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Summary. In this paper we present a new trust region algorithm for general
nonlinear constrained optumization probleims. The algorithin is based on the L.,
exact penalty function. Under very mild conditions. global convergence results
for the algorithm are given. Local convergence properties are also studied. It is
shown that the penalty parameter generated by the algorithm will be eventually
not less than the /; norm of the Lagrange multipliers at the accumnulation point. It
is proved that the method is equivalent to the sequennal quadratic programming
method for all large k, hence superlinearly convergent results of the SQP method
can be applied. Numerical resulis are also reported.
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1. Introduetion

We consider the following nonlinear programming problem:

(.1 _ min  f(x)

i
{1.2) subject to ofx) = o P=1,2.... m:
(1.3} ' efxy = 0 i=m.+1,... m
where f{x) and o;{(x) (f = i, ... ) are real functions defined in R, and m > m,

are (wo non-negative integers.

* This work was supported by a grant from Chinese National Science Foundation Grant 18301024
"* Fart of the work was done while the auther was visiting Univesity of Wilrzburg, Germany by
the suppori of Alexander von Humboldt Foundation



916 Y. Yuan

Trust region algorithms for nonlinear programming problem are a class of
new numerical algorithms. The first trust region method for unconstrained opti-
mization is given by Powell [33], though the technique of trust region method is,
in some sense, equivalent to that of the classical Levenberg-Marquardt method
which is 2 method for nonlinear least squares problems and which was first given
by Levenberg [26] and {ater re-derived by Marquardt {27]. Delailed discussions
on the Levenberg-Marquardt method can be found in Moré [28]. A model trust
region algorithm for nonsmooth optimization is given by Fletcher [20]. For un-
constrained optimization problems and nonsmeoth optimization problems, it is
showed that trust region algorithms have very nice convergence properties. Con-
vergence results can be proved provided that the approximate Hessian increases
nol faster than linearly. While for line search algorithms we normally have to
analyze the trace and the determinant of the approximate Hessian which can be
very complex (see [35] and [8)). .

Trust region- algorithms arc generally more reliable than line search algo-
rithms. When the approximate Hessian is ill-conditioned, a line search algorithm
might give a very large search direction, which would break down the algorithm.
In this case, a trust region algorithm would reduce the trust region, and in the
next iteration the new trial step will be not only shorter in length but also closer
to (in direction) the steepest descent direction. and hopefully the new trial step
will reduce the objective function.

Trust region algerithms for unconstrained optimization have been extensively
studied. Convergence results can be found in [29), [34], [38] and [40]. The trust
region subproblem that needs 1o be solved at each iteration is studied in [23] and
{30]. Recently, [31] has proposed an algorithm that combines trust region and
backtracking techniques. Trust region algorithms for nonsmooth optimization are
studied by [18], {20]. [21], [42] and {43]. Trust region algorithms for nonlinear
equations are given in [16]) and [19]. For special constrained problems. trust
region algorithms are analyzed by [6], [13], {14] and [24].

For constrained optimization, most trust region algerithms try to cormbine
trust region ideas with sequential quadratical programming appreach, due to the
success of the SQP method. For equality constrained problems, Celis, Dennis and
Tapia [11] suggested to compute trust region trial step by solving the following
subproblem (the CDT subproblem):

1 .
14 ‘min grd+—d' By d
9 it a, 8 T4 P
{1.5) subject to ex +ALd |l < m

where g = o) = VF{xe). c = e(q). A = Alx) = Velx)', Ay > 0 s the
trust region radius and 7 is a parameter chosen at each iteration. By isann xn
symmeiric matrix being an approximate Hessian of the Lagrange function. In
Celis, Dennis and Tapia [11] and Celis [10], . is chosen so that a fraction of
Cauchy decrease condition on |[ex +AJd[]z. The Cauchy decrease is the reduction
of [|ex + Agd|[> along the stecpest direction —Azcy in the trust region, namely
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In Powell and Yuan [39], 1, satisfies

: . T . , 1
(-7 jaen et Axdlz S e < min |l + Axdl.
where &) < I are two constants i {013,

Another approach is based on null space and range space techmigues. In these
algorithms, the trial step 5, is the surn of a range space step v and a null space
step fig. The range space step and the null space step are also called vertical step
and horizontal step respectively. The range space step v, reduces the linearized
canstraint violation to zero or at leasi to a fraction of current constraint violation.
The null space step A, is computed by minimizing the approximate model in the
null space. For equality constrained problems, Omojokun [32] obtains v, and fy

by solving

(1.8) ' min [ley +Afvl2
(1.9} subject to Hullz < €Ay, 0 < €L
and ¢

110 in gy AY+ = U h
{1.10) AI%}&TGH;C (v + A} + 2(1?;: +h) Belve + A)

(111} subject to iz < of AZ — el 3

respectively. Using an active set strategy, Omojokun extended his algorithm to
general inequality constrained problems, Other algonthms that use null space
step and range space step techniques are given by Byrd, Schoabel. and Shultz
9] and Vardi [41]. _

Recently, Dennis, El-Alem and Maciel [15] give a global convergence theory
for a class of trust region algerithms for equality constrained optimization. They
write the trial step s; as the sum of 5} and s, where 5] and 57 are respectively the
tangential and a relaxed normal components. By “relaxed’, si are not required
to normal 1o the tangent space. s¢ is so computed such that a fraction of Cau-
chy decrease condition on the quadratic model of the linearized constraints. The
tangential component s5; is required to reduce a quadratic model of the Lagrange
function in the tangent space, and this reduction is at least a fraction of Cauchy
decrease of the quadratic model. El-Alem [17] and Dennis, El-Alem and Ma-
ciel [15] show that a generized Steihaug-Toint dogleg algorithm generates trial
steps that satisfy the pair of fraction of Cauch decrease conditions, hence their
convergence resuits can be applied. '

Following the approach of Powell's algorithm for convex composite func-
tions {37}, Burke [4] proposes a general framework for trust region algorithms
for general constrained problems, and proves the global convergence of the al-
gorithims without regulanty hypotheses. It is shown that the convergence results
can be applied to a2 modified SQP algorithm and Fletcher's SH,OF algorithm.
These algorithins are based on exact penalty functions of the following form:
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{1...12} - P(x)=fln)+ odist{c(x)|['}.
where

(1.13) dist{yll} =inf{|ly ~z||. z€&l}
for some fixed norm {}.{| and

(1.14) T={cjc eR".¢,; 20, > m}.

