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Abstract

In this paper, we review various subspace techniques that are
used in constructing of numerical methods for nonlinear optimiza-
tion. The subspace techniques are getting more and more impor-
tant as the optimization problems we have to solve are getting
larger and larger in scale. The applications of subspace tech-
niques have the advantage of reducing both computation cost
and memory size. Actually in many standard optimization meth-
ods (such as conjugate gradient method, limited memory quasi-
Newton method, projected gradient method, and null space method)
there are ideas or techniques that can be viewed as subspace tech-
niques. The essential part of a subspace method is how to choose
the subspace in which the trial step or the trust region should be-
long. Model subspace algorithms for unconstrained optimization
and constrained optimization are given respectively, and different
proposals are made on how to choose the subspaces. As an exam-
ple, we also present an interior point method based on subspace
techniques.

1 Introduction

Nonlinear optimization is to minimize an objective function subject to
some equality and inequality constraints, which can be written as follows.

min
x∈<n

f(x) (1.1)

subject to ci(x) = 0, i = 1, ...,me (1.2)
ci(x) ≥ 0, i = me + 1, ..., m, (1.3)

where m and me are two non-negative integers satisfying m ≥ me. Nor-
mally, f(x) and ci(x)(i = 1, ..., m) are continuously differentiable func-
tions. We use the notations g(x) = ∇f(x) and ai(x) = ∇ci(x).

∗The authors are partly supported by NSF of China (No. 10231060).



2 Y.X. YUAN

Large scale optimization problems (n is very large) have attracted
much attention from researchers in the recent years. A very good recent
review paper was given by Gould, Orban and Toint[5], where the authors
discuss the main approaches for handling large scale problems. The step
computation, active set, gradient projection, and interior point method
are discussed there.

One of the straightforward technique for large scale problems is to
solve the large scale subproblems efficiently by approximate methods.
The overall cost for building a house will be reduced if each brick is
cheaper. For example, the truncated conjugate gradient (CG) method is
a very successful algorithm for the single ball trust region subproblem:

min
d∈<n

Q(d) = gT d +
1
2
dT Bd (1.4)

s. t. ‖d‖2 ≤ ∆. (1.5)

The truncated CG method proposed independently by Steihaug[8]
and Toint[11] defines an approximate solution by applying the standard
conjugate gradient method until reaching the trust region bound or ob-
taining the exact solution. It was proved by Yuan[17] that :

Q(0)−Q(dTCG) ≥ 1
2
[Q(0)−Q(d∗)] (1.6)

where dTCG is the solution obtained by the truncated conjugate gradient
method and d∗ is the solution of (1.4)-(1.5).

Active set is also an efficient approach to large scale problems, partic-
ularly for problems having many redundant constraints. In a sequential
quadratic programming (SQP) algorithm, the subproblem at the k-th
iteration is

min
d∈<n

Qk(d) = ∇f(xk)T d +
1
2
dT Bkd (1.7)

s.t. ci(xk) + aT
i (xk)T d = 0, i = 1, ..., me, (1.8)

ci(xk) + aT
i (xk)T d ≥ 0, i = me + 1, ...,m. (1.9)

By active set technique, instead of solving the above subproblem, we can
solve the following subproblem:

min
d∈<n

Qk(d) = ∇f(xk)T d +
1
2
dT Bkd (1.10)

s.t. ci(xk) + ai(xk)T d = 0, i ∈ Ak, (1.11)

where Ak is an active set which is a subset of {1, 2, ...,m} and is an
approximation to the active set at the solution. When the number of
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elements of A is significantly smaller that m, the active set subproblem
should be much easier to solve than the original subproblem.

One of our motivations for suggesting subspace algorithms for non-
linear optimization is the unbalance property shared by most line search
algorithms. Consider any line search method having the form:

xk+1 = xk + αkdk, (1.12)

where dk is the search direction and αk > 0 is the step-length computed
by certain line search technique. The search direction dk is usually com-
puted by solving a subproblem which is an approximation to the original
nonlinear problem. Thus, each iteration of a line search algorithm com-
posites of two parts, one is to find a dk in the whole n dimensional space,
while the other part is to search a suitable step-length in the fixed one
dimensional space spanned by the computed dk. Thus, the overall algo-
rithm swings between n dimensional search and one dimensional search
alternately.

