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Abstract

In the traditional trust region algorithms for unconstrained optimization problem, as the
sequence converges to the minimizer x∗ of the problem, the trust region radius will be larger
than a positive constant. Thus the trust region doesn’t play the role at the end. In fact, it
suffices for the convergence that the trust region radius be larger than O(||xk − x∗||) at the
k-th iterate. In this paper, we propose a new trust region algorithm with the trust region
radius converging to zero. We show that the new algorithm preserves the global convergence
of the traditional trust region algorithms. And the superlinear convergence is also proved
under certain conditions. Numerical results are presented to show that the algorithm is
efficient for small size problems.
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1 Introduction

Many trust region algorithms for the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f(x) is a continuous differential function in Rn, apply the following iterative method. At
the beginning of the k-th iteration, one has an estimate xk of the variables, an n×n symmetric
matrix Bk which need not be positive definite, and a trust region radius ∆k. The gradient

gk = ∇f(xk)

is calculated, and , if it is nonzero, a trial step dk is computed by solving the subproblem

min
d∈Rn

gT
k d + 1

2dT Bkd := φk(d)

s.t. ||d|| ≤ ∆k,
(1.2)

where || · || refers to the 2-norm. Let dk be the solution of (1.2). The predicted reduction is
defined by the reduction of the approximate model, that is,

Predk = φk(0)− φk(dk),
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and the actual reduction is defined by

Aredk = f(xk)− f(xk + dk).

The ratio between these two reductions is defined by

rk =
Aredk

Predk
,

and it plays a key role to decide whether the trial step is acceptable and to adjust the new trust
region radius. The next iterate xk+1 is chosen by the following formula:

xk+1 =
{

xk + dk if rk > c0,
xk otherwise,

(1.3)

where c0 ∈ [0, 1) is a constant. The trust region radius for the next iteration is chosen as

∆k+1 ∈
{

[c3||dk||, c4∆k] if rk ≤ c2,
[∆k, c1∆k] otherwise,

(1.4)

where ci(i = 1, 2, 3, 4) are positive constants that satisfy c1 > 1 > c4 > c3 and c2 ∈ [c0, 1).
Typical values are c0 = 0, or a small constant c0 = 0.0001, c1 = 2, c2 = 0.25, c3 = 0.25, c4 = 0.5.
The advantage of using zero c0 is that a trial step is accepted whenever the objective function is
reduced, hence, it would not throw away a “good point”, which is a desirable property especially
when the number of the varibles are large and when the function evaluations are very expensive.
But we can only obtain the weakly global convergence for algorithms with c0 = 0, that is, at
least one of the accumulation points is a stationary point. While we can obtain the strong global
convergence for those with c0 > 0, that is, all accumulation points are stationary points, for
more details, please see Yuan [14] and [16].

As it is known, when the sequence generated by the traditional trust region algorithm con-
verges to the minimizer of (1.1), the ratio {rk} converges to one. By the updating rule (1.4),
we know the trust region radius ∆k will be larger than a positive constant for all large k. Since
{||xk − x∗||} converges to zero, the trust region will not play the role at the end.

In the next section, we first show the relationship between the trust region method and the
Levenberg-Marquardt method (see [3] [4]). Then based on the work of papers [13] and [1]
concerned with the Levenberg-Marquardt method for nonlinear equations, we come out with
the idea of a new trust region algorithm with the trust region converging to zero. In fact, when
the sequence is sufficiently close to the minimizer, the trust region radius ∆k need not be larger
than a positive constant, it suffices for the convergence that ∆k be larger than O(||xk − x∗||) at
the k-th iteration, which means that {∆k} can converge to zero.

we consider the choice of the trust region radius as ∆k = µk||gk|| under some condition,
where µk is updated according to the ratio rk−1. Since the gradient {gk} converges to zero as
the sequence converges to the minimizer, the radius {∆k} will converges to zero. We present the
new algorithm in Section 3 and show that it preserves the global convergence properties of the
traditional trust region algorithms. In Section 4, we prove the superlinear convergence of the
algorithm under some suitable conditions. Finally in Section 5, we compare the new algorithm
with the traditional trust region algorithm, and present the numerical results.