Burke [4] assumes (hal the trial steps 5 are so computed that the predicled re-
duction in the exact penalty function is at least 81 min{By, 4 } for some positive
constants 3, and 3 if x; are bounded away from stationary points. oy is updated
at each iteration. It is required that o is not less than the norm of the Lagrange
multiplier of a linearized mode at the current jterate. Thus. at each iteration (or
at regular intervals) some auxiliary convex programming subproblem needs to
be solved. -

The algorithm we discuss in this paper is based on the Lo, exact penalty
Function. Qur approach is similar to that of Burke [4]. Our main contribution is
that we give a simple technique for updating the penalty parameters, which does
not need to solve any auxiliary subproblems. Global convergence of the algorithm
is proved It is shown that the algorithm preserves the nice local properties of
the SQP method.

Though the L, exact penalty is used in the paper, it can be easily seen that
our results are still true if the norm |||} is replaced by any other norm || [{-
Our motivation for using the [ o, exact penalty function is given in the following
paragraph. _

Most techniques for handling constraints treat all the constraints equally. This
seems to be most reasonable because all constraints must be satisfied at a solution.
However, the following very simple example indicates that this approach may
not be the best one. Suppose. we have two constraints in R

.X'g_—lf'ﬂﬂ

(1.15) . ey (xy.%2)
{115} ('2{.‘&|:.I1} = X - 1=0

which correspond to the well-known Rosenbrock function (for example, see [22]).
Assume that we have a cumrent approximate solution {(—1, 1). Considering the first
order Taylor expansions of (1.4} and (1.5} at the point {—1, 1), it s easy to see
that the feasible sclution for the lineanzad constraints ts (I, —3). which is not
close to the actual feasible point (1,1) of (1.43-(1.5). We can see that the point
(I 13 lies in the feasible set of the linearization of the second consiraint, but it
_ is not near (o any feasible point of the linearization of the first constraint. This

example is too special to make a general claim because the second constraint (1.5)
is exactly a linear function. However, we believe that in general the linearization
of 2 nonlinear equation near a root may give a wrong prediction about far away
roots though it can give a very good local approximation, while the linearization
‘not rear a root may be able to give 2 better over all prediction about all roots.
Hence when there are many constraints, it is likely that the linearization of the
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constraints with larger tesiduals predict the actual feasible region better. That is
the main reason for us to use the I, exact penalty function in the algorithm.

Qur algorithm is presented in Sect. 2. Definitions of different types of statio-
nary points are given in Sect. 3. Global Convergence analyses of the algonthm
are provided in Sect.4 and local convergence analyses are given in Secl. 5. Nu-
merical results are reported in Sect. 6.

2. The algorithm

We define that e(x) = (¢, (x}.... . (x))7 and ¢ ~(x} € R" by

{21} T {xy=cx) i=1... .. m,
i2.Z) ¢; (x)= mnf[¢(x) 0], i=m.+1....m.

It is straightforward to see that the constraint conditions {1.2}-(1.3) are cquivalent
to the following equation:
(23) |Je™(xH |0 =0

The L.. exact penalty function has the following form:
{2.4) P.(xy=flx)+olle™ x|

where o > 0 is a penalty parameter. The L, exact penalty is a special case of a
more general exact penalty function discussed by Burke {3]. Indead, if we define
the set by (1.14} then problem (! .1341.3} can be rewritten as

{2.5) minf{x), s.t. clxyerl. .

And ||e7(x)}|~ can be regarded as a distant from ¢(x) 1o the set I : dist{¢(x), I}
It is obvicus that a feasible point minimizing the L., penalty function must
be a solution of the original nonlinear programming problem (1.13-(1.3). Under
certain conditions It can be proved that a solution of the nonlinear programming
problem 1s also a minimizer of the L. penalty function.
The subproblem that our algorithm needs to solve at every leration xs based
an the I., exact penalty function. it has the following form:

£2.6) min gid + Ed'rﬂkd + opliler + ALdY o
(2.7} subject o dile = A

where g > (15 the penalty parameter. The superscript "- " in (2.0} has the same
- meaning as given in (2.1)-(2.2}. Throughout this paper we vse the notations

(2.8) . () =gld + %d‘ﬂkd + oy [[{ce + Akd} o0
and : |
29 Peix) =P, (x)

Cur algorithm can be stated as follows:
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Algorithm 2.1.

Step | Giveny € R 4, >0 B € R**® symmetnc.
15[ > 4, oy = 0, ko= l
Step 2 Solve subproblem (2.6)-(2 6} giving si;
if 5 = 0 then stop;
Step 3 Calculate
Prlxg) = Prlxe + )
(210) ET TG0 — a0
if r >0 goto Step 45
Aiat = |Isellon/d Xen = 2
k:=k+1; go to Step Z;
Step 4 xpyy = X 5

max[24;,  4|{5el]ec], g > 0.9,
Appl =

¥

Yy 01<rn <09,
minfAr /4, |lsellec/2). e <01 ;
(.11
Generate By
Step 5 if

{2 120(0) — e (53} < Sxop min[ Ay, |leg Hoz],

then oy = 20, and fpyy = 8 /4
else gpey = oy and 841 = &
k:=k+1 and goto Step 2.

