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Abstract: In this paper we give an review on convergence problems of un-
constrained optimization algorithms, including line search algorithms and trust
region algorithms. Recent results on convergence of conjugate gradient meth-
ods are discussed. Some well-known convergence problems of variable metric
methods and recent efforts made on these problems are also presented.
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1 INTRODUCTION

In this paper, we give some problems about nonlinear programming. These
problems are interesting problems.
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Unconstrained optimization is to minimize a nonlinear function f(z), which
can be written as
min f(x). 1.1
min f(z) (1)

2 THE PROBLEMS

Problem 1. Is there a better steepest descent method?

The steepest descent method is the simpliest method among all optimization
methods that use gradients. At each step, the negative gradient direction is
used as the search direction, namely

Th1 = Tp + op(—gr), (2.1)

where ap > 0 is the stepsize and g = g(zx) = Vf(zx). The advantages of
the steepest descent method are less storage requirement, easy to implement
and robust convergence even for ill-conditioned problems. However, a serve
disadvantage of the steepest descent method is that it converges very slowly
when exact line searches are used[11]. Indeed, zig-zags normally will happen
for steepest descent method with exact line searches. It A very interesting and
surprising result was discovered by Barzilai and Borwei[l] about the steepest
descent method. They suggested that the steplength of the exact line search in
the current iteration, be used in the next iteration. By this simple modification,
they proved that method will converge R-superlinearly for two-dimensional
strictly convex quadratic functions. However, for higher dimension whether the
BB method is superlinearly convergent is unknown. Another related question
is whether we can use the function and gradient values at the previous two
iterations to define the stepsize.

Problem 2. How can we use function values to construct new conjugate
gradient methods?

Conjugate gradient methods use a linear combination of the steepest descent
direction and the previous search direction as the search direction in the current
iteration. A detailed discussion on conjugate gradient methods can be found
in [4] and [2]. All conjugate gradient methods set the search direction by

dk+1 = —9k+1 + Brdi. (2.2)

Different conjugate gradient methods use different formular for S;. Detailed
discussions on conjugate gradient methods can be found in [4] and [3]. The def-
inition of B, depends, generally, on the following values: ||gkl|, [|gx+1ll, 97 r+1,
gi di and g dy,. These values are not directly related to the function reduc-
tion in the previous iteration: f(zg) — f(xgs1). Therefore it would interesting
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to ask whether it is possible to obtain a formular for $; which depends on
fr — fr+1. For example, a possibility could be

i1k
(fk = fot1)/ak — dEgr/2
Problem 3. Three dimensional Minimization Model
A two dimensional minimization model was proposed by Yuan and Stoer,
which defines the next iterate point zx;; by the minimizer of the quadratic
model in the 2-dimensional subspace:

Sk =z + SPAN{—gg,dr1}. (2.4)

Br = (2.3)

A natural extension of this idea is to consider the 3-dimensional subspace:
Sk =Ty +SPAN{—gk,dk_1,yk_1}. (25)

The present of yi_1 is not a surprise as for the one-step limited memory BFGS
method, the search direction di41 can be expressed as the linear combination
of —gk, dr—1 and yg_1. Similar to the 2-dimensional case, the main task is to
estimate the values

91?V2f($k)gk7 y/{-1vzf($k)yk71- (2.6)

The technique used in Yuan and Stoer can still be used, which is to replace
the square of a cosine value by its meanvalue 1/2. A possible way to estimate
gEV?2 f(zr) g is to study the projection of g to the previous directions such as
dk—l and dk_g.

Problem 4. Convergence of DFP method for convex functions with inexact
line search.

This is the long time standing problem in the convergence theory of nonlinear
programming. The DFP method is the very first quasi-Newton method, though
it is not the best one. It is widely regarded that the BEFGS method may be the
best quasi-Newton method, even we do not have convincing theoretical proofs.
There are some studies about the differences between the BFGS method and
the DFP method, for example see Powell[15].

For exact line searches, Dixon[9] proved that all quasi-Newton methods in
Huang’s family will generate identical points, therefore the convergence problem
for quasi-Newton methods is solved as Powell[13] proved the convergence of
DFP method.

