Subproblem Solution. Obtain {ᾱi}i∈B(k) by solving (2.6). Set

α
(k+1)
i =

{
ᾱi if i ∈ B(k),

α
(k)
i if i /∈ B(k).

Step 2. Gradient Update. Compute

F
(k+1)
i,r = F

(k)
i,r +

∑
j∈B(k) Ki,j(α

(k+1)
j,r − α

(k)
j,r ), ∀ i = 1, · · · , l; r = 1, · · · ,m. (2.8)

Set k := k + 1.
Step 3. Working Set Selection. If stopping criteria is satisfied then output α(k) and stop;
Otherwise choose at most nB indices to form B(k) and go to Step 1.

2.2 The Basic Working Set Selection Rule

When selecting working set, it is desirable for us to choose the set of variables which can make
the largest progress towards the optimal objective function value. This aim can be obtained by
taking arg minB:|B|=nB Qsub(α(k),B) as working set, where Qsub(α(k),B) is the minimum of the
following QP:

min
d

f(α(k) + d)− f (k) (2.9a)

s.t. dT
i 1̄ = 0 ∀i ∈ B; (2.9b)

di ≤ eyi − α
(k)
i ∀i ∈ B; (2.9c)

di = 0, ∀i /∈ B; (2.9d)

However this choice requires solving
(

l
nB

)
QPs (2.9), which is computationally very expensive.

To reduce the expensive computational cost, we propose to remove the quadratic term in the
objective function resulting in the following linear programming problem:

min
d

∑
i∈BdT

i F
(k)
i (2.10a)

s.t. dT
i 1̄ = 0, ∀i ∈ B; (2.10b)

di ≤ eyi − α
(k)
i , ∀i ∈ B; (2.10c)

di = 0 ∀i /∈ B. (2.10d)

Denote the minimum of the above linear programming (LP) problem as Lsub(α(k),B). Then
arg minB:|B|=nB Lsub(α(k),B) is also a good candidate for working set B(k). Grouping constraints
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(2.10b)-(2.10c) by samples, problem (2.10) can be divided into #B independent LPs. Namely,
for each i ∈ B, we solves

min
d̄i

dT
i F

(k)
i (2.11a)

s.t. dT
i 1̄ = 0; (2.11b)

di ≤ eyi − α
(k)
i . (2.11c)

Let zi = eyi − α
(k)
i − di, it can be rewritten as

minz̄i −zT
i Fi(α(k)) + (eyi − α

(k)
i )T Fi(α(k))

s.t. zT
i 1̄ = 1;
zi ≥ 0.

Obviously, the solution is zi = ep, where p ∈ arg maxr F
(k)
i,r . Therefore,

d̄i = eyi − α
(k)
i − ep,

is the solution of LP (2.10). The corresponding optimal objective function value is

d̄T
i F

(k)
i =

∑
{r,F (k)

i,r <maxs F
(k)
i,s }

(F (k)
i,r −max

s
F

(k)
i,s )(δyi,r − α

(k)
i,r ).

Define

`i(α) =
∑

{r,Fi,r<maxs Fi,s}
(Fi,r(α)−max

s
Fi,s(α))(δyi,r − αi,r),∀i = 1, · · · , l. (2.12)

Then,

Lsub(α(k),B) =
∑

i∈B `
(k)
i

Hence, arg minB:|B|=nB Lsub(α(k),B) can be chosen by taking the indices corresponding to the

nB smallest `
(k)
i values defined by (2.12). And the iterations will be naturally terminated when

`(k) = 0. We end this subsection by summarizing this working set selection rule in Algorithm 2.

Algorithm 2 Basic Working Set Selection Rule
Compute `(k) by (2.12).
if `(k) 6= 0, then

Sort `(k) in increasing order; Choose the first nB indices as B(k).
else

Output α(k) as the optimal solution and stop.
end if
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2.3 Global Convergence Proof

In this subsection, we prove the global convergence of Algorithm 1 where the working set is
selected by Algorithm 2.

Lemma 2.1. For a feasible point α of problem (2.3), the vector `(α) vanishes if and only if α
is a KKT point of problem (2.3).

Proof. First we prove that `(α) vanishes at any KKT point. Suppose α is a KKT point of (2.3).
From the Kuhn-Tucker theory[41], there exist Lagrangian multipliers ui and vi such that

Fi,r(α)− vi + ui,r = 0, ∀i, r; (2.13a)
ui,r(αi,r − δyi,r) = 0, ∀i, r; (2.13b)

ui,r ≥ 0, ∀i, r; (2.13c)

hold. Because α is a feasible point of problem (2.3), for any i = 1, · · · , l, there must exist an
index r̂ such that

αi,r̂ − δyi,r̂ < 0.

Otherwise, equality constraints (2.3b) will be violated. Furthermore, from (2.13), we can get

ui,r̂ = 0 and vi = Fi,r̂(α) = max
s

Fi,s(α).

For any i and r, if
Fi,r(α) < vi,

we have that
ui,r > 0 and αi,r − δyi,r = 0.

Thus, by the definition of `(α) in (2.12), it follows that

`i(α) = 0, ∀i = 1, · · · , l.

Now we prove a feasible point α satisfying `(α) = 0 is also a KKT point of (2.3). From the
definition of `(α) in (2.12), we know if

Fi,r(α) < maxsFi,s(α),

there must be
δyi,r − αi,r = 0.

So we can let

vi = max
s

Fi,s(α) and ui,r = vi − Fi,r(α), ∀i = 1, · · · , l; r = 1, · · · ,m.

It can be easily verified that α, u and v satisfy (2.13). This implies that α is a KKT point of
(2.3).

Lemma 2.2. Suppose α is a feasible point of problem (2.3) and kernel function K(·, ·) satisfies
Mercer condition, then for any index p ∈ {1, · · · , l}

Qsub(α, p) ≤ `p(α)
2

min{1,
−`p(α)

4M
},

where M = maxl
i=1{Ki,i + 1}.
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Proof. Consider the following linear programming subproblem LP (α, p):

mindp dT
p Fp(α)

s.t. dT
p 1̄ = 0; dp ≤ eyp − αp.