In a practical implamantatiﬁn of the algorithm. the stopping criterion In Step
2 should be [|se}|eo < € for some small positive tolerance number. ¢ instead of
5 = 0. The matrix By, is normally generated by adding a lower rank matiix
using an update formula which only depends on first opder derivatives of the
objective function and that of the constraints. '

3. Stationary points

Our convergence analyses in the next section show that a cluster point of the
sequence gencrated by our algorithm can be one of three different type points.
Hence we give their definitions and show their stationarity properties.

Fitst the following definition is standard: '

Definition 3.1. x" is called a stationary point if
. e {(x")y=0; .
2. dTg{x*) > 0 holds for all 4 satisfying _
(3.1) d.rvci(x“]=ﬂs =L me);
{3.2) dT?q{x“} >0, {(gx"y=0i=m+1,. ... ,m)
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A stationary point defined above is also called a Kuhn-Tucker point. Using
the Farkas lemma and pari 2 of Definite 3.1, there exist A/ (i = 1,...,m) such
that

(3.3) glx™) =3 A Vedx™).

i=l
G4 A0 NaglE™)=0, i=m.+l... m

It is straightforward to see that 2 stationary point x” is a minimizer of the appro-
ximate problem where all the functions i {1 1)-{1.3) are replaced by their first
order Taylor expansions at x*.

Definition 3.2, x* is called an infeasible stationary point 1f

Lo fle™ (x| > G o
2 Mingeps H(CI:?C) +A(-’-'“)Id]_”:-:r = ”C{X")_”c.:..

By definition, an infeasible stationary point is a minimizer of the infinity
notm of the linearized constraints.

Lernma 3.3, If x™ is a infeasible stationary point as dr;ﬁnexf above, then there
exist AY(f = 1, ..m)} such that

m
(3.5 3 A VG =0,
=i
and :
{36 AT =D E=m+1,.. m

Therefore the Fritz fohn condition

(3.7) Xglry+ > A Ve{x*) =0

i=I
holds if we ler A3 =0
Proof. Because x" is an infeasible stationary point. d = 0 is a solution of

(3.8) | min {fex™) + AG") Y oo

Thus there exist AT(f = I, .., m) such that (3.53-(3.6) hold. Consequently (3.7) is

true.,
O

It is easy to see from the above lemma that the infeasible stationary point
defined above is the external staticnary point as defined by Burke [4. 5]

Definition 3.4. x” is called a singular stationary point if

o e™ix")=0;
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2. there exist a seguence y; converging to 1" such that ¢c(y: )~ ¥ 0 and

) [t Ge) + Ae) 23 [] 2
3.0 1 =]
(3:9) Foaiid Heloe S e 0e ™ e |le(red oo .

It can be easily shown from the above definition that the columns of A(x™)
are linearly dependent at a singular stationary point x™. The stationary property
of an singular stationary point is give as follows.

Lemma 3.5. [fx" is a singular stationary point as defined above, then there exist
M= 1. .m)such that (3.5)-(3.6) hold. Therefore x* is also a Fritz John point.

Proof. Assume that x™ is a singular stationary pE!int and ik = .1,2,....) 15 a
sequence that satisfy part 2 of Definition 34 Let di{k = 1,2, ..} be such that

: RS 5 e T
(3-1U}||(C(vk)ff’={}ﬂ dif) oo = “d“m{Iﬁ e il e Qu) + AGR) d)~ ”m

Using the first order necessary condition, it can be shown that there exist A,
R7. m € B” and gy > 0 such that

(3.11 Alye)dg + ey = 0
and |
312} Ay € aH}'Ha |3=mfd+c;}—
{3.13) T £ Glldlee lu-z,
(3.14) e flidillos ~ leGe) 7 []5:] =0

Thus, we have that
(3.15) N df Alye)he + pelldi])z0 = 0
which implies that |

- ~dI AN
{3.16) Hp = 2L ®

* Tt e

{t can be seen from (3.12) that
{3.17} (Ae)i =0, Yime

which shows that.
(i) Ay Tene) T +1eG) — c0n) ™1 A
(3.18) RS 11679 a1 VR 1% |
Thus. it follows from the above ineguality and (3.12) that
—~dT A(Ve) e ey dhe — (cOn) + AT A
= clyhe — e Ox) + AT |leo
(3.19} < HeG) o — et + Ae) de) [l
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This inequality . relation (3.16) and limit (2.9) show that
{3.20) fim gy = 0.
k—oo

Hence we have that .
{3.21} kiim‘A(y;,J'Ak =0

Because [JAgf|.. = 1 for all &, {-X;} has a cluster point A", It follows from
{321y and (3.17) that (3.5)-(3.7) hold. O

It should be noted that our definitions of stationary points are strongly asso-
ciate with our algorithim, thus they are not standard. For example, an infeasible
stationary point defined above may not be a stattonary peint if we use the L; ex-
act penalty function instead of the £ ., penalty function. For detailed discussions
on stationary points, see Burke [2].

4. Global convergence

To study convergence properties of the algorithm. we make the following as-
sumption:

Assumption 4.1. [. fix) and c;(x){(i = 1..._ . m} are continuously differentiable.
2. {x¢} and {B,} are uniformly bounded

It is normal to assume the boundedness of {x;}. In the case that {x; } is un-
bounded, it is very likely that the criginal optimization problem may be ill-posed
{that is, it may have no bounded solution}. In real computations, the Tequirement
of boundedness of {8} can be satisfied unless a numerical overfiow happens.
Hlowever, this condition can be relaxed. we shall discuss this issue later in this
section.

