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Abstract

Interior point methods are very efficient methods for solving large scale linear program-
ming problems. The central path plays a very important role in interior point methods. In
this paper we propose a new central path, which scales the variables. Thus it has the ad-
vantage of forcing the path to have roughly the same distance from each active constraint
boundary near the solution.
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1. Introduction

Interior point methods are one of the most intensively studied topics in optimization. Thou-
sands of publications have been appeared on interior point methods. A very good recent review
is given by [4]. Interior point methods have very good theoretical properties including the
nice polynomial complexity property. And more important is that numerous applications have
shown that interior point methods are very efficient for solving large sparse linear programming
problems. Interior point methods have been proved to be indispensable to semi-definite pro-
gramming, another class of important optimization problems. Interior point methods have also
been applied to nonlinear programming and nonlinear complementary problems. For examples
of detailed discussions, please see ([1, 2, 3]).

Path following algorithms are a class of very important interior point methods for linear
programming. Consider the following standard linear programming problem

min ¢z (L.1)
subject to
Ax = b, x>0, (1.2)

where ¢ € R, b € R™ and A € R™*"™. The dual problem for the above linear program can be

written as
max by (1.3)

subject to

ATy +s=c¢, s >0, (1.4)
where y € R™ are the dual variables and s € R" are the slack variables. If both the prime
problem (1.1)-(1.2) and the dual problem (1.3)-(1.4) have feasible solutions, then both problems
have optimal solutions. And, in this case, for any solution z* of the primal problem and any
solution (y*,s*) of the dual problem, we have that

, (1.5)
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(see, [5]). For any point (z,y,x) that satisfies (1.2) and (1.4), it follows that

e —bvly = ATy +s)Tz — (Az)Ty = sTz > 0. (1.6)
Thus, a solution is obtained as long as the complementarity gap s’ is zero. Because both z
and s are nonnegative, the condition s”z = 0 is equivalent to x;s; = 0 for all 4 = 1,...,n. Let

X = diag[x1,z2, ..., T,)], relation sTz = 0 can be expressed as Xs = 0. Thus, we can write the
optimal conditions in the following form

Az = b (1.7)
Aly+s = ¢ (1.8)
Xs = 0 (1.9)
(z,8) > 0. (1.10)
Define the set
F={(z,y,s) Az =b, ATy +s=c,z>0,s >0}, (1.11)

which is the direct product of the primal feasible set and the dual feasible set. Interior point
methods generate iterate point in the interior of the region F, that is

int(F) = {(z,y,s) Az =b,ATy +s=c,z>0,s > 0}. (1.12)

The central path is defined by the following system

Az = b (1.13)
ATy+s = ¢ (1.14)
Xs = pe (1.15)
(x,s) > 0, (1.16)

where e is a vector whose elements are all 1, and p > 0 is a parameter. It is easy to see that sys-
tem (1.13)-(1.16) is a perturbation of the optimal condition (1.7)-(1.10). Let (x(u),y(u), s(u))
be on the central path, it can be shown that z(u) is a solution of the penalized problem

n
min ¢z — ,uZlog(mi) (1.17)

i=1

subject to
Ax = 0. (1.18)

Many interior point methods use the central path. Some algorithms explicitly use the central
path as they force the interate points to follow the central path. Even for many algorithms
that do not use the central path directly in the algorithm statements, the central path is used
for convergence analyses (see, [5]).

Because of the importance of the central path in the designs and analyses of interior point
methods, we study the center path. From the views of complementary conditions, we propose
a new central path. We believe that this path can also be used to construct new interior point
methods.

A new central path is derived in the next section, and in Section 3 we proposed two ways
to compute search directions based on the new central path and in Section 4 we give a brief
discussion on how our ideas can be further extended.
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2. A Scaled Central Path

The condition (1.15) of the central path requires that all elements of X s are the same when
they approach zero. This can be viewed as that the complementarity conditions

TiS; :0, (’L = 1,...,n) (21)
are replaced or approximated by the relation
TiS; = [, (it=1,..,n). (2.2)

This is reasonable because if some elements of x;s; approach zero much faster than the other
elements, the point (z,y, s) is much closer to the boundary of feasible set of (1.13), (1.10) and
(1.3) than to the solution (z*,y*,s*). Roughly speaking, condition (2.2) prevents the point
(z,y,s) from being too close to any particular active boundary that has the form z; = 0 or
S; = 0.