If line searchers are not exact, Powell[14] proved the convergence of the
BFGS method assuming the line search conditions are

f(@e + ardr) < fzr) + crandy gr, (2.7)
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dEV f(zr + agdy) > codi V f(z4), (2.8)

where ¢; < ¢p are two positive constants in (0,1). The question is as follows:
whether the DFP method convergence if the line search conditions are the above
two inequalities? Yuan[21] showed that if the DFP method will converge if the
normals of the gradients gi|| are monotone with respect to k. But whether the
method ensures convergence without this artificial assumption is still unknown.

Problem 5. What is the exact convegence rate of quasi-Newton methods?

Assume that the objective function is uniformly convex, and exact line
searches are used at every iteration. Quasi-Newton methods in the Broyden’s
family will generate identical points. And from the famous Dennis-Moré theory
[8], we know that the iterates will converge to the solution z* Q-superlinearly
in the sense that

Zrer = 27| _

lim = 0. (2.9)

k—o0 ”.’L‘k - .’L'*”

However, if we consider all twice continously differential functions, for any given
positive number €, an example can be constructed to show that

lzk+1 = 2*[| = O(llzx — 2*[|"*°) (2.10)

may fail. Therefore the least Q-order of convergence is only 1. It is interesting
to know the exact convergence rate, namely how quick the ratio

k41 — 2]

- (2.11)
llzke — ||

converges to zero. Assume that the objective function is three times continu-
ously differentiable, the best result is obtained by Powell[16]

lze+1 — [l = O(llzk — 2*(||Tk—n+1 — 2*[]).- (2.12)
Under the condition that
(t/Nsklls 851/ llsk1lls oos 85— ng1/ [k —nya ) (2.13)
is uniformly bounded, Ritter showed that
lzet1 — 2%l = O(llzx — 2*|llzk—1 — 2™[]). (2.14)

When n = 2, (2.12) and (2.14) are the same, which is the best result that we
can expect because it is possible that

ks — 2%l = llzx — 2*||llze—1 — 27| (2.15)
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for all k. For n > 2, (2.14) is stronger than (2.12). The question is whether we
could prove (2.14) without the uniformly boundedness assumption on (2.13)?

Problem 6. How can we construct a direct method based on an explicit
formular using f; and s;(i = k,k—1,..,k—m)?

Direct methods are those use only function values. A widely used direct
method is the conjugate direction method[11]. Recently Powell proposed a trust
region type quadratic approximation method, which computes the trial step by
minimizing a quadratic model within a trust region ball. The quadratic model
is an approximation to the objective function using interpolation conditions
in the previous iterations. i The general form for the trial step or the search
direction (depending whether we use trust region or line search) would be

d(xkafk;fkfla"')fkfmaskfla"';skfm) (216)
For a line search type method, we would require that
min ||d(zx, fiy fi—15 s Fomms Sk—15 - Sk—m) — [V2F(@x)] 7'V F (zi)[lw, (2.17)

where ||.||w is some norm in R". For a trust region method, we would require
1
min V f(z;)Td + EdTVQf(wk)d (2.18)

s.t. d=d(mk7fk7fk—17--'7fk—m75k—17---75k—m)7 ”d“ < Ak (219)

The unusual issue here is that the values V f(z) and V2 f(z\) are not available.
For the first subproblem, a possible way is to choose the search direction in the
form

di =Y B s . (2.20)
i=1
The coefficients ng) should be functions of sx_1, ---, Sk—ms ks fo—15 > [f—m-

The question is what are the good formulae for ,35’“’? This approach requires
m > n, because if m < n, all search directions will be in the subspace spaned
by the first initial m directions. Therefore, for m < n, a reasonable way to
define the search direction should be

dp = di + Y B si_s, (2.21)

i=1

where dj, is a random vector.
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Problem 7. What is the best way to use null space technique for solving
nonlinear equations and nonlinear least squares problems?