Another motivation for us to consider subspace algorithms is that
quite a few well known existing algorithms essentially have certain sub-
space features. For example, the conjugate gradient method uses a search
direction in a two dimensional subspace spanned by the steepest descent
direction and the previous step, the dog-leg method computes a step that
is a convex combination of the steepest descent direction and the New-
ton’s direction, and limited memory quasi-Newton algorithms produce
search directions spanned in lower dimensional spaces.

This paper is organized as follows. In the next section, we will give
some examples of algorithms that have certain subspace structures. In
section 3, a model algorithm using subspace approach for unconstrained
optimization is given and some possibilities for choices of the subspaces
are also discussed. In section 4, subspace techniques for constrained op-
timization are presented, together with a subspace interior point trust
region algorithm for box constrained optimization as an example. Fi-
nally, a brief discussion is given.

2 Examples of Subspace Approaches

It is well-known that nonlinear conjugate gradient methods use a lin-
ear combination of the steepest descent direction −gk and the previous
search direction dk−1 to define the new search direction:

dk = −gk + βkdk−1. (2.1)

Thus, one of the central tasks of nonlinear conjugate gradient meth-
ods has been how to define the suitable βk based on certain conjugate
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principles. The four leading contenders are the FR, HS, PRP and DY
methods[7].

Instead of the conjugate property, Stoer and Yuan[9] suggests to look
at the conjugate gradient method from the subspace point of view. As
a conjugate gradient method uses a βk to define dk and then a step-
size αk to set xk+1 = xk + αkdk, no matter whatever βk and αk are
used, the increment in the iterative point will be a linear combination
of −gk and dk−1. Hence it is natural to ask how to find a best point in
the 2-dimensional subspace spanned by −gk and dk−1. Namely, we can
consider a model subproblem

min
d∈Span{−gk,sk−1}

Qk(d) ≈ f(xk + d). (2.2)

Let dk be the solution of the above 2-dimensional subproblem. Stoer
and Yuan[9] presents a successive 2-dimensional search algorithm, which
is an example of algorithms using subspace models.

Another famous optimization technique has the subspace nature is
the limited memory quasi-Newton method. Quasi-Newton updates (for
example, see [3] and [10]) have the form

Bk = U(Bk−1, sk−1, yk−1) (2.3)

which satisfies
Bksk−1 = yk−1, (2.4)

where sk−1 = xk − xk−1 and yk−1 = ∇f(xk−1 + sk−1)−∇f(xk−1). An
example is the famous BFGS method

Bk = Bk−1 −
Bk−1sk−1s

T
k−1Bk−1

sT
k−1Bk−1sk−1

+
yk−1y

T
k−1

sT
k−1yk−1

. (2.5)

Limited memory quasi-Newton updates the approximate Hessian repeat-
edly:

B
(i)
k = U(B(i−1)

k , sk−m−1+i, yk−m−1+i), i = 1, ...,m, (2.6)

with B
(0)
k = σkI. For example, see [6]. There are different formulae for

σk with one particular choice being sT
k−1yk−1/yT

k−1yk−1. It can be shown
that the limited memory quasi-Newton matrix can be written as

Bk = B
(m)
k = σkI + [Sk Yk]Tk

[
ST

k

Y T
k

]
(2.7)

where Tk is a 2m× 2m matrix and

[Sk Yk] = [sk−1, sk−2, ...sk−m, yk−1, yk−2, ..., yk−m] ∈ <n×2m (2.8)
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In a line search type method, we have that sk = αkdk = −αkB−1
k gk,

while for a trust region type algorithm one would have sk = −(Bk +
λkI)−1gk. Therefore, in either case, it follows that

sk = −
(

ρkI + [Sk Yk]Tk

[
ST

k

Y T
k

])−1

gk

∈ Span{gk, sk−1, ..., sk−m, yk−1, ..., yk−m}. (2.9)

Consequently, we have shown that limited memory quasi-Newton algo-
rithms no matter with line search or trust region will always produce a
step in the subspace Span{gk, sk−1, ..., sk−m, yk−1, ..., yk−m}. Indeed, a
trust region algorithm using this subspace is given by Wang, Wen and
Yuan[13].

Even for the standard quasi-Newton updates, we can also establish
subspace property results. The following is a result for trust region type
algorithms.