2



2 The Levenberg-Marquardt method and trust region

The Levenberg-Marquardt method is a method for solving nonlinear equations. It is often men-
tioned when the history of trust region method is discussed. The reason is that the techniques
of trust region is, in some sense, equivalent to the Levenberg-Marquardt method.

Consider the system of nonlinear equations

F (x) = 0, (2.1)

where F (x) : Rn → Rn is continuously differentiable. We try to compute a least squares solution,
which means that we need to solve the nonlinear least squares problem

min
d∈Rn

||F (x)||22. (2.2)

The Gauss-Newton method for (2.2) computes the trial step at the k-th iterate by

dGN
k = −J(xk)+F (xk), (2.3)

where J(xk) = F ′(xk) is the Jocabi, and J(xk)+ is the generalized inverse of J(xk). It is easy
to see that the Gauss-Newton step (3.3) is the minimum norm solution of the subproblem

min
d∈Rn

||F (xk) + J(xk)d||22, (2.4)

which is an approximation model of problem (2.2) near the current iterate xk. The difficulty of
using the Gauss-Newton step is that the Jacobi J(xk) may be ill conditioned, which normally
leads to a very large step dk.

The Levenberg-Marquardt method for nonlinear equations (2.1) computes the trial step by

dk = −(J(xk)T J(xk) + λkI)−1J(xk)T F (xk), (2.5)

where λk ≥ 0 is a parameter being updated from iteration to iteration. The Levenberg-
Marquardt step (2.5) is a modification of the Gauss-Newton step. The parameter λk is used to
prevent dk from being too large when J(xk) is nearly singular.

It is easily seen that dk given by (2.5) is the solution of the problem

min
d∈Rn

||F (xk) + J(xk)d||2 + λk||d||2, (2.6)

which is a modification of (2.4), the additional term λk||d||2 can be viewed as a penalty term
which prevents the step dk from being too large. Define

∆k = ||(J(xk)T J(xk) + λkI)−1J(xk)T F (xk)||, (2.7)

then it is not difficult to show that the Levenberg-Marquardt step (2.5) ia also a solution to the
following subproblem

min
d∈Rn

||F (xk) + J(xk)d||2
s. t. ||d|| ≤ ∆k.

(2.8)

In fact, if we let the trust region radius ∆k be given by (2.7) in every iteration, then Levenberg-
Marquardt algorithm is essentially a trust region algorithm, and in every iteration, this trust
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region algorithm has active constraint, that is, we have ∆k = ||dk||. However, the general trust
region algorithm updates the trust region directly, while the Levenberg-Marquardt algorithm
modifies the parameter λk in every iteration, which in turn modifies the value ∆k from (2.7)
implicitly. Many other papers also consider the Levenberg-Marquardt method and the trust
regionthe method, for more details, please see [5, 6, 15, 16], etc. .

There are various choices of Levenberg-Marquardt parameter λk [5]. Papers [13] and [1]
consider λk = ||F (xk)||2 and λk = ||F (xk)|| for the nonlinear equations (2.1), respectively. Under
the condition that F (x) provides a local error bound near the solution [13], which is weaker than
the nonsingularity, and under some other normal conditions, they obtain the superlinear and
quadratic convergence, which means that the step {dk} → 0. In other words, if the trust region
radius is given by

∆k = ||(J(xk)T J(xk) + λkI)−1J(xk)T F (xk)|| (2.9)

with λk = ||F (xk)|| or λk = ||F (xk)||2, then it follows from ∆k = ||dk|| that {∆k} → 0.
Upon the above observations, we see that we can construct a trust region algorithm with the

trust region radius converging to zero. In fact, we only need to ensure that the trust region
includes the solution x∗ for all sufficiently large k, that is, the trust region radius should be
larger than O(||xk − x∗||). In the following section, we present the new trust region algorithm
with the trust region radius given by ∆k = µk||gk||, where µk is updated according to the ratio
rk−1 and the relation between ||dk|| and ∆k.

