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Abstract

A general family of trust region algorithms for nonsmooth optimization is considered. Conditions
for convergence are presented that allow a wide range of second derivative approximations. It si noted

that the given theory applies to many known trust region methods.
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1. Introduction

The problem is to minimize a nonsmooth function which has the form h(f(z)), where h(.) is a convex
function from ®™ to R, and f(z) = (fi(z), ..., fm(z))T is a continuously differentiable function from
R™ to R™. A trust region algorithm is used to solve this problem. The algorithm is iterative. At the
beginning of the k—th iteration, zj, Ay and By, are available, where x;, € ™ is an estimate of the solution
of the problem, Ay > 0 is a step-bound, and By is an n x n symmetric matrix. A vector dj, is chosen,

satisfying ||dk|| < Ag, such that

() < (0) + al min di(d) — 61 (0)], (1.1)
where ¢ (d) is defined as
Bu(d) = (k) + V" Fo)d) + 5" Bud, (12)

and ¢; is a constant from (0,1). We call the case when dj is a local minimum of min ¢ (d) Case A;

otherwise we have Case B. Define

S {l‘k +di, i h(f(zr)) = h(f(zk +dy)) > c2[dk(0) — b1 (d)] (1.3)
BT if h(f(zx)) < h(f(zk + di) '

and x4 is allowed to be either x; or z + di in the remaining case when

c2[pr(0) — dx(di)] > h(f(wx)) — h(f(zk + di) > 0, (1.4)

where ¢y € (0,1) is a constant. Let ¢z € (c2,1) be any constant. If

h(f(zr)) — h(f(2r + di) < c3[or(0) — dr(di)], (1.5)
then Ay is chosen to satisfy
calldi|] < Ags1 <Ay (1.6)
otherwise let
ldi |l < Aky1 < sy (1.7)
in Case A and let
A < Agyr < ey (1.8)

in Case B, where ¢4 < ¢5 <1 and ¢g > 1 are positive constants. We also require that

for some positive constant A. Finally By, is chosen for the next iteration.
This description is so general that many known trust region strategies are special cases of our algorithm
(for example, Moré, 1982; Powell, 1975,1982,1983; Sorensen, 1982; and Yuan, 1983). When the objective



function is smooth (m = 1, h(f) = f), Powell (1982) proves that the algorithm described in his paper
has the following properties. If {B}(k = 1,2,...) satisfies the inequality

1Bl < e7 + csk, (1.10)

then “potential convergence” (Steihaug, 1982) is obtained in the sense that

liminf () = 0, (1.11)
where 1 (z) is defined as
(@) = h{f(@)) — min h(f(z)+ Vif@)d) (1.12)

and where ¢; and cg are positive constants.

In the following section, it is shown that for our algorithm, if (1.10) is satisfied, then (1.11) holds. Our
result is based on the assumption that {z;}(k = 1,2,...) is bounded. This is usually satisfied, especially
when {z; h(f(z)) < h(f(x1))} is a bounded set.

By our assumption, there exists a bounded convex set D C R" such that z; € D for all k. Hence
f(D) is a bounded closed set in ™. Since h(.) is convex and well defined, there exists a positive constant
L such that

|h(f1) = h(f2)l < LIlfr = fall (1.13)

for all f1, f» € f(D) (Rockafellar, 1970, P237). By the continuity of V7 f, there exists a constant M > 0
such that

IVTf@)| <M (1.14)
for all z € D.
2. The Result
We assume the norm ||.|| is the 2-norm since any two norms in Euclidean space are equivalent. The

following analysis may be generalized by introducing more constants. First we require some lemmas.

Lemma 2.1

h(f(xr)) = dr(di) > %wm)min {1 Ar, () /1Bell} (2.1)
where (xy) is defined by (1.12).

Proof From lemma 6 of Powell (1983), we have that

B @) = min 6u(d) > Gou(o) min {1, A v@)/IBLl) 22)

Our lemma follows from (2.2) and (1.1). O



Lemma 2.2 Let § be any positive constant. If

(k) > 9,

for all k, then there exists a constant cg > 0 such that
h(f (k) — dr(di) = comin {Ag, 1/ B} .
Proof From (1.9) and Lemma 2.1, (2.4) holds for ¢y = 1 min {1/A,1,6} ¢;6. O

2

Lemma 2.3 If ||di|| < Ay and dy, is a local minimum of {¢r(d); ||d|| < Ay}, then
1 , i
lldel| 2 59 (zr) min{1/LM,1/(1+ A)||Bgl]}.