Let s ∈ arg maxr Fi,r(α). Following the discussion for problem (2.10) in the last subsection, we
know the optimal objective function value of LP (α, p) is `p(α) and the optimal solution is

d̄p = eyp − αp − es,

Since ‖es‖1 = 1, eyp − αp ≥ 0 and 1̄T (eyp − αp) = 1, we have

‖d̄p‖1 = ‖eyp − αp − es‖1 ≤ ‖eyp − αp‖1 + ‖es‖1 = 1̄T (eyp − αp) + 1 = 2.

Because Qsub(α, p) is the objective function value for the following QP by definition,

mind f(α + d)− f(α)
s.t. dT

i 1̄ = 0, di ≤ eyi − αi, i = p;
di = 0, i 6= p;

which can be simplified as

mindp dT
p Fp(α) + 1

2Kp,pd
T
p dp

s.t. dp1̄ = 0; dp ≤ eyp − αp.

and the line segment {td̄p | t ∈ [0, 1]} lies in its feasible region, we have

Qsub(α(k), p) ≤ mint∈[0,1]{d̄T
p Fp(α)t + 1

2Kp,pd̄
T
p d̄pt

2} = mint∈[0,1]{`p(α)t + 1
2Kp,p‖d̄p‖2

2t
2}

Since kernel function K(·, ·) satisfies the mercer condition, Kp,p ≥ 0

mint∈[0,1]{`p(α)t + 1
2Kp,p‖d̄p‖2

2t
2} ≤ mint∈[0,1]{`p(α)t + 1

2(Kp,p + 1)‖d̄p‖2
2t

2}
≤ mint∈[0,1]{`p(α)t + 1

2(Kp,p + 1)‖d̄p‖2
1t

2}
≤ mint∈[0,1]{`p(α)t + 2Mt2}
≤ 1

2`p(α)t∗

where,

t∗ = min{1,
−`p(α(k))

4M
}.

Hence, we have

Qsub(p, α(k)) ≤ 1
2
`p(α(k))min{1,

−`p(α(k))
4M

}.

Theorem 2.3. Suppose the kernel function K(·, ·) satisfies Mercer condition, nB ≥ 1 and {α(k)}
is the sequences generated by Algorithm 1 and working set selection rule Algorithm 2. If {α(k)}
has only finite many elements, the last one is a KKT point of problem (2.3). If it has infinite
many elements, any accumulation point of the sequence {α(k)} is a KKT point of (2.3).
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Proof. If the sequence {α(k)} has only finite many elements, the last iteration point must satisfy
`(α(k)) = 0. By Lemma 2.1, it is a KKT point.

For the rest of the proof, we assume that Algorithm 1 generates an infinite sequence {α(k)}.
Suppose ᾱ is an accumulation point of the sequence. By relabeling {α(k)} if necessary, we can
assume that {α(k)} converges to ᾱ. Because the feasible region of problem (2.3) is bounded in
Rl×m and the iteration points generated by algorithm 2 are always feasible, ᾱ is still in feasible
region and f(ᾱ) has a finite value. Let p is the index such that

`(k)
p = min

1≤i≤l
`
(k)
i = −‖`(k)‖∞.

The last equality is based on the definition of `∞ norm and the fact that all the elements of ` is
negative. Because Algorithm 2 chooses the samples corresponding to the smallest nB elements
in `(k) and nB ≥ 1, index p must be contained in the working set B(k). Hence

f (k+1) − f (k) ≤ Qsub(α(k), p). (2.14)

From lemma 2.2,

f (k+1) − f (k) ≤ 1
2
`(k)
p min{1,− `

(k)
p

4M
} = −1

2
‖`(k)‖∞min{1,

‖`(k)‖∞
4M

}

Sum it from 0 to s we get

1
2

∑s

k=0
‖`(k)‖∞min{1,

‖`(k)‖∞
4M

} ≤ f (0) − f (s+1).

Let s →∞, we have

1
2

∑∞
k=0

‖`(k)‖∞min{1,
‖`(k)‖∞

4M
} ≤ f (0) − f(ᾱ) < +∞.

Consequently,
‖`(ᾱ)‖∞ = lim

k→+∞
‖`(α(k))‖∞ = 0.

This shows that ᾱ is a KKT point of (2.3).

3 Projected Gradient for Quadratic Subproblems

Another important part that affects the efficiency of decomposition method is the solving of
QP subproblems (2.6). In order to make the algorithm more efficient, instead of using the
off-the-shell QP solvers [7, 44, 33, 21], we consider developing a special projected gradient(PG)
method, whose projection step is specially designed for constraints (2.6b)-(2.6c). Without loss
of generality, we assume B(k) = {1, 2, · · · , nB} and use w instead of α to denote the variables in
this section. Then subproblem (2.6) can be rewritten as:

min
w

1
2

∑nB
i,j=1 Ki,jw

T
i wj +

∑nB
i=1 wT

i bi = f̂(w) (3.1a)

s.t. wi ≤ eyi ,∀i = 1, · · · , nB; (3.1b)
wT

i 1̄ = 0,∀i = 1, · · · , nB; (3.1c)

10



where bi = F
(k)
i −∑nB

j=1 Ki,jα
(k)
j ,∀i = 1, · · · , nB.

Theoretically, the projected gradient method can be applied to any problems whose feasible
region are convex[41]. However, because of the high cost for computing the projection to a
general convex set, special techniques have been studied to projected gradient algorithms to
special problems, such as the bound constrained problem or bound constrained problem with
singly linear constraint [16, 35].

For our subproblem (3.1), the feasible region

Ω = {w|wi ≤ eyi , w
T
i 1̄ = 0,∀i = 1, · · · , nB}

is a convex set, which is composed of nB linear constraints together with upper and lower
bounds. There is no ready-made projection routine can be used. So firstly we need to derive an
efficient method for computing the projection. Let PΩ(·) be the projection function on Ω and
ŵ ∈ Rm×nB , PΩ(ŵ) is the solution of the following QP

min
{wi}i∈B

1
2 ||w − ŵ||22 = 1

2

∑
i∈B ||wi − ŵi||22 (3.2a)

s.t. wT
i 1̄ = 0,∀i = 1, · · · , nB, (3.2b)

wi ≤ eyi ,∀i = 1, · · · , nB. (3.2c)

Separate (3.2) into nB individual subproblems, we have

min
wi

1
2 ||wi − ŵi||22 = 1

2

∑m
r=1(wi,r − ŵi,r)2 (3.3a)

s.t. wT
i 1̄ = 0; (3.3b)

wi ≤ eyi . (3.3c)

Suppose we know the Lagrangian multiplier λi for the equality constraint (3.3b), the above
problem can be translated as

min
wi

1
2
||wi − ŵi||22 − λiw

T
i 1̄

s.t. wi ≤ eyi .