3 The algorithm and global convergence

We first present our new trust region algorithm with trust region radius converging to zero, then
show that it preserves the strong global convergence properties of the traditional trust region
algorithms.

Algorithm 3.1. (New trust region algorithm)

Step 1 Given x1 ∈ Rn, B1 ∈ Rn×nsymmetric, ε ≥ 0, c2 > c0 ≥ 0, c5 < 1 ≤ c6, µ1 > 0, ∆1 =
µ1||g1||, k := 1.

Step 2 If ||gk|| ≤ ε, then stop;
Solve (1.2) giving dk.

Step 3 Compute rk = Aredk/Predk; set

xk+1 =
{

xk + dk if rk > c0,
xk otherwise.

(3.1)

Step 4 Choose µk+1 as

µk+1 =





c5µk if rk < c2,

c6µk if rk ≥ c2 and ||dk|| > 1
2
∆k,

µk otherwise;

(3.2)

Compute ∆k+1 = µk+1||gk+1||;
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Step 5 Update Bk+1; k := k + 1; go to Step 2.

The subproblem (1.2) has been studied by many authors, and the following lemmas are well
known (for example, see Gay [2], Moré and Sorensen [8]).

Lemma 3.1. A vector d∗ ∈ Rn is a solution of the problem

min
d∈Rn

gT d + 1
2dT Bd := φ(d)

s.t. ||d|| ≤ ∆,
(3.3)

where g ∈ Rn, B ∈ Rn×n is a symmetric matrix and ∆ > 0, if and only if ||d∗|| ≤ ∆ and there
exists λ∗ ≥ 0 such that

(B + λ∗I)d∗ = −g, (3.4)

λ∗(∆− ||d∗||) = 0, (3.5)

and B + λ∗I is positive semi-definite.

Lemma 3.2. (Powell 1975) If d∗ is a solution of (3.3), then

φ(0)− φ(d∗) ≥ 1
2
||g||min{∆, ||g||/||B||}. (3.6)

Lemma 3.2 shows that the reduction in the trust region model will not be very small unless
||g||∆ or ||g||2/||B|| is very small. This property is very important for proving the global con-
vergence of the trust region algorithms. The global convergence depends on the fact that the
predicted reduction satisfies (3.6). Hence, in stead of solving (1.2) exactly, we can compute a
trial step dk that satisfies

φk(0)− φk(dk) ≥ δ||gk||min{∆k, ||gk||/||Bk||}, (3.7)

where δ is some positive constant. To compute a vector dk that satisfies (3.7) is usually much
easier than solving (1.2) exactly. The vector dk can be calculated by dog-leg type techniques,
(see Powell [10]) or by applying the Newton’s method to the following nonlinear equation (see
Gay [2], Moré and Sorensen[8]),

ϕ(λ) =
1

||(Bk + λI)−1gk|| −
1

∆k
= 0. (3.8)

The subproblem can also be solved approximately by the novel algorithm proposed by Nocedal
and Yuan [9] or by a preconditioned conjugate gradient method (Steihaug [12]).

Theorem 3.1. Assume that f(x) is differentiable and bounded below, g(x) is uniformly contin-
uously. Let {xk} be generated with dk satisfying (3.7). If ε = 0 is chosen in Algorithm 3.1, and
if there exists a positive constant M such that

||Bk|| ≤ M (3.9)

holds for all k, then it follows that

lim inf
k→∞

||gk|| = 0. (3.10)
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Proof. If the theorem is not true, there exists a positive constant τ such that

||gk|| ≥ τ (3.11)

holds for all k. Define the set

I = {k | rk ≥ c2}. (3.12)

Since f(x) is bounded below, it follows from (3.7),(3.9) and (3.11) that

+∞ >
∞∑
i=1

(fk − fk+1)

≥ ∑
k∈I

c2(φk(0)− φk(dk))

≥ ∑
k∈I

δτc2 min{∆k,
τ

M
}.