Nonlinear systems of equations and nonlinear least squares problems are
very common in practice. For our discussions here, we just consider the case of
nonlinear systems of equations. Assume that we want to solve

fi(z)

Flz) = fsz) 0. (2.22)

fnl2)

For linear problems, it is easy to see that we should take the Newton’s step,

namely we can let
F(xg) + Jidy =0 (2.23)

where J}, is the Jacobian matrix. However, for nonlinear problems, either the
Levenberg-Marquardt method or a trust region approach will set a shorter trial
step. Now we suppose that in our problem, some F;(z) are linear functions and
the others are nonlinear. We can also view our problem in this way if some
equations are highly nonlinear and the rest are less nonlinear. For simplicity,
we assume that F;(z)(i = 1,..,I) are linear functions and F;(z)(i = I +1,...,m)
are nonlinear function. In this case, in a trust region method, we would like to
dy, be defined by

min Z (FZ(.'L'k) + dTVFZ(.'L'k))Z (2.24)
i=I+1
subject to
Fi(z) + dTVFi(zp) =0 (i=1,...,1). (2.25)

This is in fact to search on the null space of a subset of equations. In practice,
how to automatically identify the subset of the equations that are more “linear-
like” is the key issue in this approach. Instead using the nonlinearality to define
the set I, we can also use the residuals to selecting equations to be treated as
constraints. Suppose that all equations are nonlinear, it might be reasonable to
devide the equations into two group, those with small residuals and those with
large residuals. Let I be the subset with small residuals, one may consider to
obtain the search direction or trial step by solving the problem

min Y (Fi(zx) + d" VF())? (2.26)
iZ I,

subject to
Fy(xp) +dTVfi(zp) =0 (i € Iy). (2.27)
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Problem 8. Null Space Technique
Let dj be a trial step (for a trust region algorithm) or a search direction
(for a line search direction) at the k — th iteration in a numerical method for
constrained optimization We can always decomposite the vector d into two
parts, one in the null space and the other in the range space. Namely, we can
write
di = hy + v (2.28)

where hy is the null space vector, which is also called the horizontal step, vy
is the range space vector, which is also called the vertical step. The Marotos
Effect may reject the step dj even when it is a superlinearly convergent step.
One remedy for the Marotos Effect is to take a second order correction step dj,.
For example, in equality constrained optimization, the second order step can
be the minimum norm solution of the linearized constraints:

c(zk + di) + Jrd = 0, (2.29)

where Ji is the Jacobian matrix of ¢(z) at . It is easy to see that dy is also
a vertical step, which can also be denoted by 0. Therefore some algorithms
would take two vertical steps and one horizontal step in one single iteration:

Tpy1 = Tk + hp + vg + O (2.30)

However, the vertical step is a Newton’s step, thus it is quadratic convergent.
But in the null space, we need to minimize the Lagrange function. Because
normally we could not afford to compute the Hessian matrix of the Lagrange
function, the horizontal step can not be a Newton step, which converges slower
than quadratic. Therefore, intuitively every iteration should take two steps in
the null space and one step in the range step, namely

Tpt1 = Tk + hg + v + ;Lk (2.31)

where hy, is a correction step in the null space. Indeed, Yuan[22] analyze the
quadratic convergence of such a method. However, in the method studied in
Yuan[22], the Jacobians of the constraints at the non-iterate point zj + hy, + v,
need to be computed. How to balance the computations in the null space
and those in the range space and to maintain a fast convergence speed is an
interesting problem to study.

Problem 9. Celis-Dennis-Tapia Problem

The Celis-Dennis-Tapia Problem is a subproblem arised in trust region al-
gorithms for equality contrained optimization. The CDT problem has the fol-
lowing form:

1
in g'd+ -d'B 2.32
;élélkrhgd+2d d (2.32)
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subject to
AT d+cll2 < € (2.33)
lldllz < A, (2.34)

where g € R, B € R**" symmetric, A € R"*™ ce ®™, £ >0 and A > 0.
Let d* be a solution of the CDT problem (2.32)-(2.34), it can be shown that
there exist two multipliers A and p such that

(B + X + pAATYd* = —(g + pAc), (2.35)
and
AA = ld*[l2) = 0, (2.36)
(€ —|ATd" +c|l2) = 0. (2.37)
ld*]l2 <A, lATd +c]l2 <& (2.38)

Furthermore, the Hessian of the Lagrange function
H(\p) = B+ M + pAAT (2.39)

has at most one negative eigenvalue.
For convex problems (when B is positive definite), we can solve the dual
problem, which can be written as

A 1 —
max—SA% + Bl - ) = (g + pA)THOW g+ pde)  (240)

s.t. A >0, u>0. (2.41)

If the original problem is convex, i.e., B is positive definite, the above dual
problem is to maximize a concave function in one quarter of the plane. In
this case, the dual problem can be easily solved by truncated Newton’s method
proposed by Yuan[20] or the variable elimination method of Zhang[23]. For
general nonconvex problems, Chen and Yuan[7] studies the location of the dual
solution.