First we can show that if the penalty parameter tends to infinity, then the
nfinity norm of the constraint violations converges either 1o zero or to a positive
number. s

Lemma 4.2. {f oy —+ co. then limy_ oo ||cy ||y exits.

Proof. Let k; <k < &3 -2 ... be defined such that gy > o, and op = gy, for
all k € [k;. k1) We define that & = 0. For any £ > & — 0o, assume ap = d;
and o; = 7, we have that
: -1 i .
0 < [P — Pl
< ; o [Pi) = Pl
I 1y
= TGl )i+ 3 pRACORT OB

F=i+l

' 1
@.1) F—[f g — flp + |ie T (@ ea — lle ™ (Moo
&
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Due to the boundedness of {x; }, there exists a constant A such that [f{x)} < M
holds for all . Thus by the definitions of o, and &;. from (4.1) we have that

im supl[fe ™ (xplllor — lleGillsc] < limsup2M Z—

F>E—oo N S R
<  lmsup4M /o;

T
I

{4.2) = 0
Relation (4.1) also implies that

(4.3} Himn sup e 7 (2] |on < 00
FERY

The non-negativeness of Jle ~(x)|.a gives that

(4.4) lim inf [{c ™ (xg)| o = O
E—oo

From (4.2)-(4.4). it is easy 1o prove that Himy_. [[¢ 7 (xg}||ce must exist. D

Lemma 4.3. Jf limy_o oy = 00 and limg_ico |le ™ (Xl > 0. then the se-
quence {x;} is not bounded away from infeasible stationary poinis.

Proof Assume the lemma were not true, there would exist an integer &g and a
compact set §Z such that x, € 2 for all k > kg ¢ (x) # 0 forall x € (2. and
there exists no infeasible stationary peint in §2. By the definition of infeasible
stationary. points and the closedness of {2, there exists a constant z > 0 such that

{4.5) “dri?m [{cCe) + AY d) oo < [l 20 —

holds for all ¥ € £2. We define the vector d (x) to be a soluhon for

(4.6) IJ(c(x)+A{rJ FEh i IIEc(x}+ AT ||oo

Hence, using the convexity of [[{c(x) +A{x}1d}“‘i]m. the boundedness of {B:}
and the definition of s;, we can prove Lhat

A
deons”
]+ O(A)

e (0) — dplsy) 2 (0} — p{d(xx) minll,

A
- in[}, ————
2 oxpminll, e

4.7 > fopdy Z pog minfde fleg lls:]

for all large k, &t being a positive constant. Because ¢ — 00, we have that
-8, — 0 and that {2.12) holds for infinitely many &. This contradicts (4.7). The
contradiction verifies that the lemma is wue. 0

Similarly, we can prove the following lemma:
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Lemmma 4.4. If liny 00 0 = 00 and liMy ..y, [[¢ 7 (2e)]}oa = 0. then the sequence
{xx} Is not bounded away from singular stationary points.

One direct corollary of Lemmas 3.6 and 3.7 is that {o;} remains bounded
if the optimization problem has neither infeasible stationary point nor singular

stationary point.
Now we study the case when ¢ does not tend to infinity. Our main global

convergence theorem states as follows:

Theorem 4.5. [f ox = o for all large k, then the sequence {x;} is not bounded
away from K — T points.

Proof. Without loss of generality, we can assume that o = 0. & = § and
{4.8) - ¢ (0) — ¢(5e} > bomin[A, . [lc, [|oo]

hold for all £.
Let f2 be the set of all accumulation points © of {x; } such that ¢ =(x) = 0. If
the theorem 1s not true, for any ¥ € {2, there exists a constant 7 > 0 such that

(4.9) Jmin_ 8d) < §0) -
where
(4.10) 3y = 9(e)Td + MR + oll(c() + ARV o

and M is a positive constant that satisfies ||By|lz £ M for all k. Because 2 is a
compact set, it is easy to show that there exist positive constants i and 7 such
that

(4.11) jain | G4(d) < 64(0) — min{ A, 1}

provided that dist(xg, {2) < fi, where dist(x. ¥)= min{flx —yllz,y € ¥ } From
the definition of {2, there exists a constant & > 0 such that Be™ (e dles = 6 if
dist{x, ) > . Hence from {4.8), we have that

#(0) — du(se) = bominf{dy Jieg ||eo}
{4.12) ' > Somin{d,. 8}

whenever dist(x, 2y > p. From 4.11), (4.12} and the boundedness of A, there
exists a positive constant & such that

(4.13) $x(0) ~ dy (82) = 84,

holds for all k.
We call an ileration is a “good fteration” if ry > 0.1, We denote the set of

good iterations by K. it follows from (4.13) that
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ca > Z[Pk(&} Py Ot}

(4.14) > ZD 154, .

The fact that 3 cp A < oo implies that 30 & < oo (see [34]). Thus
Ay — 0. From our continuity assumptions. we have that

{(4.15) Pirlxe) = Pelxg +51) = du(0) — () + 0(Ay ).

The above refation and {4.13) implies that 7, — 1, which shows that Ag. = Ay
for all sufficiently large &. This contradicts that 3 p-, A < 0. The contradiction
shows that our theorem is true. O

Tt should be noted that our global convergence results do not require the
assumption of the linearly independence of the gradients of the active constrainis.

Now we consider the relaxation for the boundedness of {5;}. In a practical
algorithm By is usually updated by certain updating techniques. Hence generally
it is not easy to prove explicitly that {8,} is uniformly bounded. However, for
some update formulae . it is not difficult to establish that

{4.16) [|Bel]z < ok

for a positive constant a(for example, see [34] and [33]). The above ineguality

is obviously satisfied if the change in B; at every iteration is uniformly bounded. -
More specifically, (4.16) is automatically satisfied if {|Bye1|| < {|Bx|| + & holds

for every &. Following the techniques of Powell [38] and Yuan [43], we can

establish the convergence results provided that (4.16) holds {or all k. For the

rest of this section, we give up the assumption that {B;} is uniformly bounded.

instead. we only assume that B is updated from iteration to iteration such that

(416} is satistied.