Dropping the constant term in the objective function, we get

min
wi

∑m
r=1{1

2w2
i,r − (ŵi,r + λi)wi,r}

s.t. wi ≤ eyi .

This problem can be further divided into m one dimensional subproblems,

min
wi,r

1
2w2

i,r − (ŵi,r + λi)wi,r

s.t. wi,r ≤ δyi,r.

The minimizer is
w∗i,r(λi) = min{ŵi,r + λi, δyi,r}

Substitute it back into the linear constraint in (3.3), we get the following piecewise linear equation
for λi,

1̄T w∗i (λi) =
∑m

r=1(min{ŵi,r + λi, δyi,r}) = 0, (3.4)

11



which can be solved in linear time [16, 35]. Denote the optimal solution as λ∗i , we have

PΩ(ŵ)T = (w∗i (λ
∗
i ))i=1,··· ,nB . (3.5)

Other two things need to be mentioned are our special terminating condition and the choice
of initial steplength. The gradient of objective function (3.1) is

F̂i,r(w) =
∂f̂(w)
∂wi,r

=
∑

j∈BKi,jwj,r + F
(k)
i,r −

∑
j∈BKi,jα

(k)
j,r ,∀i = 1, · · · , nB, r = 1, · · ·m. (3.6)

Define

ˆ̀
i(w) ≡

∑
{r,F̂i,r(w)<maxr F̂i,r(w)}(F̂i,r(w)−max

r
F̂i,r(w))(δyi,r − wi,r), ∀ i = 1, · · · , nB.

Follow the discussion for (2.3) in Section 2, we can easily get the conclusion that w is an
optimal solution of (3.1) if and only if ˆ̀(w) = 0. So the iteration is terminated when ‖ˆ̀(w)‖
is less than a predefined tolerance ε > 0. ˆ̀(w) is also used to construct the initial steplength.
For example, the first step size can be taken as ‖ˆ̀(w(0))‖−1∞ or ‖ˆ̀(w(0))‖−1

1 . Especially, for all
i ∈ B(k), r = 1, · · · ,m, we have

F̂i,r({α(k)
i }i∈B(k)) = F

(k)
i,r and F̂i,r({α(k+1)

i }i∈B(k)) = F
(k+1)
i,r .

So if {α(k)
i }i∈B(k) is inherited as initial point for the inner QP solver, we can get the initial step

length from `(k) = ˆ̀({α(k)
i }i∈B(k)) directly without any extra computation.

The overall algorithm is described in Algorithm 3, which follows the framework of PG method
for general problems with convex feasible region in [3]. Specifically, after getting the projection
point at each iteration, we use the steplength computation method and the adaptive nonmono-
tone strategy proposed in [16] to accelerate the convergence of the PG method.
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Algorithm 3 Projected Gradient Method for Quadratic Subproblems

Step 0. Initialization. Input ε, w(0) ∈ Ω; Compute f̂(w(0)), F̂ (w(0)) and ˆ̀(w(0)); Set
0 < ρmin < ρmax, integer h ≥ 0 and U > 0; Let f̂best = f̂c = f̂(w(0)), fref = ∞, ρ(0) =
‖ˆ̀(w(0))‖−1∞ , s(−1) = y(−1) = 0, u = 0, and q = 0.
Step 1. Termination Test. If ‖ˆ̀(w(q))‖∞ ≤ ε, return w(q) and stop.
Step 2. Projection Computation. ŵ = w(q) − ρ(q)F̂ (w(q)). Obtain λi by solving (3.4) for
i = 1, · · · , nB. Compute

PΩ(ŵ) = (min{ŵi,r + λi, δyi,r})i=1,··· ,nB,r=1,··· ,m.

Step 3. New Iteration Point Selection. If f̂(PΩ(ŵ)) ≤ f̂ref , set w(q+1) = PΩ(ŵ);
Otherwise, set d(q) = PΩ(ŵ)−w(q), θ(q) = arg minθ∈[0,1] f̂(w(q)+θd(q)), w(q+1) = w(q)+θ(q)d(q).
Step 4. Steplength Calculation. s(q) = w(q+1) − w(q), y(q) = F̂ (w(q+1)) − F̂ (w(q)).
Compute h(q) = min {h, q, argmini{s(q−i)T y(q−i) ≤ 0} − 1}.

ρ(q+1) =





ρmax if h(q) = −1;

min{ρmax,max {ρmin,
Ph(q)

i=0 s(q−i)T
s(q−i)

Ph(q)

i=0 s(q−i)T
y(q−i)

}} otherwise.

Step 5. Parameter Update. If f̂ (q) < f̂best, set f̂best = f̂ (q), f̂c = f̂ (q), u = 0;
Otherwise, f̂c := max {f̂c, f̂

(q)}, u := u + 1.
If u = U , set f̂ref = f̂c, f̂c = f̂ (q) and u = 0.
Set q := q + 1 and go to Step 1.

13



4 Efficient Implementation

4.1 Practical Working Set Selection Rule

When applying the working set selection rule in Algorithm 2 directly to the decomposition
framework in Algorithm 1, zigzagging phenomenon(some variables enters and leaves the working
set many times) occurs, which results in slow convergence. We use the ad-hoc technique of
keeping part of indices from previous working sets[24, 48] to avoid zigzagging in practice. To be
more precise, at most nN new indices are allowed to enter into the working set at each iteration,
where 1 ≤ nN ≤ nB. Other indices are taken from the working set of the last iteration. Now
our problem becomes which indices we should inherit to make the algorithm more efficient?

For problem (2.3), if a proper kernel type is chosen, most of the samples are not SVs. Usu-
ally the less SVs there are, the faster the decomposition algorithm converges. Based on this
observation, we should try to keep the number of SVs in the training result as small as possible.
Furthermore, for the problem with noise in training data, most of SVs are BSVs. And the opti-
mal values for these BSVs can always be settled down much earlier than the iteration terminates.
So our first set of candidates for filling working set are the indices whose corresponding variables
satisfy 0 < α

(k)
i,yi

< 1. And the last set of choice are indices of samples which are recognized as
BSVs currently.