Lemma 2.1. (Wang and Yuan, [14]) Suppose B1 = σI, σ > 0. The
matrix updating formula is any one chosen from amongst SR1, PSB and
Broyden family, and Bk is the k-th updated matrix. sk is the solution of

min
d∈<n

gT
k d +

1
2
dT Bkd (2.10)

s.t. ‖d‖2 ≤ ∆k, (2.11)

xk+1 = xk + sk, gk = ∇f(xk). Let Gk = Span{g1, g2, · · · , gk}. Then

sk ∈ Gk, (2.12)

and we have
Bkz ∈ Gk, Bku = σu (2.13)

for any z ∈ Gk, w ∈ G⊥k .

The above lemma is an extension of similar results for line search
type algorithms, which were discussed by Gill and Leonard[4] and Vlcek
and Luksan[12].

A modification to the standard trust region subproblem (1.4)-(1.5) is
given by Burdakov and Yuan[1]. Assume that the matrix B is generated
by limited memory quasi-Newton updates. Namely we have

B = σI + PDPT , P ∈ <n×l. (2.14)

Instead of using the Euclidean norm as in (1.5), Burdakov and Yuan[1]
suggested the following norm

‖d‖P,∞ = max{‖PT d‖∞, ‖PT
⊥d‖2}, (2.15)
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where PT
⊥ is a matrix such that PT

⊥P = 0 and (P, P⊥) is nonsingular.
Such a choice of the norm makes the subproblem

min
‖d‖P,∞≤∆

Q(d) (2.16)

easy to solve.

3 A model subspace algorithms

Based on the above observations, we can suggest a model subspace algo-
rithm for unconstrained optimization, which is a slightly modification of
the standard trust region algorithm for unconstrained optimization (for
example, see Yuan[16]).

Algorithm 3.1. (A model subspace algorithm for unconstrained opti-
mization)

Step 1 Given x1, Define S1, ε > 0, k := 1.

Step 2 Solve a subspace subproblem:

min
d∈Sk

Qk(d) = gT
k d +

1
2
dT Bkd (3.1)

obtaining sk. If ‖sk‖ ≤ ε then stop.

Step 3 Define

xk+1 =

{
xk + sk if f(xk + sk) < f(xk)
xk otherwise

(3.2)

Step 4 Generate Sk+1 and Qk+1(d).

Step 1 k := k + 1, Go to Step 2.

The main difference between the above algorithm and standard whole
space algorithms is the constraint for the step sk to be in the subspace
Sk. Thus, the key issue here is how to choose the subspace Sk.

One obvious choice for the subspace Sk is a generalization of the
2-dimensional subspace studied by Stoer and Yuan[9], namely Sk =
Span{−gk, sk−1, ..., sk−m}. As all the points in Sk can be expressed
by

d = αgk +
m∑

i=1

βisk−i,

using the following approximations

sT
k−i∇2f(xk)sk−j ≈ sT

k−iyk−j , sT
k−i∇2f(xk)gk ≈ yT

k−igk (3.3)
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we can write the quadratic function Qk(d) ≈ f(xk + d) in the subspace
by a quadratic function of α, β1, ..., βm:

Q̄k(α, β1, ..., βm) = (−‖gk‖2, gT
k sk−1, ..., g

T
k sk−m)T




α
β1

...
βm




+
1
2




α
β1

...
βm




T 


ρk −gT
k yk−1 . . . −gT

k yk−m

−gT
k yk−1 yT

k−1sk−1 . . . yT
k−msk−1

...
...

. . .
...

−gT
k yy−m yT

k−msk−1 . . . yT
k−msk−m







α
β1

...
βm


 , (3.5)

where ρk should be an approximation to gT
k ∇2f(xk)gk. There are many

possible ways to approximate it. First, we can write this value in a
different form:

gT
k ∇2f(xk)gk =

1
cos2 θk

(sT
k−1∇2f(xk)gk)2

sT
k−1∇2f(xk)sk−1

≈ 1
cos2 θk

(yT
k−1gk)2

sT
k−1yk−1

, (3.6)

where θk is the angle between (∇2f(xk))1/2sk−1 and (∇2f(xk))1/2gk.
Similar to [9], due to the mean value to cos2θ = 1/2, we can let

ρk = 2
(yT

k−1gk)2

sT
k−1yk−1

. (3.7)

Because gT
k ∇2f(xk)gk is the magnitude of the Hessian matrix in the

direction gk, which can be estimated by the average over the m directions
sk−i(i = 1, ..., m), it is reasonable to let

ρk =
‖gk‖22

m

m∑

i=1

sT
k−iyk−i

sT
k−isk−i

. (3.8)

Of course, we can use a limited memory matrix Bk and set ρk = gT
k Bkgk.