However, a second look on the central path condition (2.2) reveals that there are rooms to
make an improvement. Suppose at the solution point (z*,y*,s*) the strictly complementary
conditions hold, namely
7 =] +s; >0, (i=1,..,n). (2.3)

(3

When both the primal problem and the dual problem are feasible, such solutions always exist
(see, [5]). Assume that J* is the subset of {1,2,...,n} such that

z; =0, ieJ" and s; =0, i¢gJ". (2.4)

(3 (3

Thus, when a point (z,y, s) on the central path is close to the solution (z*,y*, s*), the distance
from the iterate point (z,y, s) to each active boundary near the solution is

n=L~E (e, (2.5)
S; i
and u "

From (2.3), we can see that the distances from the central path to the active boundaries are
roughly p/7}(i = 1,...,n). These distances will be different because generally the numbers 7;*
need not to be the same. Hence, in this sense, we can say that the central path is not exactly
central as the distances to the active boundaries are not the same.

If we require that

xi=w, L€J" and si=p, 1&€J", (2.7)

when the point (z,y, s) is close to the solution, the distances from this point to all active bound-
aries are the same. But, normally the set J* is not known before the problem is solved. Strict
complementarity conditions (2.3) indicate that near the solution relations (2.7) are equivalent
to

minfz;,s;] =p, (i=1,..,n). (2.8)

The path that satisfies (1.13), (1.14), (1.16) and (2.8) can be regarded as a “strictly central”
path of the feasible region (1.12) near the solution (z*,y*,s*) in the sense that it has the
same distance to all active boundaries. Unfortunately the function min[z;, s;] is a nonsmooth
function. Therefore we use the following approximation

TiSi

——— & min|z;, s;]. 2.9
e miney, 5] (2.9)
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This formula is a very good approximation if min[z;, s;] << max[z;, s;], which is exactly the
case when (z, s) is close to a solution (z*, s*) at which (2.3) holds.
Thus, we can define a new central path by the following system

Az = b (2.10)
ATy+s = ¢ (2.11)
Xs = plx+s) (2.12)
(z,s) > 0. (2.13)

We call this central path the scaled central path.
Similar to the central path (1.13)-(1.16), the scaled central path also has a log penalty
function property.

Theorem 2.1 Let (z(u),y(u),s(p)) be a point in the scaled central path (2.10)-(2.18), then
x(p) is a minimum of

minclz — p Z[ml + plog(z; — p)] (2.14)
i=1
subject to
Az =b. (2.15)

Proof Because both z(u) and s(u) are positive, it follows from (2.12) that

zi(pm) > p. (2.16)
Define .
h(z) =cle — uZ[a:, + plog(z; — p)]. (2.17)
From (2.12), we have that
s(k) = (X () — )~ a(p), (2.18)

where X (u) = diag(x1(n), ..., xn(p)). Thus, we have that
d

s(p) = ¢ = ——h(z(w). (2.19)
The above relation and (2.11) indicates that
d
— = ATy, 2.2
7 h(z(w) y (2:20)

Equations (2.20) and (2.10) show that z(u) is a Kuhn-Tucker point of problem (2.14)-(2.15).
It is easy to see that function h(z) is a convex function for all x that satisfy x; > u. Therefore
x(p) is the unique minimum of problem (2.14)-(2.15) on the region {z|z; > p,i =1,...,n.}. O

The object function (2.14) can be viewed as the sum of a slightly perturbation of the
original objective function (¢ — pe)”x and a shifted penalty function Y log(z; — ). However, it
is not clear what are the advantages of using the penalty parameter to perturbate the objective
function and to shift the log penalty functions.