Another principle for us to inherit indices is that we should always believe in our computation
results. That is to say, if a variable has been consecutively optimized many times(i.e. its
corresponding index stays in the working set many times), we should have more confidence in
the current value of this variable to be optimal. So the indices staying in working set with small
number of consecutive iterations are selected into the working set again with high priority. The
whole revised working set selection rule is given in Algorithm 4.

Algorithm 4 Practical Working Set Selection Rule
Compute `(α(k)) by (2.12).
if ‖`(α(k))‖∞ > βε then

Set B̂ = B(k) and B(k+1) = ∅.
Sort {1, · · · , l} by {`i(α(k))}l

i=1 in increasing order and add the first nN indices to B(k+1).
Set B̂ := B̂\B(k+1) and divide B̂ into three sets as C0 = {i|i ∈ B̂, 0 < α

(k)
i,yi

< 1}, C1 = {i|i ∈
B̂, α

(k)
i,yi

= 0} and C2 = {i|i ∈ B̂, α
(k)
i,yi

= 1}.
for i=0,1,2 do

while Ci 6= ∅ and #B(k+1) < nB do
Select the index j with lowest number of consecutive iterations from Ci.
B(k+1) := B(k+1) ∪ {j} and Ci := Ci\{j}.

end while
end for
Return B(k+1) as the new working set.

else
Return α(k) and stop.

end if

Because the inequality (2.14) still holds when nN ≥ 1. The global convergence proof in Section
2 also apply to Algorithm 4 by setting ε = 0. To be more clarified, we state this conclusion in

14



the following corollary.

Corollary 4.1. Suppose the kernel function K(·, ·) satisfies Mercer condition, nB ≥ nN ≥ 1 and
{α(k)} is the sequences generated by Algorithm 1 and the working set selection rule in Algorithm
4 with ε = 0. If {α(k)} has only finite many elements, the last one is a KKT point of problem
(2.3). If it has infinite many elements, any accumulation point of the sequence {α(k)} is a KKT
point of (2.3).

4.2 Kernel Evaluation

Kernel evaluation is one of the most time consuming tasks for training. In our decomposition
framework described in Algorithm 1, kernel elements are used in both Subproblem Solution
and Gradient Update steps. To construct the subproblem, KB(k),B(k) is required in (2.6),
which contains n2

B kernel elements. To update the gradient, nB columns of kernel matrix are
required in (2.5). For large scale problem(nB ¿ l), most of the kernel evaluations stem from the
step of gradient update. Therefore, we focus on how to compute kernel efficiently when updating
gradient and ignore the kernel evaluations in subproblem construction step. Three techniques
are employed in all, which will be introduced in the next. One thing need to be stressed is
that none of them is totally new. These basic ideas have been used in several SVM packages
[24, 10, 8, 49]. Therefore, we only introduce the key parts for adapting these techniques to our
special algorithm briefly instead of describing all the details.

For linear kernel K(xi,xj) = xT
i xj , gradient updating formula (2.8) can be restated as

Fi,r(α(k+1)) = Fi,r(α(k)) + xT
i

∑
j∈B(k)(α(k+1)

j,r − α
(k)
j,r )xj ,

which allows us to update gradient without calculating the kernels.
For nonlinear kernel, such as Gaussian or polynomial kernel, the kernel evaluation is inevitable

anyway. We then try to reduce the kernel evaluation times as many as possible by the following
two schemes. Firstly, a least-recent-used cache is maintained to avoid the recomputation of
kernel elements ever being calculated. When the cache buffer is full, the elements being least
recently used are removed from the buffer and the new calculated ones are added in. Secondly,
even kernel elements K·,j of index j are required in (k + 1)th iteration and they are not cached,
we still do not need to calculate this kernel column if the related dual variables are not changed
in this step, i.e., α

(k+1)
j,· = α

(k)
j,· . This is because in gradient updating formulation (2.8), the

individual item K·,j(α
(k+1)
j,· − α

(k)
j,· ) of j in the sum is zero no matter what kernel elements K·,j

are.

4.3 Algorithm Parallelization

Two major steps in the decomposition Algorithm 1 are solving subproblem by the projected
gradient method in Algorithm 3 and updating the gradient by (2.8). Both of these two steps
are time consuming and, fortunately, suitable for parallelization. We illustrate how these steps
can be parallelized in this subsection.

One of the major steps in Algorithm 3 is the projection computing. As derived in Section 3,
the main task for projection is to solve nB independent piecewise linear equations (3.4), which are
naturally parallel with no communication required. This is the first thing reminding us to utilize
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the power of multiprocessors for accelerating the training process. Besides this, calculating and
updating of the gradient(Step 4 of Algorithm 3) can be parallelized as well, whose brief idea is
described as follows. According to (3.6), the gradient of the subproblem can be updated by

F̂
(q+1)
i,r = F̂

(q)
i,r +

∑
j∈BKi,j(w

(q+1)
j,r − w

(q)
j,r ),∀i = 1, · · · , nB, r = 1, · · · ,m. (4.1)

To parallelize the gradient updating calculation, we first distribute the indices of working set
B evenly to the processors. Suppose there are NP processors under consideration. Denote the
index set of processor p as Ip, which satisfies

∪NP
p=1Ip = {1, · · · , nB} and Ip ∩ Ip′ = ∅,∀p 6= p′.

Then each processor p calculates a slice of the whole incremental item in the righthand side of
the equation (4.1), i.e.

vp ≡
{∑

j∈BKi,j(w
(q+1)
j,r − w

(q)
j,r )

}
i∈Ip

.

Then the final incremental item is obtained by assembling the slices from each of the processors.
Note that all the kernel elements KB,B are already calculated and stored in memory before solving
the subproblem, and thus there is no kernel evaluation required for the gradient updating in
this case. We summarize the complete description of the parallel PG method in Algorithm 5
and omit the details which are the same as the serial version in Algorithm 3 to highlight the
parallelization strategy.

Algorithm 5 Parallel Projected Gradient Method for Quadratic Subproblems
Step 0. Initialization.
[Parallelization Part] Distribute indices {1, · · · , nB} to NP processors evenly.
Step 1. Termination Test.
Step 2. Projection Computation. Let ŵ = w(q) − ρ(q)F̂ (w(q)).
[Parallelization Part] For p = 1, · · · , NP , solve (3.4) for λ

(q)
i and compute

w̌i = (min{ŵi,j + λ
(q)
i , δyi,j})j=1,··· ,m ∀i ∈ Ip.