We modify our atgorithm shghﬂy replacing (2.12) by

@arrny ¢ (0) — delse) < Seoy min{Ay, 17k |leg Hloo}

It is easy to see that the validity of Lemma 4.2 is independent of [|B,]| and
independent of inequality (2.12). Hence it is obvious that Lemma 4.2 remains
true. As for Lemma 4.3 if it does not hold. similar to (4.7) it can be shown that .

(4.18)  6(0) — (i) > o min{A; 17k},

which would give a contradiction. Therefore, Lemma 4.3 still holds for the mo-
dified algorithm under the cendition (4.16). In a snmiar way, we can re-establish

Lemma 4.4,
In the case that &; is bounded, if Theorem (4.5) is not true, similar to (4.13)

we can show that :
(4.19) $1(0) — de(se) = dmin{ A, 1/k}.
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which imphes that

{4.20) Zmin{.ﬂh 1k} < oo

EEX

For any subsequence that satisfies that kf|sg]|ee — 0. we have that |{sz||2]|Be|lz —
{t which implies that

(4.21) Pr(xe) — Palne +52) = 1(0) ~ () + 0 (Y saloc).
{4.18) and relation k|[sx|l.. — O give that
{422) $e(0) — de(sa) = foedlsi|leos

for sufficiently large £. 1t follows from (4.21) and (4.22) that ry — 1. Thus
k|lsefloo ts bounded away from zero for all & such that 7 < 0.1, Therefore there
exists a positive constant 3 such that jja |l = 8/k for all & ¢ X where K is
the set of good iterations as defined in the proof of Theorem 4.5. The relation
Hse|laa = B/k for all k ¢ K implies that A, > ﬁfk for some positive constant
3 and all £ {see the proof of Lemma 4 2 in [31]). Conseguently {4.20) gives. that

(4.23) S 17k < o0

117 4

Fhe convergence results are proved under the assumption that the trial step .
s¢ 15 an exact solution of the subproblem (2.6)-(2.7). However, by meodifying
the proofs, one can show that the canvergance resulls ramain valid provided the
predicted reduction of the penalty function satisfies

(4.24) Pred, = ¢4 (0y — ¢ulsp) = Sexmin{Ae ¢/]|B:]|}

for some positive constant &, where ¢ is the violation of the KT conditions which
is defined by

{425) € =lleg [l +lge — AeAl]

and A, being an approximate multplier at the cumrent point x; and it satisfies
that (Ay): > 0,1 > m.. The condition (4.24) i1s an extension of that in Powell’s
trust region algorithm for unconstrained optirmization [34]. It can be shown that
condition {4.24) allows many 1nexact solutions of suh;ﬁmbiem {2.6)-(2.7). We
believe that 5, can be easily computed to satisfy (4.24) even when B; is inde-
finite. This is very important for trust region algorithms, as allowing indefinite
approximation Hessian malrices is an important property and also a motivation
of wust region algorithms.
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&. Local convergence results

Throughout this section, we make the following assumption:

Assumption 5.1. [, f(x) and ¢;{(x}{i =1, .. m) are continuously differentiable.
2.oxy —xy;
3oy =0 for ail large k.
4. {B} is bounded.

it should be noted that our glebal convergence analyses in the previous section
do not imply that x; will always converge to a point. Let 2” be an accumulation
point of {x¢}, results in the previous section imply that x* is one of the three
different types of stationary defined in Sect.3. Part 3 of the above assumption
implies that x" is a £ — T point therefore ¢~ (x") = 0 and 4 g{x*) = 0 holds
for all d satisfying

{5.1) AT (x™ =0, G=1,...,m)
{5.2) dIVe{x") >0, (ax)=0i=m.+1 ... .m}

Let A" be the Lagrange multiplier at x". If second order sufficient condition holds
at x*, for any given & > ||A"[];, there exist a positive constant & and a function
7{t) > 0 defined in (0. &) such that

(3.3) Py(x} = P.{x") + n{t)

holds for all x satisfying
(5.4) 1<~z <4,

for all £ € (0.8). Thus, if g = ¢ > {|A*}]; for all large & (which is very
likely true due to the following lemma), and if 5, — 0, it can be seen from the
maonotonic decreasing property of Pe(x,) and retation {5.3) that x; converges to

T _
First we have the following lemma:

Lemma 5.2. If Assumption 5.1 is satisfied, then x* is a K — T point of problem
(1.1)-{1.3), and

55) " min{liAlh. A€ &)

where (2(x"Y is the sef of all Lagrange multipliers, namely A € {Xx") if and only
if .

{56} glx")— A(x")A =0

and

(5.7} hci(xy .= 0

(5.8) N = 0

hold foralli =m. +1,...,m.
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Proof. It is obvious that x* is a K — 7 point. Hence we only need 1o prove
inequatity (5.5). Because 5 is the minimum of problem (2.6)-(2.7), there exist
by € BR™., m € R® and g > 0 such that

(3.9 Tt + B+ A A + BeTle = 0
whete

(3.10) }'-kfﬂk 1= a”}'“x |y={.l_:d+¢ﬂ_
(5.11) e € Oldl]ss las

and px{ Ay — |Isk|]ce) = 0.1t is easy to see that ||mili = 1 and |[Aefh = 0. IE

{(5.12) liminf gy =0.