Problem 10.The underline properties of the linear systems corresponding sub-
problems

For a SQP method, the search virection dj is a solution of the quadratic
problem

1
min g7 d + EdTBkd (2.42)

subject to
ck + ATd=0. (2.43)
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If By, is the Hessian matrix of the Lagrange function, the SQP step is just
Lagrange-Newton step, as it is the Newton’s step for finding the stationary
point of the Lagrange function[11]. Therefore, if we denote the multipliers of
the QP problem (2.42)-(2.43) by 7, the equality constrained QP is equivalent
to the following linear system:

[ff /(l)k] (fyl) - (‘Z,’j) (2.44)

Now consider the CDT subproblem. The solution dj, of the CDT subproblem
would satisfy (2.35). Define n = u(ATd + c), we can see that

P 560 =- () @49

The Courant penlaty function
1
P(z,0) = f(2) + 50lle()ll3 (2.46)

Consider the Newton’s step for the above penalty function,

[V2f(z1) + 0ALAT + 0 i ci(xr)Viei(zp)]d + Vf(zk) + 0Arer, =0 (2.47)

i=1

Define Wy, = V2f(z) + o3> im, ci(zr)Viei(zr), and o(Afd + cx) = mi, the
above relation can be rewritten as

WA --(%) a9

We can see that the systems (2.44), (2.45) and (2.48) are similar systems.
It is interesting to study the properties of these linear systems, and try to
construct new methods by proposing different linear systems which have similar
structures.

Problem 11. Trust Region Algorithms that allows the trust region bound
Converging to zero?

It is usually that a trust region algorithm will not reduce its trust region
bound if the ratio of the predicted reduction and the actual reduction is greater
than a certain positive number. Therefore, under second order sufficient condi-
tions, when the iterates are close the the solution, the trust region bound will
never be reduced, which ensures that eventually the trust region constraint will
be inactive. Consequently we can establish the local superlinear convergence
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result. This seems to be perfect and it looks like that there is no room to raise
a question. However, two points motivate us to rethink this matter. First, the
bounded away from zero of the trust region bound is a sufficient condition for
the trust region constraint being inactive, but not a necessary condition. In
fact, for any superlinearly convergent trial step dy, as long as the trust region
bound Ay, satisfies

Ag > lldl, (2.49)

the trust region constraint ||d|| < Ay will be inactive. Thus, from (2.49) we
can see that we can allow Ay converging to zero while maintaining the inac-
tiveness of the trust region constraint. Secondly, for some singular problems
it would be better to have a small trust region bound to avoid the iterate
points wandering near the solution set. In fact, for singular nonlinear least
square problems, Yamashita and Fukushima[19] suggest using the Levenberge-
Marquardt method with the parameter chosen by ||F(z)||?>. If we view the
Levenberg-marquardt method in the framework of a trust region algorithm,
a nonzero Levenberg-Marquardt parameter implies that the trust region con-
straint is active. Therefore for sigular problems, the activeness of the trust
region constraint may not be a bad property. Actually, as long as the trust
region bound Ay, is greater than the distance from the current iterate zj to the
solution set X*, the trust region constraint will not harm the local superlinear
convergence. Therefore, it would be desirable to use the trust region bound as
follows

Ay = prd(zy) (2.50)

where ¢(zy) is some kind of approximation to the function dist(x, X*). The
coefficient py is updated from iteration to iteration. For unconstrained opti-
mization problems, one possible choice is ¢(z) = ||V f(z)||. However, Powell
[17] mentioned that this technique may slow the convergence for the case when
f(x) = z*. This simple example indicates that special attentions should be
given to obtain a good approximation to the distance function dist(zy, X*).
Hei[12] has studied the case where the trust region bounds are defined by

Apy1 = R(px)||dx| (2.51)

where R(.) is a certain monotonic function, py is the ratio between the actual
reduction and the predicted reduction, and dj, is the trial step in the k—th
iteration.
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