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Abstract

This paper studies the Q-linear convergence properties of the steepest descent method.
For strictly convex quadratic objective functions, we give a very accurate estimate to the
Q-linear convergence rate of the steepest descent method with exact line searches.
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1 Introduction

The classic steepest descent method of Cauchy (1847) (see Curry, 1944) for unconstrained
optimization

min
x∈Rn

f(x), (1.1)

defines the iterations by
xk+1 = xk − α∗kgk, (1.2)

where gk = ∇f(xk) is the gradient of the objective function and α∗k > 0 is a step-size satisfying

f(xk − α∗kgk) = min
α>0

f(xk − αgk). (1.3)

If f(x) is a strictly convex quadratic function

f(x) = gT x +
1
2
xT Hx, (1.4)

where H is a symmetric positive definite matrix, it can be shown that the objective function
value f(xk) converges Q-linearly to f(x∗), where x∗ = −H−1g is the unique minimizer of
f(x). In fact, the following inequality

f(xk+1)− f(x∗)
f(xk)− f(x∗)

≤
(

κ− 1
κ + 1

)2

< 1 (1.5)
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always holds, where κ is the condition number of H defined by

κ =
λ1(H)
λn(H)

(1.6)

with λ1(H) and λn(H) being the largest and smallest eigenvalues of H respectively. The
proof of inequality (1.5) can be found in many references, for example, see Akaike(1959),
Greenstadt (1967), Forsythe(1968), Luenberger(1984), and Sun and Yuan(2006). Let us
define the H-norm as follows,

‖v‖H =
√

vT Hv , ∀v ∈ <n . (1.7)

A direct consequence of (1.5) is that the H-norm of the error vector xk − x∗ converges Q-
linearly:

‖xk+1 − x∗‖H

‖xk − x∗‖H
≤ κ− 1

κ + 1
< 1 . (1.8)

Consider a simple example in <2 with g = 0 and

H =
[
λ1 0
0 λ2

]
, (1.9)

and

x1 =
( 1

λ1
1
λ2

)
, (1.10)

and λ1 > λ2 > 0. In this example, the iterate points zigzag very slowly, particularly when
λ1 >> λ2. Though this example is a special problem in 2-dimension, it draws the general
picture of the steepest descent method for all n. Akaike (1959) proved that the iterates xk

converge to the solution by asymptotically alternating between two directions - the “cage”
of Stiefel (1952), unless the first search direction is an eigenvector of the Hessian H. Fur-
thermore, Akaike (1959) showed that the two asymptotic directions are in a two-dimensional
subspace spanned by two eigenvectors of H. Therefore, the steepest descent method con-
verges only linearly and can be very slow if there is a very large ratio between the two
eigenvalues whose corresponding eigenvectors span the two dimensional subspace containing
the two asymptotic directions.

In a practical implementation, instead of exact line search (1.3), we can compute αk by
some line search conditions, such as Goldstein conditions or Wolfe conditions (see Fletcher,
1987). It is easy to show that the steepest descent method with such conditions is always
convergent. That is, theoretically the method will not terminate unless a stationary point
is found. However, as the exact line search step-size α∗k normally satisfies such inexact line
search conditions, we can see the zigzag phenomenon will also happen.

A surprising result was given by Barzilai and Borwein (1988), which presented formu-
lae for the step-size αk which lead to superlinear convergence if the objective function is a
convex quadratic function of two variables. The result of Barzilai and Borwein (1988) has
triggered off many researches on the gradient method. For example, see Dai (2001), Dai and
Fletcher (2003), Dai et al. (2002), Dai and Yuan (2003,2005), Dai and Zhang (2001), Fletcher
(2001), Friedlander et al. (1999), Nocedal et al. (2000), Raydan (1993, 1997), Raydan and
Svaiter(2002), Vrahatis et al. (2000), and Yuan (2004). In contrast to abundant convergence
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studies on BB type gradient methods, there are little works on the convergence properties of
the steepest descent method.