£—-o

then 1t follows that
{5.13) liminf”gk +Brsp + A A = O
=

The above relation implies that there exist 2 A € f2{x") and a subsequence of
{=X:} that converges to A Consequently it can be shown that
(5.14) o” = limsup|{Adh > [iAlh
k=roc
which implies (5.5). Now assume that (5.12) does not hold. There exists a positive

constant & such that
{5.15) T 28

for all large &. The above inequality implies that {|sz|le = Ak. Define the set
K*={k| re> 0} We have tha

k—rﬁ!iTEK e = k—rcETEK" llseltes
(5.16) = podm (e = xielleo =0
'Thercfﬂi;ﬁ, it foliows that
(5.17) limsup Ay € limsup 24;=0.
FR—" ko0 REK ™

Thus. it follows from the above relation, (5.15) and the boundedness of {]|B}|}
that

, 1 . m .
HO) = delse) 2 —sig — 55 Bese — ) (whsd Veila)

=1

1
fetlsellos + “Z‘-FIBJ;.E}
(5.18) > Sllfkllm _ EA;E

for all large k. The above inequality, (5.17) and ocur continuity assumplions on
F{x) and e(x} imply that
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(5.19) lim ry =1

k=
which indicates that Ay, > A for ali sufficiently large £. This contradicts
{5.17). Hence our lemma is trug, O

To continue our local analyses we need the following assumptions:

Assumption 5.3, 1. Vo (x"'}i € E UT"Y are linearly independent. where E =
1.2...mJand I*={i| ¢;{x*)=0,m. <i <m}

2.0% = ||N||y where A* is the unigue Lagrange multipliers at the solution
"

Define the matrix A" = {a:(x )} € £ U ) Due to 1} of Assumption 5.3,
A" has full column rank Hence for any vector A € RIFY™ we have that

(520) HA™Ml2 Z A 2/iHA"Y 2.

We also define K be the set of iterations in which the wial step makes the
linearized constraints zerc, namely

(521} K={k| {cx+Ais)y =0}

Lemma 5.4. If the conditions in Assumptions 5. I and 5.3 are satisfied. then there
exisis a positive constant & such that

(522) $(0) ~ Gi(se) = B4y

(5.23) lsellee = D

(5.24) Xeel = Kt

holds for all large k & K. and

{5.25) im A =1
r—oo kG E

froof. From (5.9), the following refation
|lgx — A d" + Besy + Ax{A" — A
(5 26) A" HA" — Ml + Ol — 2" lloo + [I5£]f0)-

holds for all large k. M &k & K, I[lgl[l = gg. Hence, it follows from {5.26} and
{5 2(1 that

i

£

e = (AT = Adlh +e(l)
= [JAGETHA" = Az + o(1)
> AT = Al /ATl +o(D)
I = Adll
= iy o
ell — 1A Ih
2 " Jaide, o
_ o -1l * A
©.27) NS RCEE YT Su iy
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holds for all luge & ¢ K. The above inequality implies that {[si|jes = Ax-
Therefore (5.23) is true for all farge k ¢ . Now similar to (5.18), from (5.27)
we can show that there exists a positive constant § such that (5.22) holds for all
k & K. (5.22) implies (5.25). And (5 24) follows from (525). 0

Lemma 5.5. If the conditions in Assumptions 5.1 and 5.3 are satisfied, then
(528} (clxe) + A0 )Y 5)" =0
holds for all large k.

Proof 1f K defined by (5.21) is a finite set then from Lemma 5.4 (5.22)-(5.25)
nolds for alfl large &£ (5.25) and (5.22) implies that

(5.29) 3 A< o
- k=l

{On the other hand, it follows from (5.25) that
{5.30) A = A

which contradicts (5.29). Therefore we have shown that X has infinitely many

elements.
If the lemma Is not true, there exist infinitely many k£ & K. Hence there exist

a subsequence k(i = 1,2..)such that & — 1 € K and k; ¢ K for all {. If
xg,_1 = X angd § is sufficiently large. then we have that

P10} — ¢y 1 {se,—1) = Gu(0) — e (5 )
(5.31) > BAx > 8llsg <1l /4.

The above inequality implies that r..y — 1, which contradicts x;,_; = X,
Therefore
{5.32) Xp SXp oty

for all large {. The above relation and &, — 1 € X gives that
p = [en— +.AE___15;;,...| ()

E.E; =
(5.33) O(|se— 1%y = 0(AL)

Thus, by the definition of ¢ {d) and (5.33) we have that
(5.34) D0 ~ e (56} < —gise. + O(AL)

{5.22) and (5.34) mmply that gg T —SHsf;Hx +O(§[3;Q.Hg,u).. Without loss of
generality, we assume that sy, /|}sx [lec — 3. IL is obvious that (" s™ < 0. Due
to g* —A*A" =0, we have that

(5.35) | — (5™ AN = ~(g)Ts"

which implies that
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(5.36) A ™) |lo = —(@") /1IN (-
Now we show that -
(3.37) el At = oA )

If the above relation is not true, dug to (5.33), there exists positive constant &
such that
{5.38) er At 2 §A

Hence ]|A; — A"]] will be bounded away from zero for all large /. Consequently,
due 1o the uniqueness of A*, for all large | it follows that

{5.39) Dr—1(0) — b, —1(sk 1) Z 8 Ak
for some constant § > 0. This implies that
(5.40) LTI | I PR A P O T TY

for all Jarge /. Because k; is a subsequence and because A, can not always
increase, without loss of generality, we can assume that #; be an index such that
jekforallf <7 <k,

{541) Ap — AT,
and
{542 H.S‘j”l = A, Ay = 24;

for all & << j < k. (541} and & € K indicate that

G{H-gﬁ IEZ} = O('ﬂ%-p]}
O(AL).