It is interesting to study the theoretical properties of the scaled central path, and numerical
behaviour of the interior point methods based on the scaled central path. In the following, we
demonstrate that the scaled central path can be used to obtain search directions for solving
linear programming problems.
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3. Search Directions

Interior point methods following the centeral path generate points on or near the central
path (1.13)-(1.16) with p being reduced every iteration. For example, suppose at the k-th
iteration, (x, sk, yx) is on the central path (1.13)-(1.16), we hope that the next iterate is still
on the central path with u being replaced by yu, where v € (0,1) is a constant. Thus search
directions can be obtained by applying Newton’s method to the following system:

Az = b (3.1)
Xs = vpu. (3.3)

For more details, please see [5].

Based on this approach, we can show that the scaled central path (2.10)-(2.13) can be used
to compute search directions. Assume the current iterate point (z,y,s) is in the set (1.12).
Let the search direction be (d,,dy,d;). Directly applying the Newton’s method to the scaled
central path (2.10)-(2.13) (p replaced by yu), we obtain:

Ad, = 0 (3.4)
Atd,+d; = 0 (3.5)
(X —yul)ds + (S —ypl)d, = yp(z +s) — Xs, (3.6)
where S = diag[s1, s2, ..., $n]. Here
p=a"s/(lxll +[slh), (3.7)

and v is a positive number in (0,1). We can rewrite (2.12) (u replaced by yu) as
X(X +85)7 s = yue. (3.8)

Replacing (2.12) by (3.8) and applying Newton’s method again, we obtain

Ad, = 0 (3.9)
ATdy-l-ds = 0 (3.10)
S%d, + X?%d, = yu(X +8S)(x+s) — XS(x + s). (3.11)
Here
p=2z"(X+9)s/n (3.12)

and +, as above, is a positive number in (0, 1).

4. Discussions

We can generalize (2.14)-(2.15) to the following penalty function problem:

min(c — pre)Te — p Z log(x; — p2) (4.1)
i=1
subject to
Az =b. (4.2)

The scaled central path corresponds to the case when py = ps = /pu. And the standard central
path corresponds to the case when puy = uo = 0. It is obvious that new central paths can be
obtained if we choose different p; and puo.
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Now let us have a closer look at the technique that motivates the scaled central path. The
key idea is to approximate the strict central path conditions (2.8) by smooth equations. This
is a problem of choosing a smooth function ¢(z,s) defined in R such that

¢(x,s) & min(z, s), Yz > 0,s > 0. (4.3)

If the above ralation is true, function ¢ (z, s) defined by ¢(z.s) = zs/¢(z, s) is an approximation
of max(z, s). Since max(z,s) = [min(z~1,s )], if

U(z,s) = [pla™, s, (4.4)

we call ¢(z,s) is a self-dual approximation to min(z, s). Relation (4.4) indicates that approxi-
mations for min(z, s) and max(z, s) are symmetric. (4.4) is equivalent to

Qs(mil)sil) = ¢($,S)/$S (45)
The function s
¢1(z,8) = P (4.6)

that we use to obtain the scaled central path satisfies condition (4.5). We can easily see that
¢1(x, s) always approximates min(x, s) from below. If x & s, ¢(z, s) is not a good approximation
of min(z, s). In the extreme case when s = z, ¢(z,s) = min(z, s)/2. An interesting question is
what is the best smooth approximation to the nonsmooth function min(z, s). In the following
we give another approximation formula:

s 422 s>

e e Pk

(4.7)

which also satisfy the dual condition (4.5). One nice property of the the above formula is that
it satisfies
(= + )

5
Hence it seems that (4.7) is a better approximation to min(z, s) than (4.6). But, unfortunately,
(4.7) is more complicated than (4.6). Therefore it is not obvious whether efficient methods can
be constructed based on the central path defined by (4.7), (1.13), (1.14) and (1.16).

We have proposed a new central path for linear programming. This new central path has
the property that the distances from all active boundaries are nearly the same when the path
is close to the solution. We believe that this central path can be used to construct new efficient
interior point methods and to analyze theoretical properties of many interior point methods.
Our analyses also indicate that our ideas can be extended to define different central paths.

min(z, s) < @a(z,s) < (4.8)
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