If an extra function value at xk + tgk is calculated, one can also let

ρk =
2(f(xk + tgk)− f(xk)− t‖gk‖22)

t2
. (3.9)

Another possible choice for Sk is Span{−gk, yk−1, ..., yk−m}. If we
express the solution of (3.1) as

d = αgk +
m∑

i=1

βiyk−i = Wk




α
β1

...
βm


 , (3.10)
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the coefficients α, β1, ..., βm should be

− [
WT

k ∇2f(xk)Wk

]−1
WT

k ∇f(xk).

One approach to estimate the above vector is to replace
[
WT

k ∇2f(xk)Wk

]−1

by
[
WT

k (∇2f(xk))−1Wk

]
. In this way, all we need to do is to estimate

gk∇2f(xk)−1gk. Estimations for such a value can be obtained by similar
techniques that were just discussed above for estimating gT

k ∇2f(xk)gk.
Let Pk be a matrix whose columns spanned Sk. The solution of (3.1)

dk can be written as Pkzk, where zk solves

PT
k gk + PT

k BkPkz = 0. (3.11)

A generalization of the subspace subproblem (3.1) is to find a step d
such that

P̄T
k (gk + Bkd) = 0, d ∈ Sk, (3.12)

where P̄T
k is a projection from <n to a lower dimensional subspace S̄k.

Normally (3.12) exists a solution if the dimension of S̄k is not larger
than that of Sk. (3.1) is a special case of (3.12) when S̄k = Sk. It is
easy to see that the Gauss-Seidel method for linear equations is just the
case when Sk = S̄k are the one dimensional subspaces spanned by the
co-ordinate directions.

4 Subspace techniques for Constrained Op-
timization

Now we discuss subspace techniques for constrained optimization. For
simplicity, we only consider equality constrained problems here, as the
techniques discussed below can be easily extended to general inequality
constraints. The equality constrained optimization has the form:

min
x∈<n

f(x) (4.1)

s.t. c(x) = 0. (4.2)

An SQP subproblem for the above problem is

min
d∈<n

Qk(d) (4.3)

s.t. c(xk) + AT
k d = 0 (4.4)

The null space approach obtains a solution of the above subproblem by
computing a Range Space step (vertical step) vk and a Null Space step
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(horizontal step) hk and setting dk = hk + vk. For example, let the Q-R
factorization of Ak be

Ak = [Yk Zk]
[

Rk

0

]
, (4.5)

we can let vk = −YkR−T
k ck and hk = Zkz with z being the solution of

min Qk(vk + Zkz). (4.6)

One of the nice properties of the SQP subproblem is that its solution dk

is a superlinearly convergent step, namely

xk + dk − x∗ = o(‖xk − x∗‖) (4.7)

if Bk is a good approximate to the Hessian of the Lagrangian. Unfor-
tunately, Marotos effect may happen. That is, even when relation (4.7)
holds, it is possible that

f(xk + dk) > f(xk), ‖c(xk + dk)‖ > ‖c(xk)‖. (4.8)

The increases in both the objective function and constraint violation will
make all the standard globalization techniques such as line search, trust
region, and filter reject the new point xk + dk!

A remedy for the Marotos effect is the second order correction step
technique which solves another subproblem

min
d∈<n

Qk(dk + d) (4.9)

s.t. c(xk + dk) + AT
k d = 0 (4.10)

to obtain an additional step d̂k. Under certain conditions, it can be
shown that d̂k = O(‖dk‖2), therefore we call d̂k a second order correction
step. Such a second order step would make the new point xk + dk + d̂k

acceptable.
Though the second order correct step is a very good technique having

both strong theoretical properties and nice computational performance,
it has an undesirable feature explained as follows. From the subspace
point of view, the standard QP step dk is the sum of two steps, a range
space step vk and a null space step hk. When Marotos effect happens, it
can be proved that the second order correction step d̂k is almost a range
space step as well. The range space steps vk and d̂k are quadratical steps,
because basically the Newton-Raphson method is used to compute the
range space step. The null space step hk is normally a quasi-Newton step
as Bk is usually updated by quasi-Newton formulae. Though the quasi-
Newton step is superlinearly convergent, its Q-order of convergence can
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ba arbitrary close to 1 (see [15]). Thus, the convergence rate of the null
space step can be much slower than the range space step. This is not
surprising as it is quite normal to observe iterate points sinking into the
feasible region. Consequently, the second order correction step technique
leads to two range space steps and one null space step. There exists a
strong unbalance, because in the range space we apply a faster algorithm
(Newton’s method) and make two iterations while in the null space we
apply a slower algorithm for only one iteration. Just suppose there were
a chariot with a larger wheel on one side and a smaller wheel on the
other side. Obviously, such a chariot would be far from perfect. What
the second order correction technique would make it even worse is to
install a gearbox to this chariot so that the smaller wheel turns only
one round while the larger wheel turns two rounds. Such a chariot has
been driven on the road of optimization for two decades without being
noticed.