T
"::,-+I }"

i

£5.43)

It follows from (5.38) and (5.43) that
) Tyw T " l-
{5.44) AT A" 2 580k

(5.42) implies that jlxy, —x-all = 0(A,). Thus, Using 9" = A" X" and the above
relation, we have that

1.
(3.43) f{xg,] — fi{xet) 2 Eéﬂta
for al! large {. Becanse (5.33) and
- {5.46) ' ey = 088D,
it follows from (5.45) that

{54?) P,;.'.{xh) - Fj;+1(xl'.'+l} >0

for sufficiently large ¢. This is 2 contradiction. Therefore (537} is true. From

{5.37), we have that
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ek +ALsi) llool X[ = =[(ex +ALs)"TTA"
> (e +ALn)TA
—.fgﬁk; AT - CE_)\"
—sgg" +o{Ag)
~@""s" st oo + o(IEsiclfoo).

]
1

(5.48)
Thus, 1t follows that
(5.49)  |Hex +ALsk) Moo 2 (6" 8" lIse oo/ IX" |1 + 0 Fse. |0).
Therefore, it follows from the defnition of ¢{d}. {5.33) and (5.49} that
1 (0) — by, (s ) = ~glsw — 07 [[ew + ALse) Mo + O(Ise 12,
S (0" s sk lhee + 07" s lise lloc AT 1 + 0l [|co)

(550 = ({” s~ e +o(1)) 5 loc < O

for all large {, which contradicts the definition of 5. The contradiction shows
that our lemma is true. 0

The above lemma shows that for sufficiently large £, the trial step 5, computed
is 2 solution of the following problem:

. .
- Tt

{5.51) | ;l;liﬁ gkd+2d B.d

subject to _

{(5.52) () +d Vo) = 0 i=12,..m

{5.53) el ) +d Ve () > 0, i=me+l,..m

{3.54) e £ A

Thus if &k is very large and the trust region bound is inactive the trial step
generated by Algorithm 2.1 are the same as search directions of the sequential
quadratic programming method (see {71).

To prove iocal superlinear convergence of algorithms for nonlinear cons-
trained optimization, one normally needs the following second order sufficient
condition and a good approximation of the Hessian of Lagrange function in the
-null space of the gradients of active constraints.

Assumption 5.6. 1. f(x) and ¢;(x)(i = 1 .., m) are rwice continucusly differen-
. tiable: :
2. the following inequality

(5.55) dTW'd >0

holds for all nonzere d thar saiisfy
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(5.56) d"Vei(x")

= U’ (R PR
(5.57) dWVWexty = 0 i€l
Where _
(5.58) W= V() — Z{ﬁ")fvzcﬁ(.x");
i=1
3 I
k—ea ise lf2

where P is a projection from I to the null space of (A"

From superlinearly convergence resulis of the SOP method (for example, see
r1]), we have the following lemma:

Lemma 5.7, If the conditions of Assumptions 5.1, 3.3 and 5.6 are satisfied, if
sk llea < s for all laree k. then we fmv_e that

(5.60) fjm X5 —= e _
t—oo  |ltg = x*||ag

Unfortunately, the result (5.60) is not exactly the same as the Q-superlinear
convergence of the iterate points {x; }:

(561} P 1 g 1Y =0,
k= ||xe ~ x*||oo

since (5.60) can not guarantee x.,, = x; +5, for all large &. In fact, Algorithm 2.1
15 eventually a trust region algorithm for minirmizing the nonsmooth function
P« (x) due Lo the fact that o, = o" for all large &. Unfortunately, nonsmoothness
of the objective function may cause umiccessary reduction of the trust region
bound and lead to only linear convergence (for example, see [42]).

The second order step technigue for nonsmocth optimization is proposed by
f21], and its Q-superlinear convergence result is proved in [44] In our case. the
second order correction subproblem is

) . 1
{5.62} :21]!1 gE(s-k +d)+ 5(51 + d}TBt(S;; +d}+ o (el + 5.0+ AId}_ ||

(5.63) 5.t ||ne+d|]x £ A

Using the trust region subproblems (2.6)-(2.7) and {5.62)-(5.63), we can construct
the following second order comection step trust region algorithm, which is a
modification of Algorithm 2.1, :
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Algorithm 5.8

Step 0. Given x; € B, Ay > 0, By € B**" symmetric,
i =0 >0,ex>045:=1.

Step 1. Solve (2.6)-(2.7} giving si;
if Pred, < ¢ and {l¢; |leo = € then stop;
i 116 leo ~ [1(6x +Ax50) ™ [loo < € and [[(cs +Ax5e) " [loo > €
then oy = oy and & := &, /11;
if (2.12) holds then oy = 20 and &4y = 8, /4
else opy = oy and &, = 8¢,

Step 2. Calculate rg;
if rp > 0.73 go to Step 53
solve {5.62)3-(5.63) giving 5;
compuie approximate ratio;

+&m—&m1
B redk !

(564 Fo = ie

where ¢, (d) is the objective function in (5.62);
i rp < 0.25 go to Step 3;
if Fp € [0.5,1.1] then set Ay =25 else set Ay = Ay ;
go to Siep 6.
Step 3. 16 rp -2 Q.75 go to Step 4;
calculate f and ¢ at xz + 5 + 533
if Pyl(ay + 3¢+ 8) 2 Pr(x +5;) then go to Step 4;
calculate 7 = Tt }_}ffﬂi"“* +i).
in computation set 5; (=5 + 5 and rp = 7
if r,. > 075 goto Step 5;
it 7y > 025 go to Step 6.
Step 4. Ayer = |I5e]| 0 /2: g0 10 Step 6.
Step 5. If {[st]|oc < Qi then Ay 2= A and go to Step 6;
if rp > 0.9 then i =44, else Ay :=24;.
Step 6. If i > 0 goto Step 7;
Xpel = X3 B = B k=& + 1 and go to Step 1.
Step 7. Compute Vf and Ve at 3 + 5y
generate Bi.;
Xpap =X+ i k=k+1 and go to Step 1.

