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Abstract

The gradient method searches along the steepest descent direction, the opposite direc-
tion of the gradient of the objective function. It can ensure a reduction of the objective
function as long as the current iterate point is not a stationary point. Different choices
of step-sizes lead to various gradient algorithms. However, the exact line search, which
seems to be the best gradient method as it chooses the next iterate by achieving the least
function value, turns out to be a very bad method because it often converges very slowly.
In the recent years lots of researches have been done on how to choose the step-size for
the gradient method, following the amazing result by Barzilai and Borwein(1988), where
a specific choice for the step-size is given and proved to ensure superlinear convergence
for two dimensional convex quadratic problems. In this paper we review some of the
recent advances in this very active and interesting subject, and give new step-sizes for
the gradient method.
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1 Introduction

Consider the unconstrained optimization problem:

min
x∈Rn

f(x), (1.1)

where f(x) is a continuously differentiable function in Rn. Let xk be the current iterate
point, and gk = g(xk) = ∇f(xk) be the gradient vector at xk. The steepest descent method,
which was proposed by Cauchy (1847), defines the next iterate by

xk+1 = xk − α∗kgk, (1.2)

where α∗k > 0 satisfies
f(xk − α∗kgk) = min

α>0
f(xk − αgk). (1.3)
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of CAS
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Cauchy’s method is called as the steepest descent method because it can be shown that the
steepest descent direction of f(x) at xk is −∇f(xk). Curry (1944) modified Cauchy’s method
by replacing α∗k by

ᾱ∗k = min
α>0

{α | ∇f(xk − αgk) = 0}. (1.4)

Namely, ᾱ∗k is the first stationary point of f(x) along the steepest descent direction −∇f(xk).
For strictly convex functions, ᾱ∗k and α∗k are the same.

It is surprising that Cauchy’s method is not a good method though it uses the best
direction (the direction that descends most) and the best step-size (the step-size that gives
the most function reduction). The efficiency of the steepest descent method is first studied
by Greenstadt (1967). Assume that f(x) is the following convex quadratic function:

f(x) =
1
2
xT Hx, (1.5)

where H is a symmetric positive definite matrix. For the above objective function, it is easy
to see the solution x∗ = 0. Greenstadt (1967) showed that the ratio between the reduction
obtained by the Cauchy step and that by the Newton’s method is bounded below by

4µ

(1 + µ)2
(1.6)

where µ = λ1(H)/λn(H) is the ratio between the largest eigenvalue and the smallest eigen-
value of H. Therefore, if the problem is ill-conditioned in the sense that the condition number
of the Hessian matrix H is very large, the steepest descent method may converge very slowly.
The convergence rate of the steepest descent method was proved by Forsythe (1968):

f(xk+1)− f(x∗)
f(xk)− f(x∗)

≤
(

µ− 1
µ + 1

)2

< 1. (1.7)

We can see that the first inequality in the above relations holds as equality for all k if we
choose

H =
[
λ1 0
0 λ2

]
, (1.8)

and

x1 =
( 1

λ1
1
λ2

)
, (1.9)

and λ1 > λ2 > 0. In this example, the iterate points zigzag very slowly, particularly when
λ1 >> λ2. Though this example is a special problem in 2-dimension, it draws the general
picture of the steepest descent method for all n. Akaike (1959) proved that the iterates xk

converge to the solution by asymptotically alternating between two directions - the “cage”
of Stiefel (1952), unless the first search direction is an eigenvector of the Hessian H. Fur-
thermore, Akaike (1959) showed that the two asymptotic directions are in a two-dimensional
subspace spanned by two eigenvectors of H. Therefore, the steepest descent method converges
only linearly and can be very slow if there is a very large ratio between the two eigenval-
ues whose corresponding eigenvectors span the two dimensional subspace containing the two
asymptotic directions. A typical behavior of the steepest descent method is illustrated in the
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following picture where 20 iterates are plotted for the objective function f(x, y) = 100x2 +y2,
starting at the initial point (1, 100).
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Steepest descent with exact line search

In a practical implementation, instead of exact line search (1.3), we can compute αk by
some line search conditions, such as Goldstein conditions or Wolfe conditions (see Fletcher,
1987). It is easy to show that the steepest descent method with such conditions is always
convergent. That is, theoretically the method will not terminate unless a stationary point
is found. However, as the exact line search step-size α∗k normally satisfies such inexact line
search conditions, we can see the zigzag phenomenon will also happen.