The above paragraph shows that subspace analysis will provide us
additional insight into an algorithm. At least, for null space type algo-
rithms, we need to give another think on the null space step and the
range space step.

Similar to Algorithm 3.1, we can give a subspace algorithm for con-
strained problem as follows.

Algorithm 4.1. (A model subspace method for equality constrained op-
timization)

Step 1 Given x1, Define S1, σ1, ε > 0, k = 1.

Step 2 Solve a subspace subproblem:

min Qk(d) (4.11)
s.t. ck + AT

k d = 0, d ∈ Sk. (4.12)

obtaining sk. If ‖sk‖ ≤ ε then stop.

Step 3 Define

xk+1 =

{
xk + sk if P (xk + sk, σk) < P (xk, σk)
xk otherwise

(4.13)

where P (x, σ) is a penalty function.

Step 4 Generate σk+1, Sk+1 and Qk+1(d).

Step 1 k := k + 1, Go to Step 2.

Similar to the unconstrained case, there are many choices for Sk. For
example, a possible choice for Sk is Span{−gk, sk−1, ..., sk−m,−∇cki(xk)},
where |cki(xk)| = ‖c(xk)‖∞.
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Another subspace approach is try to find a subspace solution to the
linear system:

[
Bk Ak

AT
k 0

] [
d
λ

]
= −

[
gk

ck

]
(4.14)

Namely we use a subspace Sk to compute dk by either solving

min
d∈Sk

∥∥∥∥
[

Bk Ak

AT
k 0

] [
d
λ

]
+

[
gk

ck

]∥∥∥∥
2

2

. (4.15)

or solving

min
d∈Sk

∥∥∥∥Pk

([
Bk Ak

AT
k 0

] [
d
λ

]
+

[
gk

ck

])∥∥∥∥
2

2

, (4.16)

where Pk is a projection from <n+m to some lower dimensional subspace.
For box constrained optimization, Yuan[18] presents a trust region

interior point method based on subspace technique, which is an general-
ization of the algorithm given by Coleman and Li[2].

Consider the box constrained problem

min f(x) (4.17)
s.t. l ≤ x ≤ u. (4.18)

Denote the current iterate point at the k-th iteration by xk, and let

Ωk = Diag((ωk)1, ..., (ωk)n), (4.19)

where
(ωk)i = min{(xk)i − li, ui − (xk)i} (4.20)

and ∆k = min1≤i≤m(ωk)i = Dist(xk, Γ).
The subspace subproblem given by Yuan[18] is defined by

min φk(d) = gT
k d +

1
2
dT Bkd (4.21)

s.t. dT Ω−1
k d ≤ ρk∆k, d ∈ Sk. (4.22)

where ρk ∈ (0, 1) and the subspace Sk updated from iteration to itera-
tion.

Algorithm 4.2. (An Interior Point Method with Subspace Techniques)

Step 1 Given an interior point x1, ε > 0, given a subspace S1, k := 1.

Step 2 Solve (4.21)-(4.22) obtaining sk.
if ‖sk‖ ≤ ε then stop.
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Step 3 Let

xk+1 =

{
xk + sk if rk > 0;
xk otherwise

(4.23)

ρk+1 =

{
ρk+1

2 if rk ≥ 0.1;
ρk

2 otherwise
(4.24)

Step 4 Define the subspace Sk+1 for the next interation.
k := k + 1, go to Step 2.

Yuan[18] shows that the above algorithm converges to a stationary
point of (4.17)-(4.18) if Ωkgk ∈ Sk for all k.

5 Discussions

Various subspace techniques for constructing numerical methods for non-
linear optimization have been discussed in the paper. Subspace tech-
niques are suitable for large scale problems, particularly when function
and gradient values are difficult to compute and when functions are
highly nonlinear. For constrained optimization, Subspace depending on
constraints are not easy to be defined. We believe that subspace methods
will attract more and more attention in the future.
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