Assemble to get PΩ(ŵ) = w̌ = (w̌i)i=1,··· ,NB

Step 3. New Iteration Point Selection.
[Parallelization Part] For p = 1, · · · , NP , compute d

(q)
i = w̌i − w

(q)
i ,∀i ∈ Ip.

If f̂(PΩ(ŵ)) ≤ f̂ref , set w(q+1) = PΩ(ŵ) and θ(q) = 1; Otherwise, calculate θ(q), set w(q+1) =
w(q) + θ(q)d(q).
Step 4. Steplength Calculation.
[Parallelization Part] For p = 1, · · · , NP , compute vp =

{∑nB
j=1 Ki,jd

(q)
j

}
i∈Ip

and send it

to all the other processors. Update gradient by

F̂
(q+1)
i = F̂

(q)
i + θ(q)

∑nB
j=1 Ki,jd

(q)
j ,∀i = 1, · · · , nB.

Step 5. Parameter Update.

In Algorithm 1, updating the gradient by (2.8) is another time consuming job at each iteration.
Therefore, the incremental item on the right side of equation (2.8) is what we consider to
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parallelize. We first distributed the working set B(k) evenly to NP processors. Each processor p
then calculates the incremental item by summing over the subset Ip,

zi,p ≡
∑

j∈Ip

Ki,j(α
(k+1)
j,r − α

(k)
j,r ),∀i = 1, · · · , l.

The final incremental item is calculated by summing up the resulting zp from all the processors.
The major benefit from this parallel strategy is that the kernel evaluation can be distributed
to multiple processors. Each processor calculates the required kernel elements and stores in its
own cache. As we will see in the experiment section, this parallelization results in remarkable
speedup.

With the parallel projected gradient algorithm and parallel gradient updating strategy, we
summarize the detailed parallel implementation for the decomposition framework (Algorithm 1)
in Algorithm 6.

Algorithm 6 Parallel algorithm for kernel-based multiclass training
Step 0. Initialization. Input 1 ≤ nB ≤ l, NP ≥ 1, B(0) and α(0) ∈ Rl×m; Set k = 0 and
N (k) = {1, · · · ,m}\B(k). Initialize cache Wp = ∅ for p = 1, · · · , NP .
Step 1. Quadratic Subproblem Solution.
[Parallelization Part] For p = 1, · · · , NP , evaluate

(Ki,j)i∈Ip,j=1,··· ,nB and {bi = F
(k)
i −∑

j∈B(k) Ki,jα
(k)
j }i∈Ip .

Obtain {ᾱ}i∈B(k) by (3.1) in parallel by Algorithm 5. Set

α
(k+1)
i =

{
ᾱi if i ∈ B(k),

α
(k)
i if i /∈ B(k).

Step 2. Gradient Update. Bn = {i ∈ B(k)|α(k+1)
i 6= α

(k)
i and Ki,· /∈ ∪NP

p=1Wp, }, Bc = {i ∈
B(k)|α(k+1)

i 6= α
(k)
i and Ki,· ∈ ∪NP

p=1Wp, }. Distribute Bn and Bc evenly to NP processors with
Bn,p and Bc,p as the subset belonging to processor p, respectively.
[Parallelization Part] For p = 1, · · · , NP , evaluate kernel Ki,· for i ∈ Bn,p and store them
to Wp by the least-recently-used principle; calculate

zi,p =
∑

j∈(Bn,p∪Bc,p) K(xi, xj)(α
(k+1)
j − α

(k)
j ),∀i = 1, · · · , l.

Assemble z(k) =
∑NP

p=1 zp and update F (k+1) = F (k) + z(k). Set k := k + 1.
Step 3. Working Set Selection. Test termination and choose B(k) by Algorithm 4.

5 Numerical Experiments

We test the effectiveness and efficiency of the proposed algorithm in this section. All the ex-
periments described are carried out on LSSC-II in the State Key Laboratory of Scientific and
Engineering Computing, Chinese Academy of Sciences. This environment has 256 computa-
tional nodes. Each node is equipped with two 2GHz Xeon processors and 1GB memory. The
serial code is run on one computational node. The parallel version is tested with up to 16 nodes.
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Table 1: Statistics of small data set used in the experiments
Problem #training #test #classes #features β γ

vowel 528 462 11 10 2−1 23

glass 214 N.A. 6 9 2−4 21

satimage 4,435 2,000 6 36 2−2 22

isolet 6,238 1,559 26 617 2−8 2−6

letter 20,000 N.A. 26 16 2−3 22

shuttle 43,500 14,500 7 9 2−3 2−9

mnist 60,000 10,000 10 784 2−2 2−5

protein 67,557 N.A. 3 126 1 2−2

connect-4 78,823 19,705 3 100 2−1 2−4

vechicle(combined) 17,766 6,621 3 357 2−3 2−3

Nine different data sets, which cover a wide range of applications, such as speech and hand
written letters recognition, image classification, bioinformation and etc., are used in our exper-
iment. Data statistics are list in Table 1. Among them, “protein” and “vehicle(combined)”
are downloaded from http://www.csie.nut.edu.tw/~cjlin/libsvmtools/datasets/. Oth-
ers are from UCI repository [2]. Many thanks to both authors for collecting these data and
making them public available.

As mentioned in Section 1, Crammer and Singer’s multiclass SVM model with linear kernel
has been implemented in several well known packages. We focus on training the model with
nonlinear kernels in this work. Therefore, we test the performance our algorithm with nonlinear
kernels in this section. The most generally used RBF kernel K(xi, xj) = e−γ‖xi−xj‖2 are chosen
to train models in the following experiments.

The regularization parameter β and kernel parameter γ are chosen by the tuning method pro-
posed in [23]. For each data set, if its size is less than 10, 000, the whole training data set is used
for tuning, otherwise we uniformly sample 5, 000 examples as the tuning set. Then, the resulting
tuning data set is divided into two parts with 70% for training and 30% for validation. In the
tuning process, the search range for the parameters β and γ are {2−12, 2−11, 2−10, · · · , 20, 21, 22}
and {2−10, 2−9, 2−8, · · · , 22, 23, 24}, respectively. This setting results in 225 pairs of parameter
are explored, which covers a reasonable large tuning space for β and γ. The chosen values whose
corresponding model achieves the best performance in the selected range for each data set are
listed in the last two columns of Table 1. We observed that for the chosen parameter pair,
when increasing or decreasing the parameters further, the performance drops with clear trend.
Therefore, it is believed that the parameters we used in the following are well tuned. Note that
because of the random seed used in partition, different splits of the tuning data set could end up
with slightly different values of β and γ. For the readers who want to duplicate the experiments
exactly, our code and data sets partition are available upon the request to authors.