A surprising result was given by Barzilai and Borwein (1988), which presented formulae
for the step-size αk which lead to superlinear convergence if the objective function is a convex
quadratic function of two variables.

The result of Barzilai and Borwein (1988) has triggered off many researches on the gradient
method. For example, see Dai (2001), Dai and Fletcher (2003), Dai et al. (2002), Dai and
Yuan (2003,2005), Dai and Zhang (2001), Fletcher (2001), Friedlander et al. (1999), Nocedal
et al. (2000), Raydan (1993, 1997), Vrahatis et al. (2000), and Yuan (2004). In this paper,
we review the recent advances on the general gradient method

xk+1 = xk − αkgk, (1.10)

focusing on the different choices of the step-sizes αk.
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2 The BB Method

The main idea of Barzilai and Borwein’s approach is to use the information in the previous
interation to decide the step-size in the current iteration. The iteration (1.10) is viewed as

xk+1 = xk −Dkgk, (2.1)

where Dk = αkI. In order to force the matrix Dk to have certain quasi-Newton property, it
is reasonable to require either

min ‖sk−1 −Dkyk−1‖2 (2.2)

or
min ‖D−1

k sk−1 − yk−1‖2, (2.3)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1, because in a quasi-Newton method we have
that xk+1 = xk −B−1

k gk and the quasi-Newton matrix Bk satisfies the condition

Bksk−1 = yk−1. (2.4)

Now, from Dk = αkI and relations (2.2)-(2.3) we can obtain two step-sizes:

αk =
sT
k−1yk−1

‖yk−1‖2
2

, (2.5)

and

αk =
‖sk−1‖2

2

sT
k−1yk−1

(2.6)

respectively. For convex quadratic functions in two variables, Barzilai and Borwein (1988)
shows that the gradient method (1.10) with αk given by (2.5) converges R-superlinearly and
R-order is

√
2. To be more exact, we have the following result.

Theorem 2.1. (Barzilai-Borwein, 1988) If f(x) is a strictly quadratic convex function
with 2 variables. The gradient method with BB step-size (2.5) almost always converges R-
superlinearly in the sense that

‖gk‖ ≤ Cλ−(
√

2)k
(2.7)

holds asymptotically, where λ = σ1(H)/σ2(H), C is a constant independent of k.

For the same objective function f(x, y) = 100x2 + y2 and the same starting point given
in the previous section, the BB method produces the iterates as in the following picture (the
first 9 iterations are given):
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Steepest descent with Barzilai−Borwein Step

We can easily see that the BB method finds a very accurate solution after 9 iterations.
It is proved by Raydan (1993) that the BB method is global convergent for any n if the

objective function is a convex quadratic. However, for n > 2, no superlinear convergence
results have been established for the BB method, though numerical results indicates quite
offen the BB method converges superlinearly.

As proved by Akaike (1959), the steepest descent method with exact line search will
eventually reduce to a two-dimensional subspace spanned by two eigenvectors. This prop-
erty, which was discovered by Dai and Fletcher (2003), is not possessed by the BB method.
Actually, asymptotically the directions generated by the BB method spanned the whole space,
namely the search directions of the BB method will not asymptotically converges to any lower
dimensional subspace.