Proof Consider the function
or(B) = dn(di + Bldr —di]) 0<B<1,
where dj, is defined in Section 1 and dj, satisfies

(i) = h(f(zr)) — h(f(zr) + V7 f(zr)dr)

(2.6)

2.7)

and ||dg|| < 1. The definition (1.1) shows that ¢;(3) is the sum of a term that depends on h(.) and a

term that depends on Bj. Using the convexity of h(.), the definition of dj, and conditions (1.13) and

(1.14), the first of these terms is bounded above by the expression

(1= B)h(f(zr) + V7 flxr)di) + Bh(f(zr) + V7 fzk)dr)
(f(xr) + VT f(mr)de) + BlR(f (xx)) = (xr) — h(f(zr) + VT f(2r)di)]
(f(zr) + V7 f(zr)di) + B[—(zr) + LM||di]l]

and the other term satisfies
1 _ _
5 (dx + Bldi — di])" By (dy, + Bldi, — di))

1 _ 2 B
SdF Budy + BI|Belll|dgl| (1 + B) + |1 Bl (1 + A)?

Thus we deduce the relation
or(B) < 6k(0) + Bl—(zk) + ||di||[(LM + || Bi||(1 + A))]

2
+ 7||Bk||(1 +A)?

(2.9)

(2.10)

Since ||dg|] < Ay and dj, is a local minimum, ¢ (3) does not decrease initially when 3 is increased from

zero. Hence the coefficient of 3 in (2.10) is non-negative, consequently

k|l > (i) /[LM + (1 + A)|| By |l]

(2.11)



Therefore the lemma is valid. O

It is noted that the above lemma reduces to lemma 6 of Powell’s (1983) if || By || are uniformly bounded
and ¥ (xzy) is bounded away from zero, and it should pointed out that the proof of the lemma is guided

by Powell’s lemma 6 (1983).

Lemma 2.4 If h(f(x)) satisfies all the conditions stated in Section 1, and if (2.3) holds for all k, then

there exists a positive number c1o such that
Ak Z Clg/Mk (212)
for all k, where My, is defined by

My =1 Bl . 2.1
b =1+ max [|Bi (2.13)

Proof Since V7 f(z) is continuous on D, there exists a n > 0 such that

(1 — 03) ||.T

1£@) = F&") = VT fa) o = o)l < D =2l Yo —a'l| <, (214)

holds for all z,z' € D. We prove the lemma is true when c;¢ has the value
c1o = min{Ay My, eynMinM; J2LM,n/2(1 + A), cq, caco(1 — c3)}. (2.15)

Our proof is inductive.
By the definition of ¢19, (2.12) holds for £ = 1. We assume (2.12) is true for k and prove it is also
true for k£ + 1.
If [|dp]| = n, then Apiy > cqlldil| > crn

Y%

c10/My, so (2.12) holds for k + 1. Therefore for the
remainder of the proof we assume ||d|| < 7.

If (1.5) fails then in Case B we have Ag1q1 > Ay > c10/My, > c10/Mpy1, so (2.12) holds for k + 1. In
Case A when (1.5) fails lemma 2.3 gives

v

AV ||dg|| > min{Ag,§/2LM,5/2(1 + A) M}

\Y

cio/My, > cio/My11 (2.16)

so (2.12) holds for k + 1.
To complete our proof, we assume ||di|| < 7, and (1.5) is satisfied. From (2.14) and (1.13),

h(f(ee+di)  — h(f(zx) = h(F(zr) + V7 fzr)dr) — h(f(zx))
+h(f(xx + dr)) = h(f(z) + VT f(zr)di)

< h(f(zr) + V7 f(zr)dy) — h(f(zr))
+L||f (z + di) — f(zr) — VT f (@) de|
< h(f(zr) + VT fae)di) — h(f(xr)) +309(1—C3)|ldkll- (2.17)



Hence, from (1.5) and (2.17), it follows that
1 1
(1 = es)[h(f @k + di)) = h(f(2r)) + 5eolldill] > eady Brdy (2.18)
By adding (1 — ¢3) times (2.4) and (2.18) and using (1.2), we deduce

|| dk|[31|Br|| > co(1 — cs) min{||d||,2/]|Bx|| — ||dil|} - (2.19)

If [|di|| > 2/[|Bll — [ldi|| then [|di|| > 1/||Bkll, otherwise ||di|I3]|Bk|| > co(1 — c3)|dxl|. Hence ||dy|| >
min{1, cg(1 — ¢3)}/My. Consequently Agy1 > cal|di|| > c10/My > c10/Mp+1. This shows (2.12) holds
for k + 1. By induction, our lemma, is true. O

From this lemma, we have the following theorem.

Theorem 2.5 If h(f(x)) is bounded below, and satisfies all the conditions stated in Section 1, and if
(2.3) holds for all k, then Y.~ 1/Mj, is convergent.

Proof The proof depends on the definition of Agy; ((1.5)-1.9)), lemma 2.4 and the fact that h(f(x))

is bounded below. Because it is similar to the proof of Powell’s (1982) theorem, the details are omitted.
O

Corollary 2.6 If h(f(z)) is bounded below, and satisfies all the conditions stated in Section 1, and if
(1.10) holds for all k, then (1.11) holds.

Proof If the corollary is not true, then (2.3) holds for some ¢ > 0, so the conditions of Theorem 2.5 are
satisfied, therefore Y ., 1/Mj is convergent, but this contradicts the bound (1.10). The contradiction

proves our corollary. O
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