5.1 Comparison with Crammer and Singer’s Package

As we mentioned in Section 1, Crammer and Singer proposed a decomposition method together
with model problem (2.3), whose working set size is fixed to one. Define

ψi(α) = max
r=1,··· ,l

Fi,r(α)− min
r:αi,r<δyi,r

Fi,r(α),∀i = 1, · · · , l.
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Their algorithm chooses the index corresponding the largest element of ψ(α) as working set at
each iteration and terminates when ‖ψi(α)‖∞ is less than a predefined tolerance. More details
of this algorithm can be found in [14]. The implementation is available at http://www.cis.
upenn.edu/~crammer/code/MCSVM/MCSVM_1_0.tar.gz..

We test the effectiveness of our working set selection rules from two aspects. We first change
ψ with ` in Crammer and Singer’s package, which is just the basic working set selection rule
described in Algorithm 2 with nB = 1. All the other parts of the code are not changed. Their
original code and our modification are referred as “ψ-based” and “`-based” in the following
respectively to represent that different working set selection rules are used. Because the perfor-
mance differences stem only from working set selection schemes, the effect of different working
set selection strategies is well investigated in this situation.

We then developed a new package for solving problem (2.3) in C language. The serial version
is based on Algorithm 1 with the practical working set selection rule in Algorithm 4. The
inner QP solver follows Algorithm 3. We call this implementation as DASMC(Decomposition
Algorithm Solver for Multiclassification). The parallel version(PDASMC)(based on Algorithm
6 and 5) uses standard MPI communication routines(Message Passing Interface Forum) [18] for
message passing among the processes, which can be easily portable on many multiprocessor
systems. The source code is available upon request authors.

We compare “ψ-based”, “`-based” and DASMC on all the seven small data sets used in [14].
Two different cache sizes(400MB and 40MB) are used in the experiments. For other parameters,
“ψ-based” and “`-based” follow the default parameter setting in Crammer and Singer’s package.
For DASMC, ρmin = 10−10, ρmax = 1010, L = 2, q = 2, ε = 10−3, nN = 0.5nB and ε = 0.001.
We run the same experiment three times to reduce the variance of actual computing and report
the average training time on each data set. The computation results are reported in Table
2. Column “sec.”, “it.” and “#kernel” record the training time in seconds, iteration numbers
and kernel element evaluation times respectively. From the result we can see that the same
classification accuracy is achieved on all the test problems. Moreover, “`-based” achieves less
training time than “ψ-based” when the cache size is limited to 40MB. This stems from the fact
that the selecting working set by the value of ` usually leads to less kernel evaluation times. So
when the cache area is not large enough to contain all the kernel elements ever been calculated,
training time is saved. This phenomenon shows that our `-based working set selection rule can
indeed accelerate Crammer and Singer’s algorithm when the cache size, compared with the scale
of the problem, is relatively small.

For DASMC, we use working set size nB = 40 in order to examine the difference between
DASMC with Crammer and Singer’s implementation, whose working set size in fixed to one.
Results are also listed in Table 2. It can be seen that, for tested data sets “mnist”, “isolet” and
“letter”, least training time is achieved by DASMC on both cache sizes. However, for the small
scale problems “vowel”, “satimage” and “glass”, DASMC can not obtain less training time with
larger working set size. This is because for small problems, the PG inner solver consumes most of
the training time. For Crammer and Singer’s implementation, the subproblem corresponding to
only one training sample. So it can be solved analytically with less computation effort. Therefore,
Crammer and Singer’s implementation benefits from the simplicity of the inner solver on small
scale problems. However, for large scale problem, the overall number of iterations needed for
Crammer and Singer’s algorithm will becomes extremely large, which slows down the training
process. So the training time is greatly saved by large working set size in this case. Hence,
we conduct more experiments on larger data sets to further analyze the behavior of our new
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Table 2: Comparison of the training time and accuracy
cache=400MB cache=40MB

Data set Accuracy sec. #kernel it. sec. #kernel
ψ-based

satimage 92.35 22.41 11,890,235 15,615 54.23 42,642,525
shuttle 99.7 3.27 1,420,000 11,479 3.75 1,420,000
mnist 96.26 89.83 14,170,000 17,892 297.66 65,700,000
isolet 96.6 430.2 24,927,048 26,723 1644.94 138,988,878
letter 95.12 300.93 18,170,000 38,596 366.06 139,765,000
vowel 52.16 0.64 231,264 3,965 0.63 231,264
glass 68.28 0.18 20,887 7,230 0.18 20,887

`-based
satimage 92.35 21.02 11,810,405 15,117 41.06 33,346,765

shuttle 99.7 2.06 1,380,000 6,774 2.09 1,380,000
mnist 96.26 92.42 14,095,000 18,662 240.96 51,695,000
isolet 96.6 456.94 22,575,322 30,476 944.76 70,364,630
letter 95.12 242.41 17,950,000 31,165 284.41 94,865,000
vowel 52.16 0.47 230,736 2,781 0.48 230,736
glass 68.28 0.08 20,099 4,037 0.08 20,099

DASMC
satimage 92.35 29.84 12,018,850 650 30.95 15,957,130

shuttle 99.7 2.48 1,790,000 74 2.49 1,790,000
mnist 96.26 45.55 14,405,000 898 64.99 28,435,000
isolet 96.6 225.07 23,498,546 1,451 315.52 43,641,048
letter 95.12 89.36 18,895,000 1,233 101.41 50,995,000
vowel 52.16 0.66 240,240 68 0.68 240,240
glass 68.28 0.66 22127.2 25.6 0.66 22127.2

implementation.
Careful readers may notice that, for the test problems “glass” and “vowel”, the classification

accuracies are lower than the results reported in [23]. However, this does not mean that model
(2.3) performs bad on these two problems. In fact, the classification accuracy is determined by
lots of factors besides the model itself. In our experiment, in order to follow the test settings
of Crammer and Singer described in [14], 5-fold cross validation on training data set is utilized
for “glass”. For data set “vowel”, significant difference of classification performance is observed
between using cross-validation on the training set and testing directly with the existing test set
[38]. In this experiment, we choose the later case to follow the experiment described in [14]. In
[23], the authors conduct a 10-fold cross-validation on the whole of each data set. The more
folds are split for the data set, the better classification performance will be obtained due to
more samples being used for training in each round. We believe that if the same experimental
settings are used as in [23], the same high classification accuracies would be achieved by our
implementation.
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Figure 1: Parallel speedup on mnist(top,left), letter(top,middle), shuttle(top,right), vehi-
cle(combined)(bottom,left), connect(bottom,middle) and protein(bottom,right)