Due to the unexpected theoretical properties and the striking numerical performances
of the BB method, it inspired lots of researches on the gradient methods, as such methods
are widely used. In the next section, we will review the important advances on the different
choices of the step-sizes αk in the gradient method (1.10).
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3 Some step-sizes for the gradient method

For simplicity, we assume that the objective function is the convex quadratic (1.5). It is easy
to see that the Cauchy step-size is

α∗k =
‖gk‖2

2

gT
k Hgk

. (3.1)

It is interesting to notice that the BB step-size (2.6) is the Cauchy step-size in the previous
iteration:

αBB
k =

sT
k−1sk−1

sT
k−1yk−1

= α∗k−1. (3.2)

Because φ(α) = f(xk −αgk) is a convex quadratic function attaining its minimum at α∗k,
it is obvious that

φ(α) < φ(0) (3.3)

if and only if
α ∈ (0, 2α∗k). (3.4)

The above condition is a necessary and sufficient condition for the step-size ensuring a re-
duction in the objective function, namely f(xk+1) < f(xk).

For any step-size αk, the gradient method (1.10) gives that

gk+1 = (I − αkH)gk (3.5)

which implies that
‖gk+1‖2 ≤ ‖I − αkH‖2‖gk‖2. (3.6)

Minimizing the right hand side of the above inequality, Elman and Golub (1994) suggested
that

αOPT1
k =

2
λ1(H) + λn(H)

. (3.7)

The step-size αOPT1
k satisfies (3.4) because α∗k ≥ 1/λ1(H). This step-size requires the esti-

mates of the largest and smallest eigenvalues of H, which are generally not easy to obtain.
An approximate to the Cauchy step (3.1) is the following

αOPT2
k =

‖gk‖2

‖Hgk‖2
, (3.8)

which was proposed by Dai and Yang (2001). They used the superscript “OPT2” as it turned
out that this step-size will asymptotically converges to αOPT1

k . Numerical results (Dai and
Yang, 2001) indicate that both (3.7) and (3.8) behave very similar to the Cauchy step, and
the search directions also converge to a two-dimensional subspace asymptotically.

One possible reason for the inefficiency of the Cauchy step (3.1) is that a constant criterion
has been used in choosing the step-size, which leads a stable dynamic system giving slow
convergence. To find a potential way to overcome this, Dai and Yuan (2003) proposed an
alternate minimization (AM) gradient method, which minimizes the objective function and
the norm of the gradient vector alternately. That is, the step-size is defined by

αAM
k =





gT
k gk

gT
k Hgk

, if k is odd;

gT
k Hgk

gT
k H2gk

, if k is even.
(3.9)
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The alternately choice of step-sizes ensures the gradient method converging Q-linearly for n-
dimensional quadratic problems, and it gives Q-superlinearly convergent for two-dimensional
quadratic problems. Numerical results in Dai and Yuan (2003) show that (3.9) is significantly
better than (3.1).

Another observation on the Cauchy step is that it is always too long in the sense that
there exists a smaller step-size producing a gradient vector heading to the solution in two-
dimensional case, which is illustrated in the following picture.
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Thus, it is natural for us to consider step-sizes that are smaller than the Cauchy step.
Actually, the AM step is a smaller step at the even iterations. Even though a smaller step
can not achieve function reduction as much as the Cauchy step in the current iteration, it
is more likely to reduce the function much more than the Cauchy step in the next iteration,
which was observed for the AM method. Following this idea, Dai and Yuan (2003) suggested
two shortened step-size methods

αSS1
k = γ1α

∗
k (3.10)

and

αSS2
k =

{
γ2α

∗
k, if k is odd;

α∗k, if k is even,
(3.11)

where γ1 and γ2 are some positive constants less than 1. For example, we can let γ1 = 0.8
and γ2 = 0.75. Though the modifications are simple, the SS1 and SS2 methods avoid the
zigzagging phenomenon to much extent and is comparable to the AM method. For any
step-size αk that satisfies

δ1 ≤ αk

α∗k
≤ δ2 (3.12)

where δ1 < δ2 are two constants in (0,2), the convergence of the gradient method (1.10) can
be similarly proved as for the Cauchy step. We can easily see that both SS1 and SS2 satisfies
(3.12), hence it follows that both methods converge.