In this paper, we study the convergence rate of the 2-norm of the error vector, namely we
want to give an upper bound for

‖xk+1 − x∗‖2

‖xk − x∗‖2
. (1.11)

The paper is organized as follows. In the next section, we reformulate the problem as a
constrained optimization, and it is shown whose optimal value can only be reached in 3
dimensional subspaces. Thus, we consider 3 dimensional subspace subproblem in Section
3, where we show that the optimal value can be obtained with one variable reaching zero,
implying that the 3 dimensional subspace problem can be reduced to a 2-dimensional subspace
problem. In Section 4, we study the 2-dimensional subspace problem. The main results are
presented in Section 5, and a brief discussion is given at the end of the paper.

2 Reformulation

The aim of this paper is to provide an upper bound for (1.11), assuming that f(x) is given
by (1.4) and xk is generated by the steepest descent method (1.2)-(1.3).

It is easy to see that

αk =
gT
k gk

gT
k Hgk

=
(xk − x∗)T H2(xk − x∗)
(xk − x∗)T H3(xk − x∗)

. (2.1)

Thus the upper bound for (1.11) is the optimal value of

max
x∈<n,x 6=x∗

‖(I − αH)(x− x∗)‖2

‖x− x∗‖2
, (2.2)

subject to

α =
(x− x∗)T H2(x− x∗)
(x− x∗)T H3(x− x∗)

. (2.3)

We can rewrite (2.2)-(2.3) in the following equivalent form:

max
y∈<n,α∈<

‖(I − αH)y‖2
2 (2.4)

subject to
yT y = 1, (2.5)

yT H2y = αyT H3y. (2.6)

Let (y∗, α∗) be a solution of (2.4)-(2.6), there exist Lagrange multipliers t∗ and u∗ such
that

(I − α∗H)2y∗ = t∗y∗ + u∗(H2y∗ − α∗H3y∗). (2.7)

−(y∗)T Hy∗ + α∗(y∗)T H2 = −u∗

2
(y∗)T H3y∗. (2.8)

It follows from (2.7) that Span{y∗,Hy∗,H2y∗} is an invariance subspace with respect to
H. Therefore it is sufficient for us to study the 3-dimensional subproblem. Furthermore,
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because the unite ball {y|yT y = 1} is invariance under orthogonal transformations, we can
assume that H is a diagonal matrix H = Diag[λ1, λ2, ..., λn]. Thus, we only need to study
the following problem

max
3∑

i=1

(1− αµi)2y2
i (2.9)

subject to
3∑

i=1

y2
i = 1, (2.10)

3∑

i=1

µ2
i y

2
i = α

3∑

i=1

µ3
i y

2
i , (2.11)

where µi(i = 1, 2, 3) are 3 eigenvalues of H, namely µi(i = 1, 2, 3) ⊂ {λ1, λ2, ..., λn).

3 Three Dimensional Subspace Case

In this section, we study problem (2.9)-(2.11). Without loss of generality, we assume that
µ1 > µ2 > µ3. Let y∗i (i = 1, 2, 3) be the solution of (2.9)-(2.11). If y∗3 = 0, (y∗1, y∗2) is
the solution of a two dimensional subproblem, which will be studied in the next section.
Thus, for the rest of this section, we assume that y∗i 6= 0(i = 1, 2, 3). It is obviously that
z∗i = (y∗i )

2(i = 1, 2, 3) is a solution of

max
3∑

i=1

(1− αµi)2zi (3.1)

subject to

3∑

i=1

zi = 1, (3.2)

3∑

i=1

µ2
i zi = α

3∑

i=1

µ3
i zi, (3.3)

zi ≥ 0, i = 1, 2, 3. (3.4)

Our assumption indicates that inequalities (3.4) are inactive at the solution. Thus, there
exist Lagrange multipliers t∗ and u∗ such that

(1− αµi)2 = t∗ + u∗(µ2
i − αµ3

i ), i = 1, 2, 3, (3.5)

3∑

i=1

2(αµi − 1)µiz
∗
i = −u∗

3∑

i=1

µ3
i z
∗
i . (3.6)