5.2 Relative Speedup of the Parallel Implementation

The multiclass classification with nonlinear kernels for very large scale data set is the widely
admitted challenge task. In fact, we tried to train a nonlinear classifier with the implementa-
tion of Crammer and Singer on the whole “mnist” data set. It turns out that training time
required is prohibitively long for practice. For the same data set, our decomposition based
method achieves the model within an hour by using 4 nodes, and is even faster with more nodes
being employed. Therefore, in this section, we evaluate the relative speedup of our parallel
implementation PDASMC on the six largest problems in Table 1.

Working set size nB is set to 400 in the following if not notified. The relative speedup is
defined as: spr = Ts/Tp, where Ts is the training time spent on a single processor and Tp is the
training time with p processors. We vary the number of processors in the range {1, 2, 4, 8, 16}
and run the code three times on each data set for the same number of processors to reduce the
variance of the computing time in parallel environment. The average training time is used to
compute the ratio. Results are showed in Figure 1. Superlinear speedup is observed on test
problems “mnist”, “connect-4” and “protein”. This phenomenon benefits from the distributed
caching strategy employed in the parallel implementation. However when increasing the number
of processors further, the communication cost becomes heavier and the relative speedup drops
consequently. For problems “letter” and “shuttle”, because the kernel evaluation is not so time
consuming(for example, for “letter” problem, the computing time for kernel evaluation only
accounts for 6.35% of the total training time in the case of single processor), the advantage
of joint cache is not so obvious. Therefore, only sublinear speedup can be attained. For this
kind of problems, the speedup of PDASMC may be improved by either further optimizing the
job distribution among processors or distributing the tasks which are not currently parallelized,
which will be one of our future works.
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Figure 2: Training time and accuracy as a function of ε on mnist(left), connect-4(middle) and
vehicle combined(right)

5.3 Other Behaviors

We use three largest data sets “mnist”, “connect-4” and “vehicle(combined)” in Table 1 to
further analyze the behaviors of PDASMC in this subsection. Since superlinear speedup can be
obtained on these data sets with 4 processors, NP = 4 is used in all the following experiments
for the sake of training time saving.

As it is illustrated in Section 5.1, all the algorithms can achieve almost the same classification
accuracy on the tested data sets by setting ε to 0.001. However, maybe a lower precision also
suffices and reduces the training time at the same time. Therefore, we analyze the sensitivity
of our algorithm to the choice of termination tolerance parameter ε. Termination tolerance ε
is varied from 0.0005 to 0.9 to see the change of the classification accuracy and training time.
We report the results in Figure 2. It can be seen that the training time drops quickly as the
increasing of ε. However, the changes of the classification accuracy become smaller with the
decreasing of ε. So we choose ε = 0.001 as the default value to obtain stable classification
accuracy within reasonable training time. More smaller tolerance is unnecessary according to
the results.

Another thing needs to be inspected is the relationship between total training time and work-
ing set size. Figure 3 gives us some intuitive explanation. The training time drops sharply with
the increasing of working set size at the beginning because of the reduction of iteration numbers.
However, when the working set becomes too large, the time for solving the QP subproblem will
dominate the training procedure and the training time starts to increase gradually. Perhaps we
can exploit and benefit from more larger working set size with more robust inner QP solver.
This topic is one of our future works as well.

At last, we test how PDASMC scales with the number of training samples. We increase the
number of training samples of these three data sets from 5,000 to the whole data set size. The
log training time required for each size is reported in Figure 4. It can be seen that PDASMC
scales roughly in the order of O(n1.8) for these three data sets. Similar results are also observed
on the decomposition methods for the standard binary SVM [24, 49]. Also, we plot the number
of support vectors on different scales of the data sets. This result demonstrates that the training
time is roughly proportional to the number of SVs, which validates our analysis in Section 4.1.

22



10 200 500 800 1100 1400 1700 2000 2300 2600 2900
1500

2500

3500

4500

5500

C
P

U
−

S
ec

on
ds

Working set size

mnist

10 200 500 800 1100 1400 1700 2000 2300 2600 2900
50

1000

20000

Ite
ra

tio
ns

 N
um

.

CPU−Seconds
Iterations Num.

60 200 400 600 800 1000 1200 1400 1600 1800 2000
4500

6500

8500

10500

12500

C
P

U
−

S
ec

on
ds

Working set size

vehicle(combined)

60 200 400 600 800 1000 1200 1400 1600 1800 2000
40

100

1000

10000

62000

Ite
ra

tio
ns

 N
um

.

CPU−Seconds
Iterations Num.

100 300 500 700 900 1100 1300 1500 1700 1900
1900

2400

2900

3400

3900

4400

C
P

U
−

S
ec

on
ds

Working set size

connect−4

100 300 500 700 900 1100 1300 1500 1700 1900
100

1000

5000

10000

20000

Ite
ra

tio
ns

 N
um

.

CPU−Seconds
Iterations Num.

Figure 3: Working set size to training time and number of iteration: mnist(left), vehi-
cle combined(middle) and connect-4(right) data set
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Figure 4: CPU-Seconds and Number of SVs as a function of the number of training samples:
mnist(left), vehicle combined(middle) and connect-4(right)

6 Conclusions

A decomposition algorithm based on the new working set selection rule for problem (2.3) together
with the global convergence proof of the algorithm is presented. A special projection process is
designed by exploiting the structure of the resulting QP subproblem at each iteration. Therefore
PG method is chosen to get the subproblem solution. Techniques for acceleration and paral-
lelization are also given. Both serial and parallel implementations are provided. Experiments
on benchmark problems validate the effectiveness of the new algorithm.