For more details of second order correction step technique and convergence
analyses. see [21] and [44]. Similar to the analyses in [44], the following result
can be proved: '

Theorem 5.9. If the conditions of Assumptions 3.1, 5.3 and 5.6 are satisfied,
ther Algorithm 5.8 with € = 0 etther terminates at a K — T point or generates a
sequence {x;} that converges Q-superlinearly:

. ka-i-l —-’-'““m -
(5.65) k]_lﬂﬂ m ={).
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Moreover, the trust region bound 2\ is bounded away from zero, and trust region
constraint [|d]|eo < Ay is inactive for all large k.

6. Numerical results

A FORTRAN subrouting is programmed to test Algerithm 5.8. To solve the
ronsmooth subproblem (2.6)-(2.7). we rewrite it into the following equivalent.
quadratic program:

(6.1) min g+ %arma

subject o

{62) L deni (e v d Ve () 2 0 i=1 .. m
{6.3) durl — () +d Ve () = 0 i=1,.. m
{6.43 —Ap<d <A 0 i=1..8;
{6.5) dw1 20

where d = {(d}, ...,d, ¥, 8 = (@7 d,.1)7. " = (g". o). and By isthe (n+ 1) x (n+1)
matrix that is defined by

= B, G

Simnilarly, the second order comection subproblem (5.62)-(5.63) can also be re-
writlen as a quadratic programming problem. We solve the quadratic program-
ming subproblems by Fletcher's Harwell subroutine VEO2AD.

The test examples that we have run are from [25]. For each problem, we
choose initial parameters A = 10, &y = 10, and 6; = 0.01. The error tolerance
is ¢ = 1019, The algorithm is also terminated when the infinite norm of the

residual for Kuhn-Tucker condition
(&7} Kr = ek |leo + ||gr — Ak A floo

is less than 107'%, where X, is the Lagrange multipliers for the subproblem
{2.63-{2.7). For comparison, the test examples are also solved by Powell's sub-
routine VMCWD, which is 2 very successful line search algorithm. For more
details about VMCWD, see [12} and {36]. The emor tolerance for VMCWD is
also set to 10~1?, which means that VMCWD is terminated when the quadratic
programming model indicates that the objective function plus suitably weighted
multiples of the constraint functions are predicted to differ from their optimal
values by at most 107 1,

For both VMCWD and our algorithm, B is set to 7 and B, is updated by
the Powell's safeguarded BFGS update formula

T .
BnsiBe _nual

By = By —
(6.8) £ Tt T
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Teble 1.
YMCWD ﬂ . Our algoritim
Problem | n | m || NI-NE-NG Residval || NI-NF-NG Residuzl

HS6 | 2 [ 1 7-9-5 1.06 x 107 7-12-8 [ 1.i8x 10770 H
HS28 | 3 | | 3-5-5 2.09 % 1071 10-10-9 3.84 x 10°7 |

HS34 | 3 | B £.9.0 435 % ()~ 7-13-8 982 = 0~

Hssl | 3 [ 2 Failed 9.9.7 £.56 w2 107

HSTL [ 4 | 10 368 334w 1077 6-5-6 5.09 x 10-°

HSED [ 5 | 13 8.10-10 220 » 1071 5-11-8 1.84 > H7

H53 | 8 | 8 13-16-16 527w 1077 20-26-14 .13 107"

Bslog | 7| 4 19-27-27 2.82 % 107 20452} 426 w 10"

HSt13 [ 10| 8 13-18-18 1.3% % 1077 19.21-15 4,12 % 107
HSL19 [ 16 | 4D 5-13-13 1.06 x 10—° 17-18-i3 | 6.08x 107" |

where 7, isthe convex combination of y; and Bysy such that 7 is as close o
¥i as possible and that rﬁsk p ﬂ.lsf B s, is satisfied. v; 15 the difference of the
gradients of Lagrange function at xg + 5 and xy, namely

69 ye=olts) — gl = > Cuk[Vealn +5) — Verla))

=]

VMCWD updates By at every iteration. In our algorithm, gradients of the objec-
tive function and the constraint functions are onty calculated at acceptable points,
therefore y; is only available at successful iterations (namely either the trial step
s; or the second order correction step 5 is accepted ). Thus. in our algorithm By
is updated only at successful iterations.

The calculations were done by a DEC 2100 workstation in double precision
arithmetic. Both algorithms solved all the test problems that we run, except
that VMCWD failed to solve problem HS61. where the gradients of constraint
functions are linearly dependent at the initial point. The numerical results are
listed in Table 1. In the table, the problems are numbered in the same way as in
{25). For example, “HS6" means problem ¢ in Hock and Schittkowski (1981).
NI, NF and NG means numbers of iterations, function evaluations and gradient
evaluations respectively. “Residual™ is the infinity norm of the residual for the
K — T condition {6.7) at the computed solution.

The numerical results in Table 1 favor YMCWD slightly. The aumbers of
gradient evaluations of both algorithms are about the same. But, unfortunately,
our algorithm requires slightly more function evaluations. Qur limited numerical
tests Indicate that our algorithm is comparable to VMCWD.

Because VMCWD, which uses watch-dog techniques, performs better than
the original VFO2AD, we believe that it is interesting to investigate the possibi-
lities of combining trust region and watch-dog technigues.

Toe solve the trust region subproblem (2.6-(2.7} efficiently is important to
the efficiency of our algerithm. Qur cumrent implementation of the algorithm
uses VEO2AD to solve trust region subproblems. When problems HS61, HS71
and HS8( were solved by our algorithm. in some iterations YEO2AD failed to
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provide accurate solutions for subproblem {6.1)-{6.3). It would be desirable to
have a nice subroutine io solve the trust region subproblem (2.6)-(2.7) directly.
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