It follows from (3.5) that the determinant of the following matrix



1 (1− αµ1)2 (µ2
1 − αµ3

1)
1 (1− αµ2)2 (µ2

2 − αµ3
2)

1 (1− αµ3)2 (µ2
3 − αµ3

3)


 (3.7)
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is zero, which gives that

(µ1µ2 + µ2µ3 + µ3µ1)α2 − 2(µ1 + µ2 + µ3)α + 2 = 0. (3.8)

Therefore, we have

α =
2

µ1 + µ2 + µ3 ±
√

µ2
1 + µ2

2 + µ2
3

. (3.9)

The above relation and (3.3) imply that

α =
2

µ1 + µ2 + µ3 −
√

µ2
1 + µ2

2 + µ2
3

. (3.10)

The fact that α is a constant (independent of z) tells us that (3.1)-(3.4) is a linear pro-
gramming problem. Hence there exists a solution ẑ of (3.1)-(3.4) such that ẑi = 0 for some
i. Hence we conclude that it is sufficient for us to consider the 2-dimensional subproblem,
which will be discussed in the following section.

4 Two Dimensional Subspace Case

As discussed in the previous section, we only need to study the following 2-dimensional
problem:

max
2∑

i=1

(1− αµi)2zi (4.1)

subject to

2∑

i=1

zi = 1, (4.2)

2∑

i=1

µ2
i zi = α

2∑

i=1

µ3
i zi, (4.3)

zi ≥ 0, i = 1, 2. (4.4)

We assume that µ1 > µ2 > 0. It is obviously that

1
µ1

< α <
1
µ2

. (4.5)

(4.3) gives
µ2

1(µ1λ− 1)z1 = µ2
2(1− αµ2)z2. (4.6)

Denote s1 = αµ1 − 1, s2 = 1− αµ2, then by (4.2) and (4.6) we have that

z1 =
µ2

2s2

µ2
1s1 + µ2

2s2
, z2 =

µ2
1s1

µ2
1s1 + µ2

2s2
. (4.7)

Thus, the objective function in (4.1) can be written as

f̂(z) =
s1s2[s1µ

2
2 + s2µ

2
1]

µ2
1s1 + µ2

2s2
. (4.8)
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Define t = s1/s2, which gives

s1 =
(µ1 − µ2)t
µ1 + µ2t

, s2 =
(µ1 − µ2)
µ1 + µ2t

. (4.9)

The above two relations and (4.8) imply that

f̂(z) =
(µ1 − µ2)2t(tµ2

2 + µ2
1)

(µ1 + µ2t)2(µ2
1t + µ2

2)

=
(β − 1)2t(t + β2)
(β + t)2(β2t + 1)

= φ(t), (4.10)

where β = µ1/µ2 > 1. Maximizing φ(t) over (0,+∞), we obtain that φ′(t) = 0, which gives

ψ(t) = βt3 + (2β3 − β2)t2 + (β − 2)t− β2 = 0. (4.11)

Let t(β) be the unique root of ψ(t) = 0 in (0,+∞), we see that the maximum value of (4.1)
is φ(t(β)). What we need is to get an accurate estimate of φ(t(β)). Direct calculations show
that

ψ(
1√

2β − 1
) =

2(β − 1)2

(2β − 1)
3
2

, (4.12)

and

ψ(
1√
2β

) = −1
2
β +

1√
2

√
β − 3

√
2

4
1√
β

= −1
2

√
β(

√
β −

√
2)− 3

√
2

4
1√
β

= −1
2
(β −

√
β)−

√
2− 1
2
√

β
(2− β)− 1√

β
(1−

√
2

4
). (4.13)

From (4.12), (4.13) and β > 1, it is easy to see that

ψ(
1√

2β − 1
) > 0, ψ(

1√
2β

) < 0. (4.14)

Thus, we have
1√

2β − 1
> t(β) >

1√
2β

. (4.15)

Consequently, we have the following estimate

max φ(t) = φ(t(β)) =
(β − 1)2t(β)(t(β) + β2)
(β + t(β))2(β2t(β) + 1)