Raydan and Svaiter (2002) investigated the random choice of step-size αk in the interval
(3.4). Namely,

αRAND
k = θkα

∗
k, (3.13)

where θk is randomly chosen with a uniform distribution on [0, 2]. This random step-size
gradient method also much outperforms the steepest descent method. Thus, it is surprising
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to find that the “best” step-size (αk = α∗k, in the sense obtaining the least function value) is
not as good as a random chosen step-size.

Hybrid methods can be constructed by using more than one of the step-sizes presented
above. For example, Dai (2001) combined the Cauchy step and the BB step by suggesting
the following alternate step method:

αAS
k =

{
α∗k, if k is odd;
αBB

k , if k is even.
(3.14)

In fact, the alternate step method is a method using the Cauchy step-size for every two
consecutive iterations.

The above formulae for the step-sizes provide numerical improvements over the Cauchy
step. However, it is undesirable that these improvements are not as great as what the BB
method achieves, particularly when the condition number of the Hessian is very large. One
consolation is that these step-sizes have the monotone property which is not inherited by the
BB method. Thus, when we extend the BB method from convex quadratic minimization to
general nonlinear unconstrained optimization, certain non-monotone techniques have to be
applied, otherwise the fast convergence will be destroyed. Therefore, it is very desirable to
find step-size formula which enables fast convergence and possesses the monotone property.

4 A new step-size

From the results of Akaike (1959), we see that the inefficiency of the Cauchy step is due to fact
that the iterations will repeat(or cycle) the two iteration pattern. Therefore it is reasonable
to believe that avoiding the iterates falling into a two dimensional subspace can escape from
the inefficiency of the Cauchy step. Based on this belief, Yuan (2004) tried to find a step-size
that would ensure finite termination for two dimensional quadratic problems. This goal can
be achieved by defining

αY
k =

2√
(1/α∗k−1 − 1/α∗k)2 + 4‖gk‖2

2/‖‖sk−1‖2
2 + 1/α∗k−1 + 1/α∗k

. (4.1)

This step-size is defined in such a way that, for 2-dimensional convex quadratics problems, if

α1 = α∗1, (4.2)
α2 = αY

2 , (4.3)
α3 = α∗3, (4.4)

then x4 is the minimizer of the objective function in exact arithmetic. Based on this step-size,
Yuan (2004) proposed two gradient algorithms, corresponding to the following

αY A
k =

{
α∗k, if k is odd;

αY
k , if k is even

(4.5)

and

αY B
k =

{
α∗k, if mod(k, 3) 6= 0;

αY
k , if mod(k, 3) = 0

(4.6)
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Both algorithms are monotone since it is easy to see from (4.1) that αY
k < 2α∗k. The numerical

experiments in Yuan (2004) show that (4.6) is comparable to the BB method for large scale
problems and better for small scale problems. However, it is also found that (4.5) is far more
worse than (4.6). The surprising numerical performance of (4.6) can be explained by the fact
that (4.6) is nothing but repeated restarts of algorithm (4.2)-(4.4), which is proved to have
the two-dimensional finite termination property.

A distinguish feature of the BB method is that it does not sink into any lower subspace
spanned by eigenvectors. To be more exact, the BB method reduces the gradient components
(if they are expressed by the eigenvectors of H) more or less at the same asymptotic rate.
This decreasing together property, as called by Dai and Yuan (2005), is also possessed by
the method (4.6). Similar to Fletcher (2001), Dai and Yuan (2005) considers a special test
example of 10 variables where H is a diagonal matrix with

hii = 11i− 10, g
(i)
1 =

√
1 + i, for i = 1, . . . , 10. (4.7)