(3.13)

The above relation and (3.11) indicate that
∑

k∈I
min{µk,

τ

M
} < +∞, (3.14)

If I is finite, we have from (3.2) that µk+1 = c5µk for all large k, so that {µk} → 0. If I is
infinite, then we also have from (3.14) that

lim
k∈I µk = 0. (3.15)

On the other hand, we have from (3.7) that

rk =
Aredk

Predk

= 1 +
o(||dk||) + O(||dk||2||Bk||)

Predk

≤ 1 +
o(||dk||) + O(||dk||2||Bk||)
||gk||min{∆k, ||gk||/||Bk||}

≤ 1 +
o(||dk||)

∆k
→ 1.

(3.16)

The inequality above implies that there exists a positive constant µ∗ such that

µk > µ∗ (3.17)

holds for all sufficiently large k, which gives a contradiction to (3.15). Therefore we see that
assumption (3.11) can not be true. The proof is completed. 2

Theorem 3.2. Under the conditions of Theorem 3.1, if c0 > 0 and if {||Bk||} satisfy (3.9),
then the sequence generated by Algorithm 3.1 satisfies

lim
k→∞

||gk|| = 0. (3.18)
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4 Local convergence

The first convergence result for the traditional trust region algorithm is given by Powell(1975).
It is showed that under some certain conditions, the algorithm converges Q− superlinearly. The
trust region radius will be larger than some positive constant, and the trial step will take quasi-
Newton step. In our new trust region algorithm with trust region radius converging to zero,
we show that the sequence {µk} is bounded, which means that the constraint is inactive for
the subproblem (1.2), so the algorithm also takes the Quasi-Newton step at the end. In the
following, we give the superlinear convergence of our new algorithm.

Theorem 4.1. Assume that the trial step dk in Step 2 of Algorithm 3.1 is a solution of subprob-
lem (1.2). If ε = 0 and the sequence {xk} generated by Algorithm 3.1 converges to x∗, if ∇2f(x)
is continuous in a neighbourhood of x∗ and ∇2f(x∗) is positive definite, and if the condition

lim
k→∞

||(∇2f(x∗)−Bk)dk||/||dk|| = 0 (4.1)

is satisfied, then the sequence {xk} converges to x∗ Q-superlinearly.

Proof. From (4.1) and the positive definiteness of ∇2f(x∗), there exists a constant δ̄ > 0 such
that

dT
k Bkdk ≥ δ̄||dk||2 (4.2)

for all sufficiently large k. Because dk is a solution of the subproblem (1.2), there exists λk ≥ 0
such that

gk + (Bk + λkI)dk = 0, (4.3)

which implies that

Predk =
1
2
dT

k Bkdk + λk||dk||2. (4.4)

The continuity of ∇2f(x) and (4.1) show that

Aredk = −gT
k dk − 1

2
dT

k∇2f(x∗)dk + o(||dk||2)
= Predk +

1
2
dT

k (Bk −∇2f(x∗))dk + o(||dk||2)
= Predk + o(||dk||2).

(4.5)

Then, it follows from (4.2), (4.4) and (4.5) that

lim
k→∞

rk =
Aredk

Predk
= 1. (4.6)

Now, we prove that {µk} is bounded. Otherwise, µk → +∞, and inequality

||dk|| > 1
2
∆k =

1
2
µk||gk|| (4.7)

holds for infinitely many iterations. The positive definiteness of ∇2f(x∗) indicates that there
exist M̂ > δ̂ > 0 such that

M̂ ||xk − x∗|| ≥ ||gk|| ≥ δ̂||xk − x∗|| (4.8)
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M̂ ||xk − x∗||2 ≥ f(xk)− f(x∗) ≥ δ̂||xk − x∗||2 (4.9)

for all large k. Thus, (4.7)–(4.9) show that

M̂ ||xk − x∗||2 ≥ f(xk)− f(x∗)
≥ f(xk + dk)− f(x∗)
≥ δ̂||xk + dk − x∗||2
≥ δ̂(||dk|| − ||xk − x∗||)2
≥ δ̂(

1
2
µkδ̂ − 1)2||xk − x∗||2,

(4.10)

which is impossible if µk → +∞. Therefore we see that {µk} is bounded. This implies

||dk|| ≤ 1
2
∆k (4.11)

for all large k. Thus, the trust region is inactive for all large k. Consequently, the superlinear
convergence result follows from the standard results of Dennis and Moré. 2

5 Numerical results

In this section, We implemented the new Algorithm 3.1 (NTR) in two versions and compared
it with the traditional trust region algorithm (TTR).