One of the our ongoing work currently is further improving the efficiency of our implementa-
tion. We plan to include other types of QP solver for the subproblem solution, which can handle
very bad scale problems better. Especially, if a proper parallel scheme of the interior point
method(IPM) can be developed for our special QP subproblem (2.6), we believe that switching
to IPM as the subproblem solver can improve the efficiency of the whole training algorithm,
particularly when bad scale subproblems occurred and PG solver needs lots of iterations to
converge. We also consider introducing more careful working set selection strategy to reduce
iteration numbers. One possible way is introducing part of second order information to the
working set selection process. Finally, as pointed by a referee, a careful shrinking strategy can
be used to further reduce the number of kernel evaluations.

23



Acknowledgments

The authors would like to thank two anonymous referees whose comments on the earlier versions
of the paper helped us greatly.

References

[1] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

[2] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[3] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient
methods on convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In COLT’92: Proceedings of the fifth annual workshop on Computational learning
theory, pages 144–152, New York, NY, USA, 1992. ACM.

[5] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: A case study
in handwriting digit recognition. In Proceeding of International Conference of Pattern
Recognition, pages 77–87, 1994.

[6] E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support vector
machines. Computational Optimization and Applications, 12(1-3):53–79, 1999.

[7] R. Byrd, J. Nocedal, and R. Waltz. Knitro: An integrated package for nonlinear optimiza-
tion. In Large-Scale Nonlinear Optimization, pages 35–59. Springer-Verlag, 2006.

[8] C.-C. Chang and C.-J. Lin. Libsvm, http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[9] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated gradient
algorithms for conditional random fields and max-margin markov networks. Journel of
Machine Learning Research, 9:1775–1822, 2008.

[10] R. Collobert, S. Bengio, and C. Williamson. SVMTorch: Support vector machines for
large-scale regression problems. Journal of Machine Learning Research, 1:143–160, 2001.

[11] C. Cortes and V. Vapnik. Support vector networks. In Machine Learning, pages 273–297,
1995.

[12] K. Crammer and Y. Singer. Improved output coding for classication using continuous
relaxation. In Proceedings of the Thirteenth Annual Conference on Neural Information
Processing Systems, 2000.

[13] K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass
problems. In Computational Learning Theory, pages 35–46, 2000.

[14] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

24



[15] K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass
problems. Machine Learning, 2(47):201–233, 2002.

[16] Y.-H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic pro-
grams subject to lower and upper bounds. Mathematical Programming, 106(3):403–421,
2006.

[17] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[18] M. P. Forum. MPI: A message-passing interface standard. Technical report, Knoxville, TN,
USA, 1994.

[19] J. Friedman. Another approach to polychotomous classification. Technical report, Depta-
ment of Statistics, Stanford University, 1996.

[20] J. Fürnkranz. Round robin classification. Journal of Machine Learning Research, 2:721–747,
2002.

[21] E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming. ACM
Transactions on Mathematical Software, 29:58–81, 2001.

[22] Y. Guermeur. Combining discriminant models with new multiclass svms. Neuro COLT2
Technical Report Seriers NC-TR-00-086, LORIA Campus Scientifique, 2000.

[23] C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13:415–425, 2002.

[24] T. Joachims. Making large-scale support vector machine learning practical. In A. S.
B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines.
1998.

[25] E. L. Jörg Kindermann and G. Paass. Multi-class classification with error correcting codes.
In E. Leopold and M. Kirsten, editors, Treffen der GI-Fachgruppe 1.1.3,Maschinelles Ler-
nen, 2000.

[26] S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential
dual method for large scale multi-class linear svms. In KDD ’08: Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
408–416, New York, NY, USA, 2008. ACM.

[27] U. Kreßl. Pairwise classification and support vector machines. In B. Schökopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning,
pages 255–168. MIT Press, 1999.

[28] Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines. Technical Report
1043, Department of Statistics, University of Wisconsin, 2001.

[29] Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines. In Proceedings of
the 33rd Symposium on the Interface, 2001.

[30] Y. Lin. Support vector machines and the bayes rule in classification. Technical Report
1014, Department of Statistics, University of Wisconsin, 1999.

25



[31] E. Mayoraz and E. Alpaydin. Support vector machines for multi-class classification. IDIAP
Research Repor 98-06, Dallel Molle Insitutue for Perceptual Artifical Intelligence, Martigny,
Valais, Switzerland, May 1998.

[32] J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. Roy. Soc. London, 1909.

[33] B. A. Murtagh and M. Saunders. Minos 5.5. user’s guide. SOL 83-20R, Department of
Operations Research, Stanford University, Stanford, CA, USA, 1998.

[34] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an application to
face detection, 1997.

[35] P. M. Pardalos and N. Kovoor. An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Math. Program., 46(3):321–328, 1990.

[36] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines, 1998.

[37] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dag’s for multiclass classifi-
cation. In Advances in Neural Information Processing Systems, volume 12, pages 547–553,
Cambridge, MA, 2000. MIT Press.

[38] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141, January 2004.

[39] L. P. S. Knerr and G. Dreyfus. Single-layer learning revisited: A stepwise procedure for
building and training a neural network. In J. Fogelman, editor, Neurocomputing: Algo-
rithms, Architectures and Applications, New York, 1990. Springer-Verlag.

[40] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004.

[41] W. Sun and Y. Yuan. Optimization Theory and Methods: Nonlinear Programming.
Springer, New York, USA, 2006.

[42] C. H. Teo, A. Smola, S. V. Vishwanathan, and Q. V. Le. A scalable modular convex solver
for regularized risk minimization. In KDD ’07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 727–736, New
York, NY, USA, 2007. ACM.

[43] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. Journal of Machine Learning Research,
6:1453–1484, 2005.

[44] R. J. Vanderbei. LOQO: An interior point code for quadratic programming. Optimization
Methods and Software, 11&12:451–484, 1999.

[45] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc.,
New York, NY, USA, 1995.

[46] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.

26



[47] J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-
TR-98-04, University of London, Department of Computer Science, Royal Holloway, 1998.

[48] G. Zanghirati and L. Zanni. A parallel solver for large quadratic programs in training
support vector machines. Parallel Computing, 29(4):535–551, 2003.

[49] L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support
vector machines on multiprocessor systems. Journal of Machine Learning Research, 7:1467–
1492, 2006.

27