The quantity

ξk =
min{∑L−1

j=0 |g(i)
k+j |; i = 1, . . . , n}

max{∑L−1
j=0 |g(i)

k+j |; i = 1, . . . , n}
(4.8)

is used to observe whether the gradient components decrease in a balanceable way. The
introducing of a positive integer L ≥ 1 is to smooth the curve of ξk with L = 1. It is set to
100 in our tests. The sequence {ξk} generated by different gradient methods are given in the
following picture.
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From the picture, we can see that the method (4.6) shares with the BB method a property
of decreasing together, which is out of the reach of the other gradient methods. In fact, it
is observed that, except the BB method and the method (4.6), the other gradient methods
converge asymptotically to lower dimensional subspaces. In fact, if we define the set

B = {i : 1 ≤ i ≤ n, lim inf
k→∞

|g(i)
k |

‖gk‖2
6= 0} (4.9)

and let nb be the size of B, namely, nb = |B|. Then for the previous example (4.7), Dai and
Yuan (2005) obtained the following table.

Method SD RAND SS1 SS2 AM YA YB BB
nb 2 2 3 2 4 7 10 10

The value nb for different gradient methods in the example

The success of the step-size (4.1) leads to further investigation on similar step-sizes. Dai
and Yuan (2005) considered the following variant step-size:

αY V
k =

2√
(1/α∗k−1 − 1/α∗k)2 + 4‖gk‖2

2/(α∗k−1‖gk−1‖2)2 + 1/α∗k−1 + 1/α∗k
, (4.10)

which is the same as (4.1) if sk−1 = −α∗k−1gk−1. An extension to (4.1) given by Dai and
Yuan(2005) is

αY 2
k =

2√
(1/α∗∗k−1 − 1/α∗∗k )2 + 4gT

k Hgk/[(α∗∗k−1)
2gT

k−1Hgk] + 1/α∗∗k−1 + 1/α∗∗k
, (4.11)

where

α∗∗k =
gT
k Hgk

‖Hgk‖2
2

. (4.12)

It is easy to show that the gradient method will find the minimum of a two dimensional
quadratic function after three iterations if we let

α1 = α∗∗1 , (4.13)
α2 = αY 2

2 , (4.14)
α3 = α∗∗3 . (4.15)

Different combinations of either of (4.1), (4.10) and (4.11) with Cauchy steps are studied by
Dai and Yuan (2005), and it was found that the following choice

αDY
k =

{
α∗k, if mod(k, 4) = 1 or 2,
αY V

k , otherwise,
(4.16)

produced better numerical results than the BB method.
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5 Discussion

In this paper we have presented some new step-sizes for the gradient method and reviewed
some of the recent advances, following the remarkable result by Barzilai and Borwein (1988).
The step-sizes discussed in the paper show that there is still room for us to improve the
classic steepest descent method. The new method (4.6) is interesting as it has the monotone
property and converges as fast as the BB method. Numerical results indicate (4.6) converges
Q-superlinearly for three-dimensional convex quadratic problems, but by now we have not
yet managed to find a proof.

It is surprising to find that there is still much to be understood on one of the most simple
unconstrained optimization methods, the steepest descent method. We believe that a good
gradient method would use at least one exact line search (the Cauchy step) in every few
iterations, as we do not want to miss the opportunity of finding the exact solution when the
gradient at the current iterate point is an eigenvector of the Hessian. Another reason for
supporting some Cauchy steps is that any superlinearly convergent step at an iteration in the
gradient method would require that the step-size is close to the Cauchy step, asymptotically.
Thus, it is natural to believe that a successful scheme would combine one or two Cauchy
steps with one or two step-sizes defined by certain formulae. The formulae to be searched for
would better have the following properties. First, it should be a monotone step so that it can
be easily extended to general nonlinear optimization. Secondly, it should reduce the gradient
components (expressed by the eigenvectors of the Hessian) more or less in the same rate.
Finally, it should be easy to compute. For example, it should depend only on the information
in the current iteration and the step-sizes used in the past few iterations.
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