In both the tests of TTR and NTR, the trial step dk is computed approximatelyby the
algorithm proposed by Nocedal and Yuan in [9] (Algorithm 2.6) for solving the subproblem
(1.2). We present it as follows.

Algorithm 5.1. (Algorithm for approximate solution of (1.2))

Step 1 Given constants γ > 1 and ε0 > 0, set λ := 0.
If Bk is positive definite, go to Step 2;
else find λ ∈ [0, ||Bk||+ (1 + ε0)||gk||/∆k] such that Bk + λI is positive definite.

Step 2 Factorize Bk + λI = RT
k Rk, where Rk is upper triangular,

and solve RT
k Rkd = −gk for dk.

Step 3 If ||dk|| ≤ ∆ stop; else solve RT q = dk for q, and compute

λ := la +
||dk||2
||q||2

γ||dk|| −∆
∆

; (5.1)

go to Step 2.

The initial trust region radius for both the algorithms is ∆1 = ||g1||, that is, µ1 = 1 for the
new trust region algorithm NTR. B1 is chosen as the identy matrix, and Bk is updated by the
BFGS formula. However, we do not update Bk if

sT
k yk > 0 (5.2)

fails, where
{

sk = xk+1 − xk,
yk = gk+1 − gk.

(5.3)
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We use the parameter c0 = 0.0001, compute

∆k+1 =





min{∆k

4
,
||dk||

2
} if rk < 0.25,

∆k if rk ∈ [0.25, 0.75],
max{4||dk||, 2∆k} otherwise

(5.4)

in the test of TTR, and compute

µk+1 =





c5µk if rk < 0.25,

c6µk if rk ≥ 0.25 and ||dk|| > 1
2
∆k,

µk otherwise

(5.5)

and

∆k+1 = µk+1||gk+1|| (5.6)

in the test of NTR, where c5 = 1/6, c6 = 6 in Version 1 and c5 = 1/6, c6 = 8 in Version 2.
The test problems were those given by Moré, Garbow and Hillstrom [7], and we used the

same numbering system as in [7]. The algorithm is terminated when the norm of the gradient
at the k-th iterate ||gk|| is less than ε = 10−8, or when the number of the iterations exceeds
100(n+1). The results are listed in Table 1. “NF” and “NG” represent the numbers of function
calculations and gradient calculations, respectively; if the method failed to find the stational
point in 100(n + 1) iterations, we denoted it by the sign “–”.

Table 1
Results on some of the problems of Moré, Garbow and Hillstrom

TTR NTR NTR
BFGS Version 1 Version 2

Problem n NF/NG NF/NG NF/NG
1 3 34/28 38/29 34/24
2 6 46/42 44/39 51/43
3 3 7/6 7/6 7/6
5 3 44/38 28/25 29/26
6 3 15/10 12/8 12/8
7 9 78/71 80/71 76/69
8 8 83/64 100/80 63/49
9 2 15/12 16/11 14/12
10 2 46/27 —- —-
12 3 47/37 45/37 44/37
13 6 25/24 26/26 28/26
14 6 94/74 97/66 104/63
15 8 79/66 98/88 82/67
16 2 20/17 17/15 20/18
17 4 117/81 107/71 77/50
18 9 50/34 51/34 49/33

From the table, we see that our new trust region algorithm NTR performs little better than
the traditional trust region algorithm TTR in Version 1. While in Version 2, the NTR usually
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performs better than the TTR. For ten problems, the NTR outperforms the TTR, while only
for five problems, the TTR outperforms the NTR. So it seems that Algorithm (3.1) is efficient
in solving small size optimization problems.
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