≤ (β − 1)2

(β + t(β))2
≤ (β − 1)2

(β + 1/
√

2β)2
. (4.16)

On the other hand, it follows from t(β) < 1/
√

2β − 1 < 1 that

max φ(t) = φ(t(β)) > φ(1) =
(β − 1)2

(β + 1)2
. (4.17)
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5 Q-linear convergence of the steepest descent method

From the results in the previous sections, the upper bound for ‖xk+1 − x∗‖2
2/‖xk − x∗‖2

2 is
max φ(t(β)) for all β = λi/λj with λi > λj , i, j ∈ {1, 2, ..., n}. Because the last term in the
equality (4.16) is a monotonically increasing function of β, and because the maximal possible
value of β is κ, (4.16) implies that

‖xk+1 − x∗‖2
2

‖xk − x∗‖2
2

≤ φ(t(κ)) <
(κ− 1)2

(κ + 1/
√

2κ)2
, (5.1)

as long as xk 6= x∗.

Theorem 5.1. Let f(x) be the convex quadratic function (1.4), {xk, k = 1, 2, ...} be the
sequence generated by the steepest descent method (1.2)-(1.3), and κ = λ1(H)/λn(H) > 1,
then for any starting point x1 ∈ <n either x2 = x∗ = −H−1g or

‖xk+1 − x∗‖2

‖xk − x∗‖2
≤

√
φ(t(κ)) <

κ− 1
κ + 1/

√
2κ

, (5.2)

for all k. Furthermore, there exists x1 ∈ <n such that

‖xk+1 − x∗‖2

‖xk − x∗‖2
>

κ− 1
κ + 1

, (5.3)

for all odd k.

Proof. If x2 6= x∗, it follows from Forsythe(1968) that xk 6= x∗ for all k. Therefore we can
see that (5.2) holds due to (5.1).

Since t(κ) ≤ 1/
√

2κ− 1 < 1, there exists a t̂ ∈ (t(κ), 1). Hence we have

φ( t̂ ) > φ(1) =
(κ− 1)2

(κ + 1)2
. (5.4)

Now, we can define

ŝ1 =
(κ− 1)t̂
κ + t̂

, ŝ2 =
κ− 1
κ + t̂

, (5.5)

and

ẑ1 =
s2

κ2s1 + s2
, ẑ2 =

κ2s1

κ2s1 + s2
. (5.6)

Let v1 and v2 be the two unit-norm eigenvalues of H corresponding to λ1(H) and λn(H):

Hv1 = λ1(H)v1, ‖v1‖2 = 1, (5.7)

Hv2 = λn(H)v2, ‖v2‖2 = 1. (5.8)

Now we can choose the initial vector x1 by

x1 = x∗ + (
√

ẑ1 )v1 + (
√

ẑ2 )v2, (5.9)

which, from the analysis in section 3, implies that

‖x2 − x∗‖2
2

‖x1 − x∗‖2
2

= φ(t̂). (5.10)
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(5.9) shows that all iterate points {xk} are in the 2-dimensional subspace x∗ + Span{v1, v2}.
Thus, exact line search conditions imply that there exists a constant c ∈ (0, 1) such that
xk − x∗ = ck−1(x1 − x∗) for all odd k. Hence,

‖x2k − x∗‖2
2

‖x2k−1 − x∗‖2
2

=
‖x2 − x∗‖2

2

‖x1 − x∗‖2
2

= φ(t̂) (5.11)

for all k. Consequently, (5.11) and (5.4) imply that (5.3) holds for all odd k. 2

6 Discussion

In this paper we have proven that the steepest descent method implies that

‖xk+1 − x∗‖2

‖xk − x∗‖2
<

κ− 1
κ + 1/

√
2κ

, (6.12)

for all k. And we have also shown that the upper bound given in the righthand side of the
above inequality can not be improved to (κ − 1)/(κ + 1). In fact, we have constructed an
example which gives

‖xk+1 − x∗‖2

‖xk − x∗‖2
>

κ− 1
κ + 1

, (6.13)

for all odd k. This indicates that the inequality (6.12) we established is very close to the best
possible that can be